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Abstract: This paper compares two approaches to compute the worst-case norm of
finite-dimensional convolution systems. All admissible inputs are defined to have
bounded magnitude and limited rate of change. Due to physical and mathematical
reasons, the inputs are also specified to start from zero. The first approach is based
on continuous-time optimal control formulation. Necessary conditions obtained via
the Pontryagin’s maximum principle provide a systematic means to characterize
and construct the worst-case input. The second approach is based on discretization
of the norm-computation problem which results in a large-scale finite-dimensional
linear programming. We also investigate computational errors including truncation
errors and discretization errors. Although the second approach seems to be simpler,
the first approach is deemed to yield better accuracy. Copyright c©2005 IFAC
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1. INTRODUCTION

The worst-case norm of a convolution system is
defined as the maximum peak magnitude of an
output that can be generated when an input is
subject to certain conditions by which an ad-
missible input collection is characterized. In this
paper, such collection consists of all inputs with
bounded magnitudes and limited rates of change.
Specifically, this worst-case norm is defined as
follows. Let h(t) be an impulse response of a
convolution system. For simplicity, only strictly
proper convolution systems are considered. For
all t, let the system input w(t) be continuous,
and its derivative ẇ(t) be piecewisely continuous.
The input set W is characterized by a magnitude
bound and a rate limit constraints as
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W � {w(t) : w(t) = 0, ∀t ≤ 0;
|w(t)| ≤ M, |ẇ(t)| ≤ D, ∀t > 0}, (1)

where 0 < M < ∞ and 0 < D < ∞. De-
note the system output by z(t, w). The second
argument emphasizes the dependency on w(t),
namely, z(t, w) = h(t) ∗ w(t) where ∗ stands for a
convolution operation. The maximum magnitude
of z(t, w) at each time instant is defined as

ξ(t) � sup
w∈W

|z(t, w)|. (2)

The worst-case norm is defined as the maximum
peak magnitude expressing in terms of ξ(t) as
follows.

‖h‖wc � sup
t≥0

ξ(t). (3)

The input w ∈ W causing the maximum peak
magnitude is referred to as the worst-case input.
It is noted that the definition of the input set
in (1) implies an initial condition w(0) = 0 for



all admissible inputs. Although this condition is
not common, it does make sense because the
concept of imposing a rate limit, in addition to
a magnitude bound, originates from the physical
requisition of input continuity at t > 0. Thus,
assuming w(t) to be continuous at t = 0 is
agreeable. In the later section, we will show that
this assumption is not only reasonable, but also
beneficial.

The concept of using system norms as perfor-
mance measures indicating sizes of control sys-
tems was pioneered by Narendra and Goldwyn
(1964), and Zames (1966), for example. A relaxed
version of the worst-case norm, by omitting the
rate limit D, is a product of M and the well-known
L1-norm. Dahleh and Diaz-Bobillo (1995) have
provided comprehensive exposition on L1 theory.
The development of the worst-case norm can be
traced back to Birch and Jackson (1959) who
studied the problem of computing the maximum
peak magnitude of an output of a second-order
convolution system by constructing the worst-case
input. Thereafter, Chang (1962), Horowitz (1963),
and Bongiorno Jr. (1967) have given necessary
and sufficient conditions for the worst-case input
of finite-dimensional convolution systems, but the
construction of such input was not clearly men-
tioned. In 1962, Chang has first associated the
computation of the worst-case norm to optimal
control problems. Boyd and Barratt (1991) subse-
quently pointed out that the associated optimal
control problem pertains a free terminal time,
and may be numerically solved by optimal control
approaches.

Furthermore, Lane (1992) obtained the necessary
and sufficient conditions for the worst-case input
of convolution systems and the rules to construct
it. Still the proposed method is rather tedious and
needs to determine an involved auxiliary func-
tion. An additional relevant literature presented
by Saridis and Rekasius (1966) incorporated the
same input set with a slightly modified perfor-
mance measure called an error criterion. They
exploited an optimal control formulation which
resulted in a nonlinear two-point boundary value
problem, and applied the combined numerical-
analytical method to construct the worst-case in-
put. Nevertheless, the convergence of such method
is not guaranteed.

