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Abstract: The automated design scheme called exploratory modelling for controller
optimization (EMCO) is re-examined to obtain simple robust controllers for
complex plant dynamics. The allowable gain error (AGE) function is revised
to quantify a frequency dependent bound of model gain errors which allow for
both robust servo performance and the required stability robustness margin to be
maintained. AGE lends itself to iterative modelling and controller redesign and the
resulting scheme is outlined. It is proven that control has synergistic interaction
with system identification of the plant model. Copyright c©2005 IFAC
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1. INTRODUCTION

Internal model control (IMC) is an attractive con-
trol design method to practitioners for various
reasons, Morari and Zafirou (1989). It has a clear
structure for studying the feedback mechanism
and the effect of modelling errors can be taken into
account to modify the controller transfer function
for robust stability and robust performance. Fig-
ure 1 shows the block diagram of a two-degree of
freedom IMC structure.

The input signal to the plant can be expressed as

u = d + Q(r −∆Mu−Md) (1)

where ∆M = P −M is the modelling error. The
spectrum of input u to the plant in the closed-loop
can be expressed as

Φu =
|Q|2

|1 + Q∆M |2 Φr +
|1−QM |2
|1 + Q∆M |2 Φd (2)

This clearly shows that the input excitation to the
plant is modified by modelling errors ∆M 6= 0.
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Fig. 1. Block diagram of an IMC control scheme.

If the Φr(ω) and Φd(ω) are constant spectra of
two white noise signals, then an increase in input
excitation will occur at those frequencies where
Γ = 1 + Q∆M is small and where the roll off
of Q will not attenuate this excitation, usually
within the desired closed loop bandwidth. It will
be shown that feedback structure provides self-
excitation for remodelling if the reduced stability
is caused by modelling error within the band-
width. The Γ will be related to the generalized



stability margin in Section 3. Supportive interac-
tion between modelling and feedback control is
called synergy of identification and control, An-
derson and Kosut (1991); Veres and Wall (2000);
Hjalmarsson et al. (1996); Veres (2001).

To achieve a required servo-performance or dis-
turbance attenuation, the simplest model should
be found so that its associated controller tolerates
the model’s gain errors along all frequencies. The
problem is that this idea is difficult to realize in
practice as illustrated in Fig. 2. It is difficult to
find a simple model structure, a parametric model
and a controller optimized for that model at the
same time for the following reasons.
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Fig. 2. The problem of modelling for control is
complex because the controller depends on
the model and the estimated performance
depends on both the uncertain model and the
controller.

(a) The significance of modelling errors depends
on the feedback controller to be used

(b) The controller is designed on the basis of the
uncertain model.

Hence there is a cycle of interaction between a
simple model and the controller.

In this paper the problem of finding a simple
model for a prescribed robust servo performance
(or for robust disturbance attenuation) is solved
by an iterative remodelling and controller redesign
scheme. The procedure is guided by a repeatedly
evaluated allowed gain error (AGE) function over
the frequency axis.

2. ASSUMPTIONS AND PERFORMANCE
MEASURES

For clarity of ideas, only single-input single-
output (SISO) plants will be considered. It is as-
sumed that the dynamics of the real plant in Fig.
1 can be well approximated by an unknown linear
model of possibly very high complexity (for in-
stance in active vibration control, active flow and
process control etc.). In many of these applications
empirical modelling for control, based on limited

amount of input-output data, becomes a non-
trivial task. Instead of higher order modelling,
this paper takes the direct approach of exploring
the possibilities with a limited complexity model
and controller. The model-controller action within
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Fig. 3. Reformulation of the IMC structure.

IMC is reorganized in Figure 3 into the form of a
classical control loop where the controller is

C(s) =
Q(s)

1−Q(s)M(s)
(3)

Consider continuous time models and controllers
with closed-loop equations

y(t) = P (s)u(t)
u(t) = C(s)[r(t)− y(t)] + d(t) (4)

Introducing the signals

z =
[

y
u

]
, w =

[
r
d

]
(5)

the closed-loop system can be written as

z =
[

PCS PS
CS S

]
w = T (P, C)w (6)

where S = (1 + PC)−1 is the sensitivity function.

The norm bP,C = ‖T (P, C)‖−1
∞ is the general-

ized stability margin and it measures the maxi-
mum allowed normalized H∞-norm coprime fac-
tor dynamic perturbations (McFarlane and Glover
(1990)) of P (s), which still preserve stability with
the same controller C(s). As T (P,C) contains the
sensitivity and complementary sensitivity func-
tions, ‖T (P, C)‖∞ also provides a rough measure
of control performance, without frequency weight-
ing.

