
STABILIZATION OF DYNAMIC VEHICLE FORMATION
CONFIGURATIONS USING GRAPH LAPLACIANS

Carlos Gonzalez and Kristi A. Morgansen∗

∗ Department of Aeronautics & Astronautics
University of Washington

Seattle, Washington 98195-2400
{carlos,morgansen}@aa.washington.edu

Abstract: In this paper, stability of a formation of vehicles coupled through a communica-
tion pattern which changes over time is examined. This analysis uses the graph theoretic
techniques developed by Fax and Murray (2002a) in their analysis of vehicle formations
with static communication patterns. The graph Laplacian stability properties defined by
Fax and Murray are extended to include dynamic sensing and communication graphs. This
method is applied to a periodic communication pattern and stability is evaluated. Finally,
these ideas are considered relative to optimal communication schemes, adding robustness
to these schemes, and evaluating general periodic formation patterns.Copyright c©2005
IFAC

Keywords: graph theory, communication networks, control system analysis

1. INTRODUCTION

Controlling a formation of vehicles has become a topic
garnering much attention in the field of control theory
due to both the complexity of the problem and its wide
applicability. Formations of vehicles are being used
throughout various commercial and military applica-
tions due to the potential benefits of having multiple
vehicles available to complete a task. The stability of
these formations with information coupling has been
examined using various methods. These approaches
have included, among other concepts, the use of po-
tential functions (Loizou and Kyriakopoulos (2003))
and the use of nearest-neighbor rules (Jadbabaieet al.
(2003)). Several of these methods involve representing
the flow of information between vehicles as a graph.
In practice, this flow of information can represent ei-
ther sensing (vehiclei detects vehiclej and thus gains
knowledge of its position/velocity) or communication
(vehicle j transmits to vehiclei its state information).
The goal is to use this information to create a local, or

1 This work was supported in part by NSF grant CMS-028461.

decentralized, controller which stabilizes the forma-
tion. This approach has proven to be a rich source of
material for analysis as can be seen in Mesbahi and
Hadaegh (2001), Fax and Murray (2002a), Fax and
Murray (2002b) and Olfati-Saber and Murray (2002),
among others.

In particular, Fax and Murray (2002a) found that the
stability of a controller which uses information from
other vehicles can be evaluated by examining a par-
ticular property of the graph representing the flow of
information. This property is the graph’s Laplacian,
which corresponds to a measure of the graph’s con-
nectedness and will be shown to appear naturally in
the controller equations.

In practical applications, the flow of information be-
tween vehicles can change drastically over time: com-
munication windows may appear and disappear, vehi-
cles may move in or out of each other’s sensor range,
communication equipment may fail, etc. Therefore,
evaluating the stability of the formation subject to
these changes in the information flow between ve-
hicles becomes critical. Here, the results of Fax and



Murray are considered and extended to this dynamic
environment where the graph representing informa-
tion flow will change with time. Sec. 2 contains a
review of the static graph results derived by Fax and
Murray. In Sec 3, these results are extended to generic
dynamic communication, and in Sec. 4 these results
are constrained to periodic communication sequences.
An example is given in Sec. 5, and the paper concludes
with a discussion of ongoing and future work.

2. STATIC COMMUNICATION PATTERNS

This section comprises a brief review of the results
from Fax and Murray (2002a), where stability of
formations is evaluated using graph Laplacians. These
results will be extended to a dynamic graph in the
next section. In both cases, consider a system ofN
vehicles, each with identical individual dynamics

ẋi = Axi + Bui, xi ∈ Rn
, ui ∈ Rm

yi = C1xi, yi ∈ Rp
.

(1)

A distributed control algorithm will be used with the
local controller for each vehicle(ui) as follows:

v̇i = Fvi + G1yi + G2zi

ui = Hvi + J1yi + J2zi.
(2)

Herevi is a dummy state which represents the dynam-
ics associated with the controller. Thezi represent the
information available to each vehicle regarding other
vehicles and is defined as:

zi =
1
|Ji|

∑
j∈Ji

C2(xi − xj) (3)

whereJi is the set of vehicles for which vehiclei has
information. In a graph representation,Ji is the set of
nodes which point to vehiclei. A sample communi-
cations graph is shown in Fig. 1. This graph repre-
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Fig. 1. Static communication/sensing graph.

sents vehicles 2 and 3 transmitting their information
to vehicle 1 (or being sensed by vehicle 1). In this
example,J1 = {2, 3}. This means that the control
law for vehicle 1 can incorporate feedback of the state
information from vehicles 2 and 3. The definition of
the normalized graph Laplacian is given by

L = I −D−1A (4)

whereD is a diagonal matrix withdii equal to the
in-degree of nodei andA is the standard adjacency

matrix of the graph. By using this definition, the
Laplacian can be rewritten as:

Lij =


1 i = j

− 1
|Ji|

i receives information fromj

0 all otheri,j.

