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Abstract: In this paper a continuous-time Model-based Predictive Control (MPC)
problem is approached in a sub-optimal way utilizing polynomial spline func-
tions as the plant control input signals and B-splines for approximation of the
continuous-time performance index. The optimization is performed with respect
to a sequence of spline coefficients belonging to predicted control input profiles.
The suggested solution enables us a continuous-time satisfaction of the plant signal
constraints. Closed-loop stability is ensured through infinite horizon formulation
by means of a terminal cost, a terminal constraint set, and a local controller.
The presented scheme is applied on-line, supporting adaptation of the terminal
set and resulting algorithm. The efficacy of the approach is illustrated through an
experimental verification on a laboratory scale system. Copyright c©2005 IFAC.
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1. INTRODUCTION

The MPC algorithms have been widely devel-
oped mainly in a discrete-time context utilizing
discrete-time models for continuous-time systems
description and piecewise constant control signals.
It is evident that in consequence of their discrete-
time formulation, these algorithms are necessarily
suboptimal with respect to the ideal continuous-
time representations and performance indexes,
for arguments see e.g. (Cannon, 1999), (Cannon
and Kouvaritakis, 2000), (Blanchini et al., 2002),
(Magni and Scattolini, 2002) and the papers
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quoted there. The ideal MPC continuous-time
formulation leads to a difficult optimization task
assumed to be repeatedly solved at any continuous
time instant. This is practically impossible, since
any real implementation of MPC algorithm re-
quires a non-negligible computational time. Dur-
ing the last years has been suggested several com-
putationally tractable (sub-optimal) continuous-
time MPC schemes, starting from the classical
ones, see e.g. (Demircioğlu and Gawthrop, 1991),
(Gawthrop et al., 1998), (Ronco et al., 1998), up
to the guaranteed stability ones, see e.g. (Chen
and Allgöwer, 1998), (Kouvaritakis et al., 1999),
(Cannon and Kouvaritakis, 2000), (Magni and
Scattolini, 2004). The main objective of this paper
is directed towards the design of a practically



implementable, hybrid nature, continuous-time
MPC scheme based on a simultaneous polynomial
and B-spline parameterization of the continuous-
time plant model, the used continuous-time per-
formance index and the plant control and out-
put signals. Considering a finite number of spline
basis functions the parameterization enables us
to design suitable discretization of all, in the
MPC problem involved tasks, while satisfying
their continuous-time nature on a desired level.
The plant input/output signals and the applied
constraints are treated in term of spline coeffi-
cients irrelevant to the used sampling time. Such
treatment with the signals and their constraints
allows us also to evaluate and guarantee their
intersample behaviour, which in some practical
cases could be significant. Taking the plant ma-
nipulated signals from a suitable chosen class of
polynomial spline functions, the overall MPC op-
timization procedure leads to a finite dimensional
problem with a finite number of decision variables,
which are the spline coefficients of the predicted
input profiles over the given prediction horizon.
Following the receding horizon control philosophy
only the first polynomial segment of the optimal
input profile is applied to the manipulated vari-
ables with an arbitrary small sampling frequency,
while the whole optimization procedure can be
performed in parallel, with a smaller sampling
frequency. The plant closed loop stability is en-
sured by means of a terminal cost, a terminal
constraint set and a local controller acting after
some finite horizon, following the quasi-infinite
horizon approach of (Chen and Allgöwer, 1998)
and solutions in (Mayne et al., 2000). For simplic-
ity only the plant input constraints are considered.
Executing the above ideas two distinct sampling
time intervals are introduced in this work:

(1) the implementation sampling time Tg -
vanishingly small. Using zero order hold,
it serves only for calculation of values of
the spline input polynomial segment applied
to the plant control during a time interval
between the spline knot points.

(2) the control sampling time T - the time
interval between the uniformly located spline
input signal knots (T = ng.Tg). The size of
T can be small, it depends only on the MPC
procedure computational time.