The most recent result by Khaisongkram and
Banjerdpongchai (2004) also employed an opti-
mal control formulation. Necessary conditions ac-
quired by the Pontryagin’s Maximum Principle
were analyzed in a straightforward manner to
determine the practical characterization of the
worst-case input for finite-dimensional convolu-
tion systems. Such characterization was exploited
to derive the systematic method that constructs
the worst-case input. However, the optimal con-
trol formulation therein assumed a fixed terminal
time which actually yields a sub-optimal solution.
In other words, the performance measure previ-
ously proposed is only a sharp upper bound for
the worst-case norm.

In this paper, we discuss two practical means to
compute the worst-case norm of convolution sys-
tems; one is based on an analytical deduction; the
other is based on linear programming. The first
approach is the refinement of the main result in
Khaisongkram and Banjerdpongchai (2004). We
improve the norm computation by imposing an
initial condition w(0) = 0 in the input collection
which allows the assumption on fixed terminal
time to be mathematically sound. The previous
optimality conditions and the worst-case-input
construction have been slightly modified. As for
the second approach, the norm computation is
based on input and output discretization. The
resulting problem can be simply cast as a large-
scale finite-dimensional linear programming with
high sparsity. The main contribution is to derive
the bounds on approximation errors from both
approaches so as to compare their computational
accuracy.

The paper is organized as follows. In the next sec-
tion, the worst-case norm definition is simplified.
In Section 3, the continuous-time optimal control
formulation is discussed. The characterization and
the construction of the worst-case input are briefly
mentioned. In Section 4, the computation problem
of the worst-case norm is alternatively formulated
as a linear-programming problem. Then, in Sec-
tion 5, the computational errors are presented.
A short numerical example is given in Section 6.
Finally, some concluding remarks are summarized
in Section 7.

2. PRELIMINARIES

The definition of the maximum output magnitude
in (2) can be simplified by the fact that the term
h(t) ∗ w(t) is linear in w(t) and the bounding
conditions on w(t) are symmetrically defined, i.e.,
for all t > 0

−M ≤ w(t) ≤ M,
−D ≤ ẇ(t) ≤ D.

(4)

Hence, we can omit the absolute-value operator
in (2), and obtain the equivalent definition as

ξ(t) = sup
w∈W

{h(t) ∗ w(t)}. (5)

Furthermore, ξ(t) is actually a nondecreasing
function of time (Lane, 1992). To show this, let
t1 < t2, and let w1(t) yield ξ(t1), i.e., ξ(t1) =
h(t1) ∗w1(t1). Define w2(t) by shifting w1(t) with
�t = t2 − t1. That is

w2(t) � w1(t −�t). (6)

By simple integration, it follows that

h(t2) ∗ w2(t2) = h(t1) ∗ w1(t1) = ξ(t1).

Evidently, we have ξ(t2) ≥ h(t2) ∗ w2(t2) = ξ(t1)
by definition (5). As mentioned earlier, the initial
condition w(0) = 0 plays an important role in
the previous argument. If there is no such a
condition, w1(0) may not equal zero, resulting in
a discontinuity of w2(t) at t = �t. Consequently,
w2(t) is excluded from W, and then ξ(t2) may not
have any explicit relation with ξ(t1).



The benefit of the assumption on initial condition
is that the definition (3) is equivalent to

‖h‖wc = lim
t→∞ ξ(t). (7)

This implies that we can approximate ‖h‖wc by
ξ(T ) with arbitrary degree of accuracy by taking
T sufficiently large. The discussion on the choice
of T will be presented in Section 5.

It is worth noting that all the given propositions
are not valid if the worst-case norm in (3) is
not finite. The necessary and sufficient condition
for finiteness of the worst-case norm is that a
convolution system is BIBO stable (Lane, 1992).
The proof for necessity is omitted since it needs
extra space. However, the sufficiency simply fol-
lows from the well-known fact that M‖h(t)‖1 is an
upper bound of the worst-case norm where ‖h(t)‖1

stands for an L1-norm of h(t).

