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Abstract: In complex industrial plants, there are usually lots of sensors and the modelling 
of the plant leads to lots of mathematical relations. Before using classical tools for fault 
detection, the first problem to solve is: what sensors and mathematical relations have to 
be selected for the design of a detection test such as a state observer or a parity space 
based detection algorithms. This paper presents a general method for automatically 
selecting relevant sensors and relations that may be used for the design of the different 
detection tests. This method, which is based on a structural analysis of the process, 
provides all the testable subsystems and permits the selection of the most interesting 
detection tests regarding detectability and diagnosticabillity criteria. Copyright © 2005 
IFAC 
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1. INTRODUCTION 

In the scientific literature, there are two main streams 
for the design of detection tests. The first one, mostly 
used by researchers coming from the Fault Detection 
and Isolation community (Patton et al., 1989), relies 
on global models of systems to be diagnosed. It is 
often called structured or robust approach because it 
aims at projecting residuals in different spaces in 
order to discriminate the different faults that may 
occur. Another stream comes from the Artificial 
Intelligence community  (Reiter, 1987). It relies on 
component based approaches. The principle is to 
model the different components of the system and to 
combine these models in order to perform detection 
tests. The FDI approach mainly deals with dynamic 
systems whereas the DX approach mainly focus on 
static system. Detailed studies about the comparison 
between these approaches have been achieved by the 
IMALAIA French research group (Cordier et al., 
2000) and by the BRIDGE action of the European 
network of excellence called MONET 
(http://monet.aber.ac.uk: 8080/monet).  

The MAGIC European project (Köppen-Seliger et 
al., 2002) has shown that bridge approaches between 
the 2 communities (Nyberg and Krysander, 2003; 
Ploix et al., 2003), taking advantage both of detection 
tools for dynamic system and of formal reasoning for 
fault isolation are very suitable for industrial plants 
(Garcia-Beltram et al., 2003). These bridge 
approaches are, on one hand component based, i.e. 
each component state is individually modelled, and 
in the other hand, they cope with sophisticated 
detection tests. If the systems are simple, the design 
of detection tests may be easily handled but if the 
system becomes a little bit more complex, this task 
becomes unachievable. For instance, a bioprocess 
modelled by 34 mathematical relations has led to 736 
possible detection tests. It can obviously not be 
solved by hand. 

A detection test has to be distinguished from its 
support, called Testable Sub System (TSS) in (Ploix 
et al, 2003). A TSS gathers the constraints used for 
its design and the hypotheses the test relies on. A 
given set of constraints may be combined in many 
different ways and, providing that the set is testable, 
leads to many different detection tests but all of them 



are checking the same part of the system to be 
diagnosed: they are all based on the same TSS. 
Designing a fault detection procedure may be 
decomposed into two steps: identifying the parts of 
the system to be diagnosed that can be tested (the 
TSS) and, in a second step, choosing for each TSS 
the most relevant algorithm for designing a detection 
test (state observer or parity relation based algorithm, 
for instance). Discovering TSS can be achieved 
thanks to a procedure based on a structural model 
such as the bi-partite graph approach (Dulmage and 
Mendelsohn, 1959) proposed in (Straroswiecki and 
Declerck, 1989) (Declerck and Staroswiecki, 1991) 
and in (Blanke et al, 2003). Finding testable subsets 
may indeed be done thanks to an elimination 
procedure that combines constraints related to each 
component in order to eliminate all the unknown 
physical variables and therefore getting constraint 
containing only known data (i.e. testable constraints). 
In (Boutobza, 2003), it is shown that this approach 
does not provide all the possible testable subsystems: 
the more sensors there are, the less analytical 
redundancy relations are found.  

This paper present a new algorithm based on 
elimination rules, which improves the algorithm 
proposed in (Ploix and Follot, 2001). It relies also on 
a structural analysis of the constraints. Comparing to 
algorithms based on Gröbner bases (Frisk, 2000), this 
algorithm may be used whatever the nature of the 
constraints is; nonlinear differential equations can for 
instance be easily handled. Moreover, the proposed 
algorithm traces all the elementary constraints which 
are involved in a final testable constraint. This is a 
very important characteristic because it leads to the 
support of each detection test, which is required in 
formal diagnostic analyses. However, a drawback of 
this algorithm is that it may lead to unachievable 
testable subsystems, which have to be removed 
afterwards, especially if calculability has not been 
taken into account from the beginning.  

