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Abstract: An adaptive radial basis function (RBF) neural network model is developed in 
this paper for nonlinear systems using the recursive orthogonal least squares (ROLS) 
algorithm. The model is used in a nonlinear model predictive control (NMPC). The 
developed adaptive NMPC is applied to a chemical reactor rig. On-line control 
performance is presented and it demonstrates superiority over the fixed parameter PID 
control. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
It is realized that a fixed parameter neural network 
model trained off-line often generate an intolerable 
modeling error when it is used to model an industrial 
process, especially a process with some time-varying 
parameters or with considerable uncertainties. 
Therefore, different adaptive neural networks have 
been developed in recent years. For example, Yingwei 
et al. [1] and Luo and Billings [2] proposed different 
adaptation algorithms for RBF network structures to 
recursively train the network model. However, these 
models were mainly developed for system 
identification and were not control oriented. Although 
the model is finally trained to meet the requirement, 
the prediction performance of these models during the 
training are not considered, especially when the new 
centers are added. The reason is that the new centers 
have not been trained by the previous measurement 
data and the training of these centers is recursively 
with the new data starting from the initial condition. 
Liu et al. [3] developed an adaptive RBF network 
with Lyapunov method. Pereira et al. [4] applied an 
adaptive RBF network model in the internal model 
control strategy to control an experimental process, 
and compared the performance with that achieved 
using a linear pole-placement controller. 
 

A novel method for RBF model adaptation is 
proposed in this paper. The objective of the method is 
to develop an adaptive model to be used in model-
based control scheme. Hence, the model must have a 
smooth accurate prediction no matter which region 
the operating point is moved to. The proposed model 
is adapted in both structure and parameters. The 
advantage of the adaptation method developed in this 
paper is that the active centers used in prediction are 
chosen on-line from a center bank and the weights 
associated to the centers in the bank are on-line 
updated. In this way, the degradation of the model 
accuracy caused by adding or pruning centers is 
reduced to a minimum. A backward center selection 
method proposed by the authors in the previous 
research [5] is used for on-line selection of the active 
centers. The number of currently active centers is 
determined by a measure of center pruning error that 
gives a best compromise between the prediction 
accuracy and the model complexity. The developed 
adaptive model is evaluated by modeling a reactor rig 
and is also applied in a model predictive control 
scheme for on-line evaluation. 
 

2. ADAPTIVE RBF MODEL 
 
2.1 Model Structure 
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The nonlinear system to be modeled is represented by 
the multivariable NARX model of the following form, 

)()](,

),1(),(,),1([)(

kednku

dkunkykyfky

u

y

+−−

−−−−=

L

L
          (1) 

where  are the process input, 
output and noise vectors respectively with m and p 
being the number of inputs and outputs, n  and n  
are the maximum lags in the outputs and inputs 
respectively, d is a dead-time vector representing 
delayed time to different control variables, 
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f ( )∗  is a 
vector-valued non-linear function. The Gaussian 
function output ϕ  in each hidden layer node is given 
by 
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where  is the iic th center vector of the same 

dimension as the input vector , inx ℜ∈ iσ  is the ith 

width which is a scalar,  is the number of hidden 

layer nodes. Thus, the network output vector  is 
given by 
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where  is a weight matrix. When a RBF 
neural network is used to model a process of the 
NARX form given in (1), it is actually to approximate 
the static non-linear mapping of f(*) in (1) while the 
system dynamics are realized by the external feedback 
of delayed outputs and the delayed inputs. Therefore, 
it is natural to choose neural network inputs the same 
as the variables involved in the NARX model (1) and 
the neural network model represents the following 
equation. 
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is the network input vector. 
 
2.2 Training Algorithm 
 
Training of the adaptive RBF network has two steps, 
the first step is the off-line training of the initial 
model and the second step is the on-line training. In 
the off-line training, a set of network centers are 
chosen to form the center bank using the K-means 
clustering algorithm from a set of real data that 
covering the frequency band and the amplitude range 
for the entire operating space. The width for each 
center is determined using the p-nearest-center rule 
but chose a bigger p for uniform sampling, say p = 
3~5. Then, the backward center selection method [5] 
that is based on the orthogonal least squares training 
algorithm is used to select significant centers from the 
center bank.  
 