(5)

Defining the total state vector for the system as the
combination of the states for thei vehicles by writing

x =
[
xT

1 xT
2 ... xT

N

]T
, the following relation holds:

z = C2Lx. (6)

Using these definitions, Fax and Murray went on
to prove that stabilizing a formation of vehicles is
equivalent to stabilizing the set of systems

ẋ = Ax + Bu

y = C1x

z = λiC2x

(7)

where theλi are the eigenvalues of the Laplacian
matrix.

3. DYNAMIC COMMUNICATION PATTERNS

Consider again a system ofN vehicles with dynamics
as defined in the previous section. However, the com-
munications/sensing patterns will now be assumed dy-
namic rather than static, as shown in Fig. 2. In the
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Fig. 2. Dynamic communication/sensing graph.

previous section,Ji was defined as the set of vehicles
about which vehiclei had information either from
communication or from sensing. This same definition
can be applied in the time-varying case, with an added
dimension coming from traversing discrete time steps.
Information is assumed to travel instantaneously at the
beginning of each time step. For example in Fig. 2,
vehicle 1 at time step 2 has information from vehicle
2 at time step 1 and from vehicle 3 at time step 2.
Therefore,J1 at time step 2 can be defined as

J1(2) = {x2(1), x3(2)}

wherexi(k) is the state of nodei at time stepk. Nodes
at different time steps may then be treated as having
independent states for the purpose of evaluating the
behavior of the system. This approach leads to the cre-
ation of a “meta-graph” which describes the evolution
of the information flow of the system. This concept is
shown graphically in Fig. 3. This meta-graph repre-
sents the communication pattern from Fig. 2. In this
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Fig. 3. Meta-graph combining graphs atk = 1 and
k = 2.

example, there are 2 “copies” of each vehicle—one
for each time step in the pattern. This will allow us to
use the same procedure defined in the previous sec-
tion to analyze this communication pattern. A similar
strategy was used in Hristu and Morgansen (1999) to
represent a time-varying communication pattern.

This approach leads to an augmentation of the static
communication system due to the fact that behavior
across time-steps is now included. This can be repre-
sented using a “meta-state” defined for each vehiclei
as:

x̃i(k) =


xi(k)

xi(k − 1)
...

xi(k − n)

 (8)

wheren represents the length of the communication
pattern andxi(k) represents the state of vehiclei at
time stepk. Similarly, one can define a new̃z variable
representing the error dynamics of the sytem. In the
static case,z was defined as in Equation (3) to rep-
resent the information available to each node. Due to
the properties of the meta-graph, a similar definition
can be used but will encompass information from past
time steps. In fact, it is important to note that the
definition of z̃ in the dynamic case encompasses a
buffering strategy. By defining what information is
available in the current time step, it is implied that
nodes have some sort of “buffer” to store previous
information. For example,̃z may be defined to encom-
pass information from the current and previous time
steps as shown below:

z̃i(k) =
1

|Ji(k) + Ji(k − 1)|

 ∑
j∈Ji(k)

(xi(k)− xj(k))

+
∑

j∈Ji(k−1)

(xi(k)− xj(k − 1))


(9)

Equation (9) now represents the error dynamics at
a stepk. Note that the current error dynamics are
considered as well as those from the previous time
step. Analogously to the manner in whichz can be
written in terms of the Laplacian as shown in Equation
(6), the dynamic̃z can be written in terms of a new
“meta-Laplacian”. This meta-Laplacian is defined just
as in Equation (4) but uses the new “meta-adjacency”
matrix of the dynamic setting.

Ak =


A(k) A(k − 1) 0 0

0 A(k − 1) A(k − 2)
...

0 0
...

...
0 0 0 A(k − n)

 (10)

Continuing with the example where only the current
and previous time steps are considered, one can write
the meta-adjacency graph as shown in Equation (10).
Here, A(j) represents the adjacency graph of the
network topology at stepj. This leads to the following
definitions:

Dk =D(k) + D(k − 1) 0 0

0
... 0

0 0 D(k − n) + D(k − n− 1)


Lk = I −D−1

k Ak

z̃(k) = Lkx̃(k) (11)

Using this definition, it is clear that the new error states
for a vehicle at stepk depend on the state information
it is receiving from other vehicles at stepk as well as
the state information it received at stepk − 1.