Required servo control performance can be for-
mulated in the general form ‖S(P, C)W‖∞ ≤
1 where W is a suitable weighting function
(proper rational transfer function). To ensure a
closed loop bandwidth of ωb it is required that
|S(P (jω), C(jω))| ≤ 1/

√
(2), ω ≤ ωb . Hence a

W (s) that satisfies |W (jω)| ≥
√

(2) will do. If
zero steady state error is required then W (s) →∞
as s →∞ is needed.(See e.g. Doyle et al. (1992)).

Robust performance for a nominal plant model
M can be expressed by a worst-case performance



criterion under frequency dependent plant uncer-
tainty |M(jω) − P (jω)| ≤ δ(ω), ω ≥ 0 (for short
denoted by |M − P | ≤ δ) defined by

Mrp(M, C, δ) =
= sup{‖S(P,C)W‖∞ | |M − P | ≤ δ)} ≤ 1 (7)

Mrp is the measure of robust performance, depen-
dent on the nominal plant M , controller C and
uncertainty δ. The δ(ω) > 0, ω ≥ 0, is a frequency
dependent bound of the plant uncertainty.

The stability margin bM,C = ‖T (M, C)‖−1
∞ has a

geometric interpretation on the Riemann sphere
(Vinnicombe (1993)). The chordal distance (Vin-
nicombe (1993)) between two projected points on
the Riemann sphere is

κ(M1(jω), M2(jω)) =

=
|M1(jω)−M2(jω)|

(1 + |M1(jω)|2)1/2(1 + |M1(jω)|2)1/2

(8)

Later bM,Q is written for bM,C as Q is used
in IMC. The following well known lemma by is
useful for the geometric interpretation of stability
robustness.

Lemma 1. The generalized stability margin can
be expressed as:

bM,Q = inf
ω∈[0,∞)

κ(M(jω),−C(jω)−1) (9)

This lemma means that the projected curve of
−C(jω)−1 has to be kept at a distance b from
M(jω) to achieve a stability margin b > 0.

3. JOINT DEPENDANCE OF
PERFORMANCE AND STABILITY

ROBUSTNESS

This section examines how the frequency depen-
dent modelling error ∆M(ω) = P (ω)−M(jω) af-
fects the servo performance measured by ‖SW‖∞
and stability robustness in terms of the general-
ized stability margin bP,Q.

The sensitivity function can also be written as

S =
1

1 + PC
=

1
1 + PQ/(1−QM)

=
1−QM

1 + ∆MQ

The chordal distance function, the minimum of
which is the generalized stability margin, can be
expressed as

κ(P,−C−1) =
|P + C−1|

(1 + |P |2)1/2(1 + |C−1|2)1/2
=

1 + Q∆M

(1 + |P |2)1/2(|Q|2 + |1−QM |2)1/2

There are two joint terms in the final expressions
of κ and S: the 1 + Q∆M term and the 1 −
QM term, which will be denoted by Γ and γ
respectively. Then the final expressions are:

S =
γ

Γ
, κ =

Γ
(|Q|2 + |γ|2)1/2(1 + |P |2)1/2

(10)

Here only the Γ = Γ(∆M) = 1 + Q∆M is
dependent on the modelling error. Note also that
the plant amplitude gain is bounded for a stable
plant so that 1+ |P |2 ≤ Bp with some Bp > 0 and
the second factor in the denominator cannot grow
very large. Concerning the γ note that in IMC the
Q is obtained as a solution to a model matching
problem min ‖(1−MQ)W‖∞ < 1 and |Q|2(jω)+
|1−QM(jω)|2, ω > 0 is uniformly bounded from
below by a Bl > 0 and from above by a Bu > 0.
The latter follows from the continuity of Q(s) and
that Q(s) → 0 as s →∞ by the roll off definition
of Q.

Lemma 2. For the IMC scheme the following
statements hold.

(a) The generalized stability margin bP,Q is
bounded as:

inf
ω

|Γ(ω)|√
BpBu

≤ bP,Q ≤ |Γ(ω)|√
Bl

, ∀ω

if Bp = 1 + ‖P‖2∞ and Bl ≤ |Q|2(jω) + |1 −
QM(jω)|2 ≤ Bu, ω > 0.