2. PROBLEM STATEMENT AND
PRELIMINARY RESULTS

Consider the continuous-time plant described near
a given reference operating point by following
matrix input-output convolution relation written
in the Laplace domain as

C−1(s)A(s)y(s) = C−1(s)B(s)u(s) + e(s) (1)

where y(s), u(s) and e(s) are (p × 1) output,
(m × 1) input and (p × 1) disturbance vectors,
respectively. A(s) and C(s) are (p×p) and B(s),
(p×m) polynomial matrices. Without too much
loss of generality, the matrices A(s) and C(s) are
assumed to be diagonal. Vector e(s) represents
a transform of disturbance signals, which are
considered of finite intensity and uncorrelated
with inputs and which become white discrete
processes in the case of fast sampling.

Consider that the plant manipulated signals u(t)
are chosen from a linear space Pr,ξ,α of polynomial
spline functions of order r with knot sequence ξ
where α counts the number of continuity condi-
tions required at the knot points,

u(t) ∈ Pr,ξ,α (2)

Then using a technique of spline filtration elabo-
rated in (Kárný et al., 1990), (Rohǎl-Ilkiv, 2003)
the relation (1) can by effectively identified from
the filtered data and written in standard regres-
sion form, for the ith plant output as

yi(t) = θTi ϕi(t) + εi(t) (3)

where θTi is the vector of filtered plant parameters
and ϕi(t) is the vector of real data observed within
data windows of appropriate chosen length.

An important by-product of the spline filtering
technique is knowledge of all (spline) derivatives
of the plant input/output signals thereby enabling
us to create a simple phase variable state-space
realization of the plant (Gopal, 1985)

ẋ(t) = A x(t) +B u(t) (4)

y(t) = C x(t) (5)

where the entries of state vector x(t) are accessible
to straight calculation from the derivatives, which
considerably support the practical calculation of
the guaranteed stability ”ingredients”.

Ideally, the objective of the continuous-time MPC
design considered in the work is to minimize an
infinite horizon quadratic performance index

Jinf =

∫ ∞

t

[‖y(t+ τ |t)‖2Q + ‖u(t+ τ |t)‖2R]dτ (6)

subject to (1) and input constraints

−umin ≤ u(t+ τ |t) ≤ umax τ ≥ t

−u̇min ≤ u̇(t+ τ |t) ≤ u̇max τ ≥ t

In (6) Q and R are positive definite weighting
matrices and all signals are written as differences
from their reference values. umin,umax, u̇min, u̇max

are positive bounds imposed on control input sig-
nals. Applying the quasi-infinite horizon approach
of (Chen and Allgöwer, 1998) to guarantee the
closed-loop stability the infinite horizon index (6)
can be formulated as

J(x(t),u(.), Th) =

∫ t+Th

t

[‖y(t+ τ |t)‖2Q +

+‖u(t+ τ |t)‖2R]dτ + ‖x(t+ Th|t)‖
2
Qh

(7)



subject to

−umin ≤ u(t+ τ |t) ≤ umax τ ≥ t (8)

−u̇min ≤ u̇(t+ τ |t) ≤ u̇max τ ≥ t (9)

x(tk + Th|tk) ∈ Ω (10)

where

‖x(t+Th|t)‖
2
Qh
≥

∫ ∞

t+Th

[‖x(τ |t)‖2Qx
+‖u(τ |t)‖2R]dτ

u = Fx, ∀x(τ |t) ∈ Ω (11)

Qh is the terminal state penalty matrix, Qx =
CTQC and Ω is the terminal constraint set. The
set have to be chosen as invariant with respect
to a local linear state feedback u = Fx, virtually
acting for τ ∈ [t + Th,∞], and feasible with (8),
(9).