3. CONTINUOUS-TIME FORMULATION

Assume that the convolution system is strictly
proper and has a finite dimension n with the
minimal realization (A,B,C), and a state vector
x(t) ∈ Rn. To compute ξ(T ), we define an aux-
iliary state variable xn+1(t) and a control signal
u(t) as follows.

xn+1(t) � w(t),
u(t) � ẇ(t).

(8)

The fixed-terminal-time optimal control problem
can be posed as

sup
u

Cx(T )

s.t. ẋ(t) = Ax(t) + Bxn+1(t) x(0) = 0
ẋn+1(t) = u(t) xn+1(0) = 0
−M ≤ xn+1(t) ≤ M 0 ≤ t ≤ T
−D ≤ u(t) ≤ D 0 ≤ t ≤ T.

(9)

Notice that the initial time is 0, the terminal time
is T , the objective cost is z(T,w) = Cx(T ), and
the initial condition of xn+1(0) is 0. To define the
Hamiltonian function, the inequality constraint on
xn+1(t) is converted to

x2
n+1(t) + α2(t) = M2, (10)

where α(t) is a real-valued auxiliary Lagrange
variable. The Hamiltonian function is defined as

H(x, xn+1, u, α, p, pn+1, pn+2)
� pT (Ax + Bxn+1) + pn+1u

+ pn+2(M2 − x2
n+1 − α2)

(11)

where p(t), pn+1(t), and pn+2(t) are Lagrange
multipliers corresponding to ẋ(t), ẋn+1(t) and
the constraint (10), respectively. The necessary
conditions are similar to those in Khaisongkram
and Banjerdpongchai (2004), that is,

ẋ(t) = Ax(t) + Bxn+1(t), (12)

ẋn+1(t) = u(t), (13)

ṗ(t) =−AT p(t), (14)

ṗn+1(t) =−BT p(t) − 2pn+2(t)xn+1(t), (15)

M2 = x2
n+1(t) + α2(t), (16)

0 = α(t)pn+2(t). (17)

In accordance with the Pontryagin’s Maximum
Principle (Pontryagin et al., 1962), the optimal
control signal u(t) is chosen to maximize the
Hamiltonian function in (11), i.e., the control
signal should have the same sign as pn+1(t), and
its magnitude should be as large as possible. This
yields the following control law

u(t) = Dsgn{pn+1(t)}. (18)

The transversality conditions in Khaisongkram
and Banjerdpongchai (2004) are modified to

p(T ) = CT , (19)

xn+1(0) = 0, (20)

pn+1(T ) = 0. (21)

The control law on singular arc 2 can be deduced
step-by-step from the necessary conditions. It is
found that the control law in this case takes
the similar form as (18). In addition, the corner
condition, which requires the continuity of H
and all Lagrange multipliers, implies that pn+1(t)
must be continuous everywhere.

The key idea is to classify sub-intervals of [0, T ]
into two types. The first type, called a transition
region, is a time interval in which |w(t)| < M . The
other type, called a saturation region, is a time
interval in which |w(t)| = M . Then, the worst-case
input within each region is characterized sepa-
rately by means of the optimality conditions (12)-
(21).

To construct the worst-case input, the proce-
dure given in Khaisongkram and Banjerdpongchai
(2004) is slightly modified to give the worst-case
input with w(0) = 0. The modification is made at
how to start constructing the worst-case input. In
brief, the initial value pn+1(0) is varied from zero
to either positive or negative sides, depending on
the input characterization. The initial region is
attained when the cumulative summation reaches
either M/D or −M/D. The reader is referred
to Khaisongkram and Banjerdpongchai (2004) for
detailed definitions.

The input construction needs discretization of
the responses h(T − t) and s(T − t) since the
computation is implemented on digital computers.
As the discretized time series of h(T −t) is used in
numerical integration, the discretized time series
of s(T − t) is used as consecutive searching steps
for the adjacent region. However, despite the need
in sampling s(T − t), each switching instant of
the worst-case input can be precisely obtained
via simple bisection algorithm, independent of the
length of sampling period.