2. DIRECTED STRUCTURAL MATRIX 

Let’s describe the notation used. Observations stand 
for directly observable facts or events, which contain 
information about an actual physical state of the 
system to be diagnosed. Physical variables represent 
the phenomena according the Kantian definition. 
They have to be distinguished from model 
parameters, which cannot be directly observed 
because they depend on a model. Voltage and current 
are physical variables, resistance value not. Physical 
variables are therefore model independent. These 
variables will be putted in square brackets. For 
instance, voltage and current will be denoted as [v] 
and [i]. Known values related to physical variables 
are also denoted in a special way: they are topped by 
a “~” sign. For instance, a known value for a voltage 
[v] will be denoted v . Known values are generally 
observations coming either from control variables or 
from measurements, but they sometimes may be 
known by assumption: consider for instance a 

surrounding temperature that may be assumed to be 
between 20°c and 25°c. Known value is a key notion 
in fault diagnosis because they contain the available 
information about actual system states. 

Each component can be modelled by a constraint, 
corresponding to a relation between physical 
variables. Each constraint C can be structurally 
abstracted over a set of physical variables V 
containing all the physical variables appearing in the 
constraint, by a couple C containing two parts: 

• the structure ιV(C) of a constraint, which is a 
dim(V)-dimensional vector. Each element may be 
0, 1 or -1. The null value at ith position means that 
the ith physical variable does not appear in C. A 
unitary value means that the ith physical variable 
appears in C and that it may be deduced from the 
other physical variables of C. The value -1 means 
that the ith physical variable appears in C but that 
it cannot be deduced from the other physical 
variables of C due to some invertibility problems. 

• the set of references σ(C), also called the support 
of the constraint, containing either the name of 
the constraint if it is related to only one 
component state, or, elsewhere, the names of all 
the constraints that compose C. 

Consider for instance the following constraint: 
 [ ] [ ] [ ]( ) { }( )1 , ,z f x y C=  

and the set of physical variables V={[x],[y],[z]}. 

If it is possible to calculate these functions: 
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then, this constraint is without causality (in the sense 
of calculability) (Iwasaki and Simo, 1994). Because 
each variable may be deduced from the others, the 
structure of the constraint will be written: 

 ιV(C)=[1, 1, 1] 

Assume now that the function f3 cannot be obtained. 
In this case, the variable [x] cannot be deduced from 
the others. Therefore, the structure of the constraint 
will be written: 

 ιV(C)=[-1, 1, 1] 

Definition: Two constraints C1 and C2 defined on a 
set of physical variables V, will be considered as 
equivalent if ιV(C1)= ιV(C2) and if σ(C1)=σ(C2). It 
will be denoted C1⇔C2. 

Definition: A constraint C2 overestimates a constraint 
C1 if the three following conditions are satisfied: 

• |ιV(C1)| = |ιV(C2)|  (vectors are equals in absolute 
value) 

• ιV(C2)-ιV(C1) ≥ 0 (each element of the difference 
has to be positive or null) 

• σ(C1) ⊂ σ(C2) 

It will be denoted C1 ⊂ C2. 



Constraints overestimating others have to be 
removed because there are not minimal. 

The proposed algorithm aims at searching for all the 
possible testable subsystems. It is based on a directed 
structural matrix of the system define on a set of 
physical variables V. This matrix summarizes the 
physical variables (but not the parameters) involved 
in the constraints of the system to diagnose. The rows 
of the matrix are related to the constraints: each row 
corresponds to a constraint Ci. It is worth the 
structure of the related constraint ιV(Ci). 

Information about calculability may be forgotten i.e. 
'1' can be putted instead of '-1'. Nevertheless, if that’s 
how it is, the algorithm will lead to unachievable 
detection tests, which will have to be removed 
afterwards. It is indeed considered that other 
variables cannot be deduced from the remaining ones 
because the use of the derivative of the state variable 
has to be avoided. Note that, contrary to the 
requirements of the digraph approach, variables 
appearing in the derivative do not have to be 
modelled with a new virtual variable.  