3. SPLINE APPROXIMATION OF THE
FINITE HORIZON PERFORMANCE INDEX

The task is to find at some decision time instant
tk(tk+1 = tk + T ) optimal continuous-time con-
trol input signals, u(tk + τ |tk), τ ∈ [tk, tk + Th],
meeting constraints (8),(9) and (10) such that the
performance index (7) reaches its minimal value.
Let us simplify the optimization problem using the
spline approximation to the finite horizon perfor-
mance index considering the condition (2). Then
applying the integration in (7) over chosen spline
bases functions and over polynomial segments of
all spline control signals the approximation gives
us following version of the performance index

J(x(tk),phk
, Th) = ‖ch(k)‖

2
Q1

+ ‖phk
‖2Qu

+

+ ‖x(tk + Th|tk)‖
2
Qh

(12)

where vector phk
collects the coefficients of all

polynomial segments which belong to the pro-
jected input profiles calculated over the prediction
horizon, [tk, tk + Th] and vector ch(k), collects all
(B-spline) coefficients of the plant output signals.
The new penalty matrices Q1, Qu are calculated
performing integration over mutual products of
the individual spline basis functions chosen for the
approximation.

Applying well-known formulas for spline interpo-
lation it is possible to exchange the vector of
B-spline coefficients ch(k) in (12) with a virtual
vector ŷk of predicted plant outputs sampled with
the sampling period T , then

ch(k) =M−1

h ŷk (13)

Mh =











Mh(tk+1)
Mh(tk+2)

...
Mh(tk+nh)
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ŷ(tk+2)
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ŷ(tk+nh)











where Mh(t) is a matrix consisting from the
chosen spline basis functions evaluated for the

time instant t. Considering the above relation in
(12) we can arrive at the next final version of the
approximated finite horizon performance index

J(x(tk),phk
, Th) = ‖ŷk‖

2
Qy

+ ‖phk
‖2Qu

+

+ ‖x(tk + Th|tk)‖
2
Qh

(14)

where
Qy = [M−1

h ]TQ1M
−1

h (15)

For practical calculations of the terminal state
penalty matrix Qh and the terminal set Ω the
state-space description (4) and the state feedback
gain F of the local controller have to be applied.

4. TERMINAL CONSTRAINT SETS
DEFINITION

The quasi-infinite horizon prediction strategies,
the terminal state penalty and terminal constraint
sets are imperative tools for guarantee of the
closed-loop stability in constrained MPC schemes.
The existence, characterization and practical cal-
culation of the sets for dynamical systems is there-
fore a basic issue for successful implementation of
MPC algorithms.

This paper utilizes following low-complexity poly-
topic invariant sets as the terminal sets for
continuous-time linear systems explained in more
detail in (Rohǎl-Ilkiv, 2003)

P(W̃, ŵ1, ŵ2) = {x ∈ R
n;−ŵ1 ≤ W̃x ≤ ŵ2}

(16)
Starting from a suitable chosen stabilizing local
controller u = Fx one effective linear program-
ming based algorithm for calculation of the poly-
tope definition matrix W̃ and boundary vectors
ŵ1, ŵ2 in the case of amplitude and rate in-
put constraints (8), (9) can be found in (Rohǎl-
Ilkiv, 2004). The algorithm will be further used
for the adaptation of the terminal set Ω ≡
P(W̃, ŵ1, ŵ2).

The necessary condition for the successful deter-
mination of the terminal set Ω and the termi-
nal state penalty matrix Qh requires the suitable
choice of the local controller gain F in such a way
that the closed-loop poles must be placed within
a sector region prescribed in the left-half com-
plex plane, Figure 1. For proof see the literature
cited above. An efficient LMI based technique of
LQ/ H2 optimal sector pole placement, exploit-
ing further in the practical calculations, has been
adopted from (Rusko, 2004).

5. PREDICTION EQUATIONS

The equations for prediction of the plant outputs
ŷk can be easily derived simulating the model (3)
from time instant tk forward in time over the nh



virtual samples situated in the prediction interval
[tk, tk + Th], as

ŷk = Gphk
+ fk (17)

where matrix G and vector fk are determined
using appropriate Toeplitz and Hankel matrices.