4. DISCRETE-TIME FORMULATION

It is observed that even for the continuous-time
formulation, the algorithm to compute the worst-
case norm still requires discretization of some time
responses. This fact motivated us to consider the

2 Singular control occurs when pn+1(t) = 0, which causes
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formulation in discrete-time domain. Let h[k] be
the discrete equivalent of h(t) obtained by passing
h(t) into a sampler with a sampling period of τ ,
i.e., t = kτ . The maximum magnitude of output
in (5) is modified as

ξ[k] � τ sup
w∈W

{h[k] ∗ w[k]}, (22)

Recall that the discrete convolution is given by∑k
i=0 h[k− i]w[i]. The presence of τ in (22) is due

to the fact that ξ[k] must be an estimate of ξ(t).
Then, the worst-case norm in (7) is approximated
as

‖h‖wc ≈ lim
k→∞

ξ[k]. (23)

The bounding conditions (4) are inherited into the
discrete-time domain as follows. For all k ≥ 0,

−M ≤ w[k] ≤ M,

−τD ≤ w[k + 1] − w[k] ≤ τD.

where w[k] = 0, ∀k ≤ 0. Notice that the initial
condition w[0] = 0 is still assumed for the validity
of definition (23).

According to Section 2, suppose that a sufficiently
large terminal time T can be selected to yield an
acceptable approximation error. Let N + 1 be the
number of sampling points. The sampling period
τ is then computed as T/N . Let c and q be vectors
in RN+1 representing the time series of h[N − k]
and w[k], respectively. That is, for k = 0, 1, . . . , N

ck+1 = h[N − k],
qk+1 = w[k].

The norm-computation problem can be formu-
lated as linear programming:

max
q∈RN+1

τcT q

s.t. q1 = 0
−M ≤ qi ≤ M,
qi+1 − qi ≤ τD,
qi+1 − qi ≥ −τD
i = 1, . . . , N.

(24)

It is easy to check that the constraint matrix of
this problem is highly sparse with a structure of
2 × 2 block diagonal consisting of one diagonal
block and the other bidiagonal block. Thus, the
number of nonzero elements in such matrix in-
creases only linearly with N . Intuitively, the solu-
tion of ξ[N ] should move closer to the worst-case
norm as N becomes larger. This increases the size
of linear programming (24) and potentially causes
numerical difficulty, so it is preferable to apply the
large-scale linear-programming solvers that make
use of the primal-dual method with interior-point
algorithm (Mehrotra, 1992). The known sparsity
and structure of (24) will help alleviate the diffi-
culty of this large-scale problem.

5. ERROR ANALYSIS

In computing the worst-case norm on digital
computers, some approximation errors arise in-
evitably. In this section we discuss some details
pertaining the sources and bounds of these errors.

5.1 Truncation Error

In the process to compute ξ(T ) or ξ[N ], the choice
of terminal time T may be selected by considering
a truncation error which is the difference between
‖h‖wc and ξ(T ). From (5) and (7), it is easy to
see that the truncation error can be bounded by
M
∫∞

T
|h(t)|dt. Nevertheless, this quantity cannot

be efficiently computed in practice.

To determine a bound of the truncation error
with computable quantity, recall that (A,B,C) is
defined as a minimal realization of a convolution
system. Since the left-shifted impulse response
h(t + T ) = CeAteAT B can be viewed as an auxil-
iary impulse response h̃(t) with a new realization
(A, eAT B,C), a bound of the truncation error is
derived as follows (Zhou and Doyle, 1998).∫ ∞

T

|h(t)|dt =
∫ ∞

0

|h̃(t)|dt ≤ 2
n∑

i=1

σi (25)

where n is the system order, and σi is the Hankel
singular value of h̃(t). The discrete version of
this inequality, which will be applied to a dis-
crete impulse response in the succeeding subsec-
tion, appears in Balakrishnan and Boyd (1992).
Since the Hankel singular values of h(t) are the
square roots of the eigenvalues of the product
of the observability and controllability gramians
of (A, eAT B,C), this error bound can be readily
calculated by solving two Lyapunov equations to-
gether with eigenvalue computation.