The directed structural matrix is then cleaned up in 
order to improve the convergence towards the 
solutions i.e. the set of all the possible testable 
subsystems. The following algorithm is applied: 

Do until no longer elimination is possible 

- remove empty columns of the directed 

structural matrix 

- remove columns containing only one ‘1’ and 
no ‘-1’ 

Then, the set of constraints S appearing in the 
directed structural matrix and the involved physical 
variables are sorted so that the structural matrix 
becomes upper block triangular (1). The resulting 
matrix is called re-arranged directed structural 
matrix. Constraints are arranged so that each block 
located on the diagonal is split into 2 sub-blocks 
denoted Ti(S) x Vi(S) and Pi(S) x Vi(S).  
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Constraints belonging to T0(S) contain only one 
physical variable. These constraints are described as 
0-order terminal in S. It is usually composed by 
behavioural constraints modelling sensors or 
actuators, which link one physical variable to one 
known value. Physical variables intervening in T0(S) 
form the set V0(S) namely 0-order physical variable 
in S. P0(S) are constraints containing only physical 
variables in V0(S) and that do not belong to T0(S). 
There are called 0-order packed constraints. These 
notations may be generalized to any order. The 
terminal relations of ith order in S, called Ti(S), are 

relations that contains only one variable belonging to 
Vi(S) and no variable in Vj(S): ∀j>i. If a relation 
contains several variables in Vi(S) and no variable in 
Vj(S): ∀j>i, it belongs to Pi(S). 

Therefore, the order of a constraint is defined with 
respect to the sets Vi(S) coming from the upper 
triangular rearrangement of the structural matrix 
related to S. It corresponds to the maximum order of 
the physical variables present in the constraint. If this 
order is equal to i, the constraint C is qualified as ith-
order in S and it is denoted i=orderS(C). 

By extension, the order of a set of constraints S is 
equal to the maximum order of the physical variables 
present in S. It is denoted order(S). 

3. ELIMINATION RULES 

Re-arranged directed structural matrix is then used to 
generate potential testable subsystems according to 2 
elimination rules, partially presented in (Ploix and 
Follot, 2001). These rules may be used to combine 2 
constraints C1 and C2 with one common variable in 
order to get the composition of a new constraint, only 
if 1C C2⇔  and ( ) (1 2 2 1C C C C⊂ ∨ ⊂ ) . A 
common variable is chosen to be eliminated if one of 
the following rules may be applied (of course, the 
eliminated variable will not be present in the newly 
generated constraint): 

Rule 1/1 may be applied if the common variable to 
be eliminated may be deduced in both original 
constraints i.e. two ‘1’ are present in the column of 
the variable to be eliminated. If at least one of the 
constraints contains several ‘1’, then every remaining 
‘1’ becomes ‘1’ in the new constraint. The variables 
remaining in the original constraints become ‘-1’.  

Rule 1/-1 may be applied if the common variable to 
be eliminated may be deduced in only one constraint 
i.e. one ‘1’ and one ‘-1’ are present in the column of 
the variable to be eliminated. Then, every ‘1’ 
presents in the constraint where the common variable 
cannot be deduced, i.e. on the same row that the 
eliminated ‘-1’, become ‘1’ in the new constraint. All 
the other remaining variables become ‘-1’, even if 
there are ‘1’ in one of the original constraints. 

Moreover, for both rules, the support of the new 
constraint is equal to the union of the support of the 
original relations. Let C3 be a new constraint coming 
from an elimination between two original constraints 
C1 and C2 then, σ(C3) = σ(C1)∪ σ(C2). 

These rules can be easily proven in considering that a 
directed constraint can be written as: 

 [ ] [ ] [ ] [ ]( )0 10 2, ., , ..x f x xx=  

(if x0 is present among inputs, the constraint is a 
equation to be solved) and in considering that a non-
directed constraint satisfies : 
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Anyway, whatever the applied rule is, the elimination 
of the kth variable of a set V between 2 constraints Ci 
and Cj can be denoted by: 

  ( ),l V i jC r C C=

As an example, consider the following constraints: 
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Because derivation of variables has to be avoided, it 
leads to the following directed structural matrix: 

q 1 q 2 h 1

C 1 -1 -1 1
C 2 0 1 1

C1 ∪ C2 -1 0 1
C1 ∪ C2 I 1 0  

Physical variables q2 and h1 are common and may be 
alternatively eliminated using respectively rule 1/-1 
and rule 1/1. Two new constraints of which the 
support is known ({C1,C2}), may be generated. 
However, when the number of constraints is 
important, eliminations have to be organized in order 
to avoid redundant operations. 