In the on-line training, the R matrix associated to the 
centers n the bank is updated with the new 
measurement using the ROLS algorithm. Then, if two 
conditions are satisfied a smaller number of 
significant centers will be chosen using the pruning 
method. These centers are used to do model 
prediction in this sample time. The least squares 
problem is formulated as follows. Considering (1) at 
sample interval k for a set of N samples of input-
output training data from  to k, in other 
words a window going back in time N samples, we 
have 

1+− Nk
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where  is the desired output matrix, 
 is the neural network output matrix, 

 is the hidden layer output matrix, 
 is the error matrix and equation (6) can 

be solved for using the recursive MIMO Least 
Squares algorithm to minimize the following time-
varying cost function, 
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where the F-norm of a matrix is defined as 
)(2 AAtraceA T

F
=  and 1<λ  is used to introduce 

exponential forgetting to the past data. It has been 
shown [5] that minimizing (7) is equivalent to 
minimizing the following cost function, 
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where R is an hh nn ×  upper triangular matrix, and 

Y
)

 is computed by an orthogonal decomposition as 
follows, 
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where Q is an orthogonal matrix. Combining (8) and 
(9) and considering that the F-norm is preserved by 
orthogonal transformation, the following equivalent 
cost function is obtained, 
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which allows the optimal solution of to be 
solved straightforwardly from 
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and leaves the residual at sample interval k as 

F

T k)(η . Since  is an upper triangular matrix, )(kR



)(kW  can be easily solved from (11) by backward 
substitution. 
  
The decomposition in (9) can be achieved efficiently 
by applying Givens rotations to an augmented matrix 
to obtain the following transformation [4], 
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The procedure of the ROLS algorithm is therefore the 
following: for on-line training, calculate )(kφ  at 
each sampling period to update the augmented matrix 
and compute the Givens rotations to realize the 
transformation in (12). Then solve  in (11) with 

 and 
)(kW

)(kR )(kY
)

 obtained in (12). In this case, W(k) is 
needed at each sample instant for prediction. Also, 

1<λ  is needed to follow time-varying dynamics at 
the current time. For use in off-line mode, the Givens 
rotations can be computed to realize the 
transformation in (12) continuously to the end of 
training, then W is solved finally from (11). In this 
case, λ  is set to 1. Initial values for  and )(kR )(kY

)
 

in both cases can be assigned as IR µ=)0(  and 
0)0( =Y

)
, where µ  is a small positive number and I is 

a unity matrix with appropriate dimension. 
 
An important extension of the algorithm is that it can 
be used to evaluate the significance of each center in 
contributing to the model output, so as to determine 
which centers in the pre-defined center bank should 
be used in the current working condition to model the 
current system dynamics. The method can be briefly 
outlined as follows [5]. When a column of  in 

the augmented matrix 
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 in (12) is 
removed, the remaining matrix is re-triangularized 
using Givens rotation as shown in Fig.2. The resulting 

)(kTη  is the loss of F-norm caused by pruning the 

corresponding center in the network and therefore it is 
the contribution of the center to the network output. 
When each center is removed in turn from the original 
R matrix and )(kT

jη  for  is calculated, 

the center with minimum 

hnj ,,1L=

)(kT
jη  is the least 

significant one and its corresponding column is 
moved to the last column of R. This procedure is 
repeated until all the centers are rearranged in order of 
significance. Then, one can choose the most 
significant centers of number  which can be 
chosen for a best trade off between modeling 
accuracy and network complexity using the Akaike’s 
FPE rule. Finally, the optimal weights corresponding 
to the pruned network can be calculated from the 
augmented R matrix and they are equivalent to that 
which would be produced if these centers were not 
used at the beginning. 

hn

 
2.3 Network Adaptation 

 
The RBF models are adapted on-line to accommodate 
these changes. In addition to adaptation of the neural 
model weights, the structure is also adapted by 
changing the RBF centers. This is particularly useful 
when a plant is subject to a large disturbance or an 
actuator fault, as in these cases the distribution of the 
model input data will significantly change and 
adaptation of the weights only will not be enough. 
The backward center selection method described in 
[Gomm and Yu, 2000] was extended to on-line model 
adaptation. As the network centers may not all be 
active from time to time in producing an output, a 
smaller set of active centers will be selected on-line 
and used for prediction. This is supported by our 
neural network modeling experience that the less 
neurons used in the network model, the more accurate 
the model generalization will be. These centers are 
selected by evaluating their contribution to the 
network output using the backward selection method. 
 