(b) The servo performance requirement can be
expressed as

|SW (jω)| =
∣∣∣∣
γ(ω)
Γ(ω)

W (jω)
∣∣∣∣ ≤ 1, ∀ω (11)

Q normally takes on larger values within the
closed-loop bandwidth to perform the control ac-
tion and rolls off at higher frequencies to cancel
the effect of uncertain plant dynamics. By (a) the
stability will be lowered at frequencies ω where
Γ(ω) is dangerously low due to ∆M(jω) approx-
imately cancelling Q−1(jω). Exactly at these fre-
quencies the plant input is large as outlined in
the introduction and pointed out using (2). Large
input amplitude at a frequency ω allows for more
accurate identification of the response of the plant
at that frequency. This proves that, under IMC,
closed-loop plant input favours frequency response
estimation at those frequencies which are respon-
sible for lowering the stability margin within the
closed loop bandwidth. In turn more accurate
frequency response estimation will reduce ∆M(ω)
relative to Q−1 and hence increases the stability
margin. This explains the synergistic interaction
between closed-loop identification and stability
robustness of IMC.



4. ALLOWED PLANT GAIN ERRORS - AGE

The frequency-dependent maximum allowed mod-
elling error of a nominal plant model M for a
given controller C is quantified to keep a given
stability margin b and required servo performance
given by W . Let P̄ (ω) be an estimated upper
bound function of the plant gain, obtainable from
frequency response testing of the plant.

Definition 3. The frequency dependent allowed
gain error, i.e. AGE, is defined by

βb
W (ω|Q) = min{B∆(jω), Bδ(jω)}

where

B∆(ω) =
1− b

√
1 + |P̄ (ω)|2

√
|Q(jω)|2 + |γ(jω)|2

|Q(jω)|
and

Bδ(ω) =
1− |γ(jω)||W (jω)|

|Q(jω)|

To achieve a robust stability margin b and the
servo performance (as defined by |W |) for an
uncertain plant P = M + ∆M , it is a necessary
condition that the AGE bound βb

W (ω|Q) must
bound the actual error ∆M of the plant model.
In general this may not ensure stability of the
closed loop under all plant deviations within the
AGE. If, however, the nominal plant M is stable,
then this is the case as the following result shows.
Define the plant frequency response error function
by ∆M(ω) = |P (jω)−M(jω)|, ω ≥ 0.

Theorem 4. Assume that the plant P is stable and
the AGE βb

W (ω|Q) > 0, ω ∈ [0,∞), has been
computed for a stable proper model M and an
associated IMC controller Q. If

|∆M(ω)| < βb
W (ω|Q), ω ∈ [0,∞) (12)

then the closed-loop with controller Q and the
plant P will be stable with generalized stabil-
ity margin b and the servo performance will be
achieved as required by W .

The relevance of this results is that it relates
frequency domain identification with performance
and stability robustness of the controller directly,
and the test is the satisfaction of an inequality
(12). The proof is in the Appendix where it is
also clarified that AGE is the tightest such bound
if only the magnitude |∆M(ω)| of gain errors is
considered without any phase errors.

5. EXPLORATORY MODELLING FOR
CONTROL

This section summarizes the scheme of exploratory
modelling and controller optimization (EMCO).

Assume that frequency response error bounds are
measurable on the plant, i.e. a nominal response
P̂ (jω), ω ≥ 0 is obtained with an error bound
function 0 < δ(jω), ω ≥ 0 so that

|P̂ (jω)− P (jω)| ≤ δ(ω), ω ≥ 0 (13)

Then the P̄ , used as in the AGE, can be set
as P̄ (ω) = |P̂ (ω)| + δ(ω). (Note that P̂ and M
are not the same, the former is nonparametric
frequency response measurement and the latter is
the response of a parametric model.)

The essence of EMCO is to find a model structure
and model parameters, i.e. model M , such that
(12) is satisfied for the given stability robustness
margin b > 0 and servo performance W (jω), ω >
0 requirements. For a given model structure ν ,
the model parameter vector θ is to be determined
by nonlinear optimization of the cost function

Lν(θ) =
sup

ω
{|P̂ (jω)−Mθ

ν (jω)|+ δ(ω)− βb
W (ω|Qθ)} (14)

where Qθ is an IMC controller optimized for the
model Mθ

ν with regard to the weighting function
W and stability margin b.

Fig. 4) four design considerations. The W (jω) is
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Fig. 4. The design factors that are to be manipu-
lated.

defined to set a weight for the sensitivity function
S in |SW | ≤ 1 and hence to set requirements
on the steady state error or on disturbance at-
tenuation. With a suitable W the closed loop
bandwidth can be extended well beyond the open
loop bandwidth. The price to pay for this is
the accurate identification of the plant dynamics
within the required closed loop bandwidth. How
accurate the plant model needs to be cannot be
quantified until the controller Q(jω) is also known
in association with the nominal model Mθ

ν (jω).
This dependance of the required model quality on
the controller itself makes modelling for control
particularly unfriendly. Nevertheless the EMCO
scheme solves this problem by performing robust
control design for an initial model and comput-
ing the associated AGE. Using this AGE, the
inaccuracies of the model are to be corrected at
frequencies where the AGE increases above zero.