4. ELIMINATION WITHIN A SET OF 
CONSTRAINTS 

Before describing the global algorithm, let's define 
the block elimination i.e. elimination within a set of 
constraints instead of the one by one elimination 
between two constraints. 

The elimination within sets of ith order terminal or 
packed constraints belonging to a set S is denoted: 

 ,  or  ( )i

i

P
P′ = ΠS S ( )i

i

T
P′ = ΠS S ( )i

i

T
T′ = ΠS S

where S is the initial constraint set and S' is the 
resulting constraint set. 

This operator generates new constraints resulting 
from all the possible one by one eliminations 
between constraints within Ti(S) and Pi(S) that 
successively eliminate the variables of Vi(S). Block 
elimination is an iterative procedure. The number of 
iterations is equal to the number of variables in Vi(S). 
Assume that card(Vi(S))=n with Vi(S)={x0, ..., xk, .., 
xn-1}. The block elimination starts by initializing a 
constraint set S0=S. Then, the first variable x0 of 
Vi(S) is considered. After all the possible one by one 
eliminations of x0 between constraints in Ti(S0) and 
Pi(S0) (depending on the letters in the Π operator), 
have been done according to elimination rules, the 
constraints involved in the eliminations are removed 

from S0 and the newly generated constraints are 
added to S0 in order to produce the new set S1 
providing that the constraints overestimating or 
equivalent to other constraints of S1 are removed. 
Not removing constraints involved in eliminations 
lead to a variant of the block elimination called 
conservative block elimination. It is only used 
between packed constraints: 
 ( )i

i

P
P′ = ΠS S  

This operation is reiterated with x1 within Ti(S1) 
and/or Pi(S1) … until Sn-1 is reached. The solution of 
the block elimination S' satisfies S'=Sn. The initial 
set of constraints S0 is thus gradually updated. 
Because of the eliminations, the following property is 
necessary satisfied:  order(S')≤order(S). The block 
elimination ends when it remains no more possible 
elimination. Consider the following directed 
structural matrix: 

Table 1 – Example of directed structural matrix 
S x 0 x 1 x 2

C 0 0 -1 1
C 1 1 0 1
C 2 -1 0 1
C 3 0 1 1
C 4 0 0 1   

According to the definitions, S={C0,C1,C2,C3,C4}, 
V0(S)={x2}, V1(S)={x0,x1}, T0(S)={C4} and 
T1(S)={C0,C1,C2,C3}. As an example, let's calculate: 

( )1

1

T
T′ = ΠS S . S0 is initially set to S. 

Firstly, x0 is considered. It is eliminated between C1 
from T1(S0) and C2 from T1(S0) using the 1/-1 
elimination rule (C1 cannot be eliminated with itself). 
It leads to a new constraint C5 of which the support is 
{C1,C2}. C5 contains only x2 as a possible output. The 
elimination of x0 between C2 and C1 is not computed 
because it is equivalent with the previous 
elimination. The constraint C5 is added to S0 and C1 
and C2 are removed from S0 in order to produce the 
updated sets S1={C0,C3,C4,C5}. The new constraint 
C5 belongs to T0(S1). 

Thus, Table 1 becomes: 
S 1 x 0 x 1 x 2

C 0 0 -1 1
C 3 0 1 1
C 4 0 0 1
C 5 0 0 1    

Now, the set T1(S1) is composed of T1(S1)={C0,C3}. 
The variable x1 is then eliminated between C0 and C3 
using 1/-1 rule. It leads to constraint C6, which only 
contains x2 as a possible output. The constraint set S2 
becomes: 

S 2 x 0 x 1 x 2

C 4 0 0 1
C 5 0 0 1
C 6 0 0 1  



The set T1(S2) is now empty. Therefore, the block 
elimination ( )1

1

T
TS ′ = Π S  is finished. Only three 

constraints remain: one initial constraint (C4) and two 
new constraints C5 and C6. Consider the set S defined 
by table 2. 