The further task is the prediction of the plant
terminal state, x(tk + Th|tk). Making use of next
relation for prediction of the vector of spline
coefficients belonging to predicted plant outputs

ch(k) = M−1

h [Gphk
+ fk] (18)

we can obtain following relation for evaluation of
the predicted plant terminal state

x(tk + Th|tk) = D1phk
+D2fk (19)

where matrices D1 and D2 moreover depend
on the chosen spline basis functions and their
derivatives, for details see (Rohǎl-Ilkiv, 2003).

6. MPC ALGORITHM AND CONSTRAINTS
SATISFACTION

Employing obtained predictions (17) and (19) the
performance index (14) can arrive at the following
quadratic relation

J(x(tk),phk
, Th) =

1

2
pT
hk
Hphk

+pT
hk
∇J(0) (20)

with H and ∇J(0) calculated as

H = 2[GTQyG+Qu +DT
1 QhD1]

∇J(0) = 2[GTQyfk +DT
1 QhD2fk]

Thus the problem of minimization of the perfor-
mance index from the point of view of vector phk

,
subject to constraints (8) ∼ (10), reduces to a
typical quadratic programming problem. In the
submitted experiments an efficient QP technique
of (Powell, 1985) has been employed.

Because standard QP techniques minimize a
quadratic performance index with general linear
equality-inequality constraints written usually in
a matrix form as

ATphk
≥ d(k) (21)

all constraints (8) ∼ (10) consequently have to be
re-parameterized into this form through a proper
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Fig. 1. The admissible sector for closed-loop poles

design of the matrix A columns and the vector
d(k) elements. Subsets of properly designed ele-

mentary constraints of type

aTj phk
≥ dj(k) j = 1, . . . (22)

acting on the optimized vector phk
, where aj and

dj(k) denote the jth column of A and the jth
element of d(k), respectively, then represent all
those constraints we want to have applied during
the design procedure of the predictive control al-
gorithm. This re-parameterization of the original
continuous-time constraints to constraints acting
on the vector of spline coefficients or a vector
of spline control points is a key moment in the
problem of their intersample satisfaction. Some
examples of this re-parameterization for spline
function of low orders (2,3,4) are presented in
(Rohǎl-Ilkiv, 2003). Constraining properly the co-
efficients of individual spline polynomial segments
of the control signal, at the sampling time instants
tk corresponding with the spline knots, enables
us to govern the segment intersample behaviour
and to fulfill the constraints (8), (9) between the
control sampling time instants.

The relevant continuous-time MPC algorithm
then consists of performing the following steps at
each time instant tk.

Spline based stabilizing MPC algorithm with adap-

tation of terminal set:

(1) for current plant data yk, pk and reference
values, using a suitable recursive algorithm
(e.g. alternative covariance matrix (Kulhavý
and Kraus, 1996)), update models (1), (4)
and adapt the calculation of the terminal set
Ω ≡P(W̃, ŵ1, ŵ2)

(2) then update H, ∇J(0) and d(k)
(3) and using a QP routine minimize

J(x(tk),phk
, Th) =

1

2
pT
hk
H phk

+ pT
hk
∇J(0)

subject to

ATphk
≥ d(k)

(4) finally apply with the possibly shortest im-
plementation period Tg, Tg ¿ T , first poly-
nomial segments ph(k+1) of phk

to the plant
control during the time interval [tk, tk + T ],
that means calculate control signals suj

(tk +
τ), for a relative time variable τ = iTg, i =
1, . . . ng, T = ng.Tg, as the spline polynomial
segment of order ru and implement them on
the plant control through zero order hold

(5) repeat the procedure from (1.) for next
starting time tk+1 = tk + T .

Naturally, the outlined algorithm is open to other
process limitations, which can be included to the



procedure of creating the terminal set and can be
adapted to the system of linear constraints (21).