An iterative procedure can be defined to ”close
the loop of identification and control”.

The performance requirements may not be pos-
sible to achieve for two reasons: (1) Because of
inherent limitations of linear feedback control, due
to large phase lags, right half plane zeros, time
delays, etc. (2) Because of the model structure ν
is not rich enough to afford a suitable approxi-
mate model and associated robust controller. The
first problem is inevitable if linear feedback is to
be used, the second problem can be reduced by
extending the model order further.

The final goal of performance as given by W and
b.

(1) As W and b may not be both achievable
with linear feedback on the given plant, some
allowances must be made for this in the iterative
procedure. This W can be set as a target for the
closed loop bandwidth and should only be given
up gradually if the iterative investigation cannot
obtain it. The purpose of the stability margin
b > 0 is to provide some protection against sudden
changes in plant dynamics. It makes sense to
start tuning first for performance and to enhance
stability robustness at a later stage.An initially
low value of b ≤ 0.05 is reasonable to start with.

(2) High bandwidth required by W may need
accurate models within the bandwidth and that
makes sufficient extension of the model complex-
ity inevitable. What usually happens is that the
AGE Lν(θ) may exceed 0 for a high bandwidth
W , while it can be below 0 for a low bandwidth
W with given Q. Hence the model complexity of
ν has to be increased.
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Fig. 5. Block diagram for a family of procedures
based on EMCO.

(3) For a fixed model order the parameter space is
explored for all the possibilities of finding a model,
and robust controller associated with the model
inaccuracy of that model, that minimizes Lν(θ).
Hence the name exploratory modelling for control.

The model for control can be far from accurate as
an open loop model, the closed-loop can distort
what is important in the model.

(4) If the model and controller complexity reaches
its upper limit and the optimized Lν(θ) still
exceeds 0 for some very low b > 0 then the
feedback control problem has its fundamental
limitations due to the plant dynamics. In this case
the bandwidth required by W has to be gradually
decreased to the level when Lν(θ) sinks below 0.

(5) If the closed loop bandwidth is achieved for a
W and using a model structure ν then an explo-
ration procedure can continue for raised values of
b > 0.

The block diagram in Figure 5 shows the basic
features of the EMCO scheme, modifications can
be introduced depending on the application re-
quirements.

6. EXAMPLE

This sections illustrates the results of an EMCO
based iterative scheme applied to the design of
feedback control for a headrest (Fig. 6), for which
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Fig. 6. Schematics of headrest noise con-
trol: y=microphone signal, u=speaker signal,
d=noise

a frequency response was measured Rafaely and
Elliott (1999). The response of the high order
model is shown with the dotted lines in the Fig. 7.
The results show that the EMCO design method
is a promising tool to find simple controllers
for a complicated dynamics. The points to make
are: (1) a much lower order controller was found
(figures 7-9) than in Rafaely and Elliott (1999);
Rafaely et al. (1999) and (2) it was experienced
that high order models, apparently matching the
open loop response measurements, are not neces-
sarily good for control design (3) the best achieved
attenuation performance in this particular exam-
ple was not that great, due to the large phase lag
of the plant, not to our inability to find a good
controller.

2nd, 4th, 6th and 8th order controller search was
carried out. A 4th order model structure of the
form
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Fig. 7. 4th order model for control (solid line)
and the measured response of the headrest
(dotted line).
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c2s4

a4(s2 + 2bs + c)2
(15)

was found the best with associated IMC controller

a4(s2 + 2bs + c)2

c2s4

d8

(s + f)8
(16)

Figures 7-9 display a relatively successful con-
troller design. The phase response improved but
the gain response shows some significant devia-
tion. Despite of that this was the best optimized
model for control in terms of minimizing Lv(θ, f).
The AGE bound (12) is satisfied and reasonably
good noise attenuation was achieved as shown by
the sensitivity function. For the 4th order con-
troller in Figures 7-9 the noise attenuation was
limited to the 0-150Hz region, still it is interesting
that it was possible to find a simple 4th order
controller for such a complex plant.

7. CONCLUSIONS

The paper defined the frequency dependent AGE
function and the associated procedure of ex-
ploratory modelling for control that ”closes the
loop of identification and control”. Future re-
search will be concerned with extension to the
multi input multi output case.
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