Table 2 – Example of directed structural matrix 
S x 0 x 1 x 2

C 0 0 -1 1
C 1 1 1 1
C 2 -1 0 0
C 3 0 1 0
C 4 0 0 1  

According to the definitions, V0(S)={x0,x1,x2}, 
T0(S)={C2,C3,C4} and P0(S)={C0,C1}. As an 
example, let's calculate: . The order of 
S is obviously equal to 0. The initial set is 
S

( )0

0

T
P′ = ΠS S

0=S={C0,C1,C2,C3,C4}. The variable x0 may be 
eliminated between C1 from P0(S0)={C0,C1} and C2 
from T0(S0) using the 1/-1 rule. It leads to a new 
constraint C5. Because there is no more possible 
elimination of x0, the constraint C1 and C2 may be 
removed from S0 and the constraint C5 is added to S0 

in order to produce S1={C0,C3,C4,C5}: 
S 1 x 0 x 1 x 2

C 0 0 -1 1
C 3 0 1 0
C 4 0 0 1
C 5 0 1 1  

Two new eliminations may then be performed 
between P0(S1)={C0,C5} and T0(S1)={C3,C4}. The 
variable x1 may be eliminated between the constraint 
C0 from P0(S1) and C3 from T0(S1), and between C3 
from T0(S1) and C5 from P0(S1). It leads respectively 
to constraints C6 and C7. The constraints C0, C3 and 
C5 are removed from S1: 

S 2 x 0 x 1 x 2

C 4 0 0 1
C 6 0 0 1
C 7 0 0 1  

The block elimination  is finished 
because the set P

( )0

02
T
P′ = = ΠS S S

0(S2) is now empty. Two new 
constraints have been generated whose supports are: 
σ(C6)={C0,C3} and σ(C7)={C1,C2,C3}. 

5. GLOBAL ELIMINATION PROCEDURE 

The principle of the global elimination procedure is 
to progressively reduce the maximum order of the 
constraint set until only 0-order constraints remain. 
Then, testable subsystems called basic testable 
subsystems will be obtained by directly eliminating 
the remaining 0-order variables of the P0(S) 
constraints using exclusively T0(S) constraints. 
Nevertheless, other testable subsystems may still be 
found by eliminating physical variables between 
P0(S) constraints and afterwards, eliminating the 
remaining variables using T0(S) constraints. These 

testable subsystems are called complex testable 
subsystems. Finally, Testable subsystems may still be 
found by eliminating variables within T0(S): some of 
the generated constraints may be related to material 
redundancy.  

Firstly, the directed structural matrix, composed by 
all the behavioural constraints of the system, is re-
arranged i.e. clean up and sorted as mention at the 
beginning of section IV. In order to gradually 
eliminate highest order variables, the following 
algorithm is used: 

Set n=order(S), 
If Pn(S)≠{∅} and Tn(S)={∅} then 

-S becomes ( )n

n

P
PΠ S  

-remove remaining n-order constraints from 
S 

Do from n=order(S) until n=1 

-if Pn(S)≠{∅}, S becomes ( )n

n

T
PΠ S  

- S becomes ( )n

n

T
TΠ S  

-remove remaining n-order constraints from 
S 

When order 1 is reached, two blocks remains in S: 
T0(S) and P0(S). Last eliminations have now to be 
performed. 

The basic testable subsystems are then given by: 
 ( ) (0 0

0 0

T T
B P TΣ = Π ⊕ ΠS S )  

These subsystems are qualified as basic because they 
result from the shortest way of getting testable 
subsystems. It means that they check the largest 
possible part of the system with the minimal number 
of constraints. 

Constraints within P0(S) can also be recombined in 
order to get more complex testable subsystems. 
These complex testable subsystems are given by:  
 ( ) ( ) ( )0 0 0

0 0 0
whereT T P

C P T P′ ′ ′Σ Π ⊕ Π = Π= S S S S  

This way of eliminating physical variables is 
systematic but not unique. The elimination can also 
be done in a random way. Nevertheless, the proposed 
procedure reduces the number of elimination in order 
to get all the testable subsystems. 

6. APPLICATION EXAMPLE 

This algorithm has been applied to an electric circuit 
(figure 1) depicted by the following constraints: 
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