The pre-selected center set, chosen off-line, is trained 
on-line with current input-output data to track the 
time varying dynamics of the process. When the 
process under controlled is not injected with an 
additional excitation signal, e.g. superimposed to the 
control signal, the PE condition can only be satisfied 
when set points change or the system is subject to 
disturbance or excessive system noise. To avoid that 
the model is on-line trained by input/output data not 
containing enough dynamic information, and also to 
reduce the computing load, the following two criteria 
are introduced to determine if the on-line adaptation is 
actually to be done. Condition (13) tests the modeling 
error to indicate if the network needs to be updated, 
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Condition (17) tests the input data changes to indicate 
if the data is in a steady state with constant output. 
              (14) 2)]1()([)]1()([ Tol
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where x is the input vector of the neural model. 
Condition (13) implies that changes in the plant 
dynamics cause an intolerable modeling error for a 
few consecutive steps, while condition (14) means 
there exists a change in at least one of the model input 
variables. The model will not be on-line trained unless 
the two conditions are satisfied simultaneously. It has 
been observed in control simulations and on-line 
control experiments that the neural model is not 
updated when the system is in steady state and 
without disturbance or changes in dynamics. 
 
After the center set is updated in the sample period, 
next is to choose the active centers to be used in 
actual model prediction. This is realized using the 
backward center pruning method reviewed in the last 
section. By removing one center in turn to evaluate 
the resulting residual, the center contributing the least 
to the model output is identified. Removing this 
center and repeating the procedure, the center with 
second least contribution is identified. In this way, all 



centers are re-ordered from the most contribution to 
the least. Then, a number of centers are chosen as 
active centers. To automatically determine the number 
of active centers, a trade-off between the modeling 
accuracy and the model complexity is needed, in the 
light that a network with fewer centers will give better 
generalization. Akaike’s FPE is then used, 
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where np is the number of adjusting parameters 
(weights) and i is the number of centers removed. N is 
the number of data samples that is known for off-line 
training, here it is approximated by  
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)(iε in (15) is an index of modeling error, which is 
updated from a zero initial value each time of pruning 
a center by the resulting residual as follows, 
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While )(iε  increases as i increases, FPE(i) will 
decrease and reach a minimum. The pruning stops at 
this point and the remaining centers are the active 
centers to be used for model prediction. The on-line 
implementation procedure is given as be low. 
Step 1. Collect new data y(k) and u(k) to form x(k). 

Then check if both (13) and (14) are satisfied. 
If yes, go on to the next step. Otherwise, do 
not adapt the model. 

Step 2. Apply Given’s rotation to (12). 
Step 3. Re-order the centers in the set from greatest to 

least contributions. 
Step 4. Calculate FPE to determine the number of 

active centers using (15)-(17). 
Step 5. Update the weights of the active center set 

using (11). 
Step 6. The active centers are used in model 
prediction. 

 
3. MODELING A REACTOR 

 
The reactor used in this research shown in Fig.1 is a 
pilot process representing the dynamic behavior of 
real chemical processes in industry. The variables to 
be controlled in the reactor are temperature, pH and 
dissolved oxygen.  

air

base
acid

Na2SO3

stirring

heating

pH 
temperature

pO2

reservoir

Sensors

Fig.1 The schematic of the chemical reactor process 
 

Process inputs and outputs are chosen as 
[ ]Tab ffQu = , [ ]TpOpHTy 2=  where , 

 and  denote the heating power, the flow rate of 
the base and the flow rate of air respectively. The 
working space for the process output is   
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The three network models chosen in this research are 
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)]1(),1(ˆ),1(ˆ),2(ˆ),1(ˆ[ˆ)(ˆ
222 2