5.2 Discretization Error

Besides the truncation error, discretizing h(t)
causes an additional approximation error in the
norm computation. Henceforth, we will refer to
this error as a discretization error. First, consider
the continuous-time approach. In Section 3, we
mentioned that the step response s(T−t) needs to
be discretized, but the resulting worst-case input
can be arbitrarily precise. Nevertheless, in calcu-
lating the worst-case output, it needs to carry
out a numerical integration between the worst-
case input and h(T − t), which gives rise to the
discretization error.

For consistency, we assume that h(T − t) is sam-
pled at the same rate as the discrete-time ap-
proach, i.e., the sampling period τ . This yields
the sample-and-hold impulse response hd(T − t)
where hd(T −t) = h[N−k], for kτ ≤ t < (k + 1)τ ,
and T = Nτ . As mentioned previously, we as-
sume that the error between the exact worst-case
input and the computed input is insignificant.
For notation simplicity, let denote the worst-case
input corresponding to ξ(T ) by w(t), and rep-
resent hd(t) ∗ w(t) by ξd(T ). The discretization
error for the continuous-time case is defined as
|ξ(T ) − ξd(T )|.

Theorem 1.
|ξ(T ) − ξd(T )| ≤ τM‖h[k] − h[k − 1]‖1 (26)

where ‖h[k] − h[k − 1]‖1 is the l1-norm of h[k] −
h[k − 1].



Proof. To verify this theorem, we begin with

ξ(T ) − ξd(T )

=
∫ T

0

h(T − t)w(t)dt −
∫ T

0

hd(T − t)w(t)dt

=
∫ T

0

(h(T − t) − hd(T − t))w(t)dt

=
N∑

k=0

∫ (k+1)τ

kτ

(h(T − t) − hd(T − t))w(t)dt.

Assume that the sampling frequency is sufficiently
high, i.e., τ is small enough, so that h(T − t) is
nearly monotonic in the interval [(N − k)τ, (N −
k + 1)τ ], and hence

h(T − t) ≤ max{h[N − k], h[N − k + 1]}. (27)

Recall that T = Nτ and t = kτ . Then, the bound
of discretization error is obtained by

|ξ(T ) − ξd(T )|

≤ M
N∑

k=0

∫ (k+1)τ

kτ

|h(T − t) − hd(T − t)|dt

= M
N∑

k=0

∫ (k+1)τ

kτ

|h(T − t) − h[N − k]|dt

≤ M
N∑

k=0

τ |h[N − k] − h[N − k − 1]|
≤ τM‖h[k] − h[k − 1]‖1.

The proof is completed. �
Due to the demand of good precision, N becomes
larger, and τ becomes smaller. This causes h[k]−
h[k − 1] to approach τ ḣ(kτ). Hence, according to
the bound (26), the discretization error diminishes
at least quadratically with τ .

For the discrete-time approach, the discretization
error is defined as |ξ(T )−ξ[N ]|. Let w(t) and w[k]
be the worst-case inputs corresponding to ξ(T )
and ξ[N ], respectively.

Theorem 2.
|ξ(T ) − ξ[N ]| ≤ τM‖h[k] − h[k − 1]‖1

+ τD‖h(t)‖1
(28)

where ‖h[k] − h[k − 1]‖1 is the l1-norm of h[k] −
h[k − 1], and ‖h(t)‖1 is the L1-norm of h(t).

Proof. According to (22), we have

ξ(T ) − ξ[N ]

=
∫ T

0

h(T − t)w(t)dt − τ

N∑
k=0

h[N − k]w[k]

=
∫ T

0

h(T − t)w(t)dt

−
N∑

k=0

w[k]
∫ (k+1)τ

kτ

h(N − k)dt. (29)

Consider the following fact:
N∑

k=0

w[k]
∫ (k+1)τ

kτ

h(T − t)dt =
∫ T

0

h(T − t)wd(t)dt

where wd(t) = w[k], kτ ≤ t < (k + 1)τ . The
signal wd(t) can be regarded as an output of a
zero-order hold when an input is w[k]. Subtracting∑N

k=0 w[k]
∫ (k+1)τ

kτ
h(T − t)dt from the first term

of (29), and adding it to the second term of (29)
yields

ξ(T ) − ξ[N ] =
∫ T

0

h(T − t)(w(t) − wd(t))dt

+
N∑

k=0

w[k]
∫ (k+1)τ

kτ

h(T − t) − h(N − k)dt. (30)