7. EXPERIMENTAL VERIFICATION

The efficiency of the algorithm can be judged from
real-time experiments performed on a laboratory
setup consisting from a 3-phase AC motor, pow-
ered by a frequency converter, and coupled with
a DC generator representing a load of the system.
Two types of experiments were examined - ref-
erence value tracking and disturbance rejection.
A special starting procedure based on the sys-
tem proper exciting was designed for the models
(3), (4) parameters inital tuning after which the
complete MPC algorithm was activated. Through
experiments, the following setting of some inter-
esting algorithm design parameters was used:

Tg = 0.05s T = 0.5s (sampling times)
ry = 4 ru = 3 (spline orders)
Th = 12T (tracking problem)
Th = 9T (disturbance rejection)

For spline filtering of the output signal - speed
of the motor-generator set - the smoothing spline
was mounted. In all experiments the penalty ma-
trix of control signals was set to zero,Qu = 0. The
amplitude and gradient constraints of the control
signal were set as
[

3.5
]

≤ u(t) ≤
[

9.0
] [

−0.5
]

≤ u̇(t) ≤
[

0.5
]

All signals of the laboratory setup (input, output
and load) were scaled in the Volts.
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Fig. 2. Input, output and reference signals

After a preliminary phase of the experiments,
dealt with identification of the models, following
results were obtained.
Figure 2 illustrates the tracking abilities of the

tested MPC algorithm. On Figure 3 the time
responses of the individual entries (n = 3 - the
state-space order) of the vectors ŵ2, ŵ1 belonging
to the adapted terminal set Ω = P(W̃, ŵ2, ŵ1)
are depicted - ŵ2 are the upper curves, ŵ1 are
the bottom curves. The disturbance (the DC
generator load) rejection experiment is depicted
on Figure 4 and the adaptation of the terminal set
is on Figure 5. The load of the motor-generator set
was realized with varying the actuating voltage of
the generator.
The computation was performed on a PC with a
Pentium IV procesor with speed 2.4 GHz using
the software LMI Control Toolbox in the Matlab.

The obtained results supports the applicability of
the proposed MPC scheme.
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8. CONCLUSION

The domain of attraction of the spline based
algorithm depends on the size of the calculated
terminal set Ω and the selected prediction hori-
zon Th. Increasing both of these may yield a
bigger domain of attraction. Usually in the most
known MPC algorithms an increase in prediction
horizon automatically leads to a greater number
of decision variables - degrees of freedom - and
consequently to a greater computational effort.
The submitted spline-based MPC algorithm do
not suffer from this - in such extent - since the
extension of the horizon here does not lead imme-
diately to the larger number of decision variables,
i.e. elements of the vector phk

. Using a larger
distance between knots of the projected spline
control signal it is possible to extent the prediction
horizon Th satisfying the same length of the vector
and hence the same number of decision variables
and the same computational load. Accordingly, by
increasing the prediction horizon, the domain of
attraction of the MPC algorithm can be enlarged
without expense of a greater computational bur-
den.

Of course many problems related to the proposed
approximative continuous-time MPC scheme are
still open and will be further elaborated from the
practical and theoretical point of view.
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Rohǎl-Ilkiv, B. (2004). A note on calculation of
polytopic invariant and feasible sets for linear
continuous-time systems. Annual Reviews in

Control 28, 59–64.
Ronco, E., T. Arsan and P. J. Gawthrop (1998).
Open-loop intermittent feedback control:
Practical continuous-time GPC. Report csc-
98015. Centre for Systems and Control, De-
partment of Mechanical Engineering, Univer-
sity of Glasgow. Glasgow G12 8QQ, Scotland.
(http://www.ee.usyd.edu.au./ ericr/pub).

Rusko, M. (2004). A note to LQ/H2 opti-
mal sector pole placement. In: 6th Inter-

national Scientific-Technical Conference on

Process Control 2004. Kouty nad Desnou,
Czech Republic. Conference CD, paper R251.