−−−−−= kfkHpkTkOpkOpfkOp apO   (22) 
 
Two data sets are collected from the reactor. Firstly, 
the three RBF models (20)-(22) are used. Three center 
banks with 25, 25 and 30 centers for temperature, pH 
and dissolved oxygen respectively are selected off-
line using the K-means clustering method and the 
backward selection method using data set 1. Then, on-
line adaptation of the developed model is evaluated 
using data set 2 for multi-step-ahead prediction. The 
predictions are compared with that produced by the 
same models with centers and weights fixed. When 
using adaptive models, the active centers are chosen 
from the three center banks after the R matrix is 
updated, and used for 1, 8 and 20-step-ahead 
predictions. In the experiment, parameters used in 
adaptation are chosen as 99.0=λ , 

100)1/(1 =−= λN , 5=M , the scaled value of error 
tolerance in (13) is set to the equivalent non-scaled 
value [ ]TTole 05.0000017.00018.01 =  and the 
scaled tolerance in  
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Fig.2 Center variation in adaptive model 
 
(14) as [ ]TTole 0025.00025.00025.02 = . The fixed 
model for the dissolved oxygen has 12 centers, being 
the average of the adaptive centers. The predictions of 
the adaptive networks are found similar to that of the 
fixed networks for temperature and pH because these 
two variables are not significantly time varying. 
Therefore, only the performance for dissolved oxygen 
is presented here. The center variation out of 25 
candidates for dissolved oxygen is displayed in Fig.2.  



 
8-step-ahead predictions by the adaptive and fixed 
models are displayed with the real process output in 
Fig.3 for comparison.  
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Fig.3 8-step-ahead predictions 
 
From Fig.3 it can be clearly seen that the multi-step 
prediction of the adaptive model is much closer to the 
real output than that of the fixed-parameter model. 
The performance of both models are also assessed by 
the MSE defined in (23) and the MSEs of the 
dissolved oxygen of the adaptive and non-adaptive 
models are listed in Table I. 
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Table I. Prediction errors 
MSE                         1-step        8-step         20-step 
Adaptive model        0.033         2.22             22.9 
Fixed model              0.041         5.87             39.1 

 
4. ADAPTIVE NMPC 

  
The neural network model based NMPC scheme 
developed in this research is shown in Fig.4.  
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Fig.4 Multivariable MPC control structure 
 
The cost function in (24) has a normal quadratic form 
but with the predictive horizon not from the current 
sample time. 
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with iiiM err −=)(  being the modified set point 

vector and  being the filtered model prediction 
error vector, and 
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where  is the neural model output vector and u is 
the control vector, subscripts i or j denotes the i

ŷ
th or jth 

entry of the vectors,  are two vectors 
with their i

pNN ℜ∈21,
th elements specifying the starting and 

ending sample instants for the ith tracking error to be 
evaluated, while  is a vector with its jm

uN ℜ∈ th 
element specifying the control horizon for the jth 
control variable.  

Fixed model 

 
The control parameters used in on-line control are set 
initially to that tuned in the simulation and are further 
tuned on-line to the following values: 

[ ]TdN 321 Ω= , , , 20=Ωd [ ]TdN 1218202 +=

[ ]TuN 111= , [ ]T1.01.01.0=ξ , 3IWW uy == . 
To test effectiveness of the NMPC scheme for 
rejecting disturbance, two step-disturbances as in 
(28)-(29) are used as the two flow rates of the inlet of 
Na2SO3 and CH3COOH respectively.  
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The on-line performance of the ANMPC and the 
corresponding control variables are displayed in Fig.5. 
It can be seen that the performance in both reference 
tracking and disturbance rejection are very good. 

 
5.  CONCLUSIONS 

 
A model adaptation method for the RBF network is 
developed with both structure and weight on-line 
updating. The weight updating for the center set can 
keep the model refreshed by the current system 
measurements. The active centers are selected on-line 
from the center set rather than recruited with zero 
initial condition, which greatly improves the 
consistency of the model accuracy. The adaptive RBF 
model is used in MPC and on-line evaluation shows 
an improved performance. 
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Fig.5 On-line performance of the ANMPC 
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