From (30), we have |ξ(T ) − ξ[N ]| ≤ |e1| + |e2|,
where

e1 =
∫ T

0

h(T − t)(w(t) − wd(t))dt,

e2 =
N∑

k=0

w[k]
∫ (k+1)τ

kτ

h(T − t) − h(N − k)dt.

Now, it is straightforward to show that

|e1| ≤
∫ T

0

|h(T − t)| |w(t) − wd(t)| dt

≤ τD

∫ T

0

|h(T − t)| dt

≤ τD‖h(t)‖1.

(31)

As for e2, it can be shown that

|e2| ≤M

N∑
k=0

∫ (k+1)τ

kτ

|h(T − t) − h(N − k)| dt

≤M

N∑
k=0

τ |h[N − k] − h[N − k − 1]|

≤ τM‖h[k] − h[k − 1]‖1. (32)

The condition (27) is also assumed here. Finally,
the error bound (28) simply follows from (31)
and (32). �
It is observed that, the first term of (28) decreases
by the rate of τ2. However, the second term of (28)
decreases by the rate of τ . This suggests that
the discretization error in the discrete-time case
diminishes at least linearly with τ .

Remark here that the error bounds (26) and (28)
are effective within limited ranges of D. For in-
stance, if D becomes extremely large so that τD >
M , the second term of (28) may exceed M‖h(t)‖1,
which is the upper bound of the worst-case norm
itself. In addition, with a superficial look at the
bounds (26) and (28), one may be misled to con-
clude that the difference |ξd(T )−ξ[N ]| is bounded
by τD‖h(t)‖1. Nevertheless, this is not the case.
It can be shown after some nontrivial algebra that
this difference can be bounded by τ2D‖h[k]‖1.

Furthermore, to make all the bounds on the
discretization errors computable, we employ the
same technique as that in (25). Let σdk

be the
Hankel singular value of the discrete impulse re-
sponse h[k] − h[k − 1], and let σck

be the Hankel
singular value of h(t). The computable bounds on



discretization errors for the continuous-time and
the discrete-time approaches become

2τ

(
M

n∑
k=1

σdk

)
and

2τ

(
M

n∑
k=1

σdk
+ D

n∑
k=1

σck

)
,

respectively. Comparing these bounds, it is ob-
vious that the discretization-error bound for the
continuous-time approach is less than that of the
discrete-time approach provided that h(t) is es-
sentially nonzero.

6. NUMERICAL EXAMPLE

We consider a nonminimum-phase linear system
described by

H(s) =
50 − s2

(s + 1)(s2 + 2s + 50)
.

Let the input bound M = 1, and the rate limit
D = 1. The truncation error is a nonincreasing
function of the terminal time T (Zhou and Doyle,
1998), so a simple bisection method can find an
appropriate value of T for a given truncation error
bound. In this example, we choose T = 6 which
makes the truncation error of the worst-case norm
computation less than 0.0075. Select the number
of sampling intervals N = 1000 so the sampling
period τ is 6/1000 = 0.006.

The worst-case norm via continuous-time ap-
proach is computed to be 1.0328 and via discrete-
time approach is 1.0306. The difference of these
values is 0.0022 which is less than the derived
bound τ2D‖h[k]‖1 = 0.0180. The discretization
error bounds for continuous-time and discrete-
time approaches are 0.1027 and 0.1206, respec-
tively.

7. CONCLUSIONS

Two practical methods for computing the worst-
case norm of finite-dimensional convolution sys-
tem are presented. The initial condition on the
system input is proved to have a great merit
on computational simplification. The bounds on
computational errors of both methods are cal-
culated. While the discrete-time approach can
be easily implemented provided that an ade-
quate linear-programming solver is available, the
continuous-time approach seems to yield better
accuracy when the same sampling interval is used.
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