To further illustrate this idea, consider again the ex-
ample shown in Fig. 3. Using the above definitions,
the meta-Laplacian and̃z are

L2 =



1 0 −1
2

0 −1
2

0

0 1 0 0 0 −1
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1
0 0 0 −1 0 1



z̃(2) =



x1(2)− 1
2
x3(2)− 1

2
x2(1)

x2(2)− x3(1)
x3(2)− x1(1)
x1(1)− x2(1)
x2(1)− x3(1)
x3(1)− x1(1)


wherexi(k) is the state of vehiclei at time stepk.
It is important to note that the definition of the meta-
Laplacian will vary if different buffering schemes are
used. In the next section, a periodic pattern will be
examined in which all of the states for the current
period are used. This results in a slightly different
meta-Laplacian than the one used above. Whatever the
definition of the meta-Laplacian, it must accurately
portray the error dynamics and buffering scheme of
the proposed dynamic communications sequence. If
this is done, then Equation (7) can be extended to
produce the following theorem.

Theorem 3.1.Consider a set ofN vehicles with iden-
tical dynamics as defined in Equation (1) and a
sequence of communication patterns between these



vehicles represented by the set of graphsG =
{G1, G2, ..., Gk}. A candidate control stabilizes this
system if and only if it stabilizes the set of systems:

x̃ = Akx̃ + Bkũ

ỹ = Ckx̃

z̃ = λ̃iC2k
x̃

(12)

where λ̃i are the eigenvalues of the matrixLk as
defined in Equation (11),̃x = [x̃T

1 ...x̃T
N ]T is defined

as in Equation (8), andAk, Bk and Ck are block-
diagonal matrices withA, B andC repeated along the
diagonal, respectively.

Proof: The proof of this theorem follows directly
from the proof of Equation (7) given in Fax and
Murray (2002a) using the “meta-states” and “meta-
Laplacian” defined in this paper. This proof uses the
fact that combining the vehicle dynamics for allN
vehicles across allk time-steps with the controller
dynamics leads to a block-diagonal system where the
only non-diagonal element is the Laplacian matrix
which defines thezi values. This is true regardless of
the specific meta-Laplacian definition used, given the
constraint that it meets the definition of the Laplacian
given in Equations (3) and (6). We therefore have

d

dt

[
x̃
ṽ

]
=

[
Âk + B̂kJ1Ck + ̂BkJ2C2k

Lk B̂kH

Ĝ1Ck + Ĝ2C2k
Lk F̂

] [
x̃
ṽ

]
(13)

The “hat” notation (e.g.,̂A) represents the given ma-
trix repeatedN times along the diagonal. In essence,
the dynamics are augmented twice—once acrossk
time steps and again overN vehicles. This means that
if the original vehicle state vector containsn states,̃x
will containn×k×N states. Transforming the system
such that the Laplacian is diagonalized leads to a sys-
tem which is purely diagonal with the eigenvalues of
the Laplacian being added to the dynamics. Therefore,
stabilizing the formation across time steps is equiva-
lent to stabilizing the systems defined in Theorem 3.1.

For the case where the individual vehicles are SISO,
the results of Fax and Murray can be extended to
show a stability requirement for the formation across
time steps using the Nyquist plot. Using Theorem 2
from Fax and Murray (2002a), a new theorem for the
dynamic communication case can be stated.

Theorem 3.2.Given individual vehicle dynamicsG(s)
which are SISO, a controllerK(s) stabilizes the rela-
tive formation dynamics across time steps for a given
communication sequence iff the net encirclement of
−λ−1

i by the Nyquist plot ofK(s)G(s) is zero for all
nonzeroλi, whereλi are the eigenvalues of the meta-
Laplacian defined for the communication sequence.

Proof: This theorem follows directly from Theorem
3.1 and the fact that the key point of interest is in

the encirclements of (-1,0) in the complex plane by
λiK(s)G(s).

By examining the eigenvalue locations for the graph of
a communications sequence, Theorem 3.2 can predict
stability for the system. By generalizing eigenvalue
locations for certain types of graphs, one can derive
an a priori understanding of whether the system will
be stable for a given communications sequence. In
Fax and Murray (2002a), Nyquist locations of the
eigenvalues for certain types of graphs are given. Due
to the fact that our meta-graph is simply another type
of graph, the same types of meta-graphs will have
eigenvalues in the same locations:

λi(L) = 1− e
2πj
N i (14)

Of these types, the most troubling from a stability
standpoint is the periodic graph, which has eigenval-
ues located as shown in Equation (14). Here,N is
the number of vehicles in the formation. These eigen-
values, once plotted as−1/λi, tend to live near the
imaginary axis and can potentially reduce or eliminate
stability margins. A periodic graph is defined as one in
which all cycle lengths within the graph have a com-
mon divisor greater than 1. Therefore, as a meta-graph
approaches a periodic graph, we can expect stability
margins to decrease. This becomes an important con-
sideration when dealing with periodic communication
patterns as described in the next section.

4. PERIODIC COMMUNICATION PATTERNS
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Fig. 4. Periodic communications pattern and its asso-
ciated meta-graph.

As defined in the previous section, the meta-Laplacian
grows without bound as the communication sequence
continues. However, the meta-Laplacian can be de-
scribed in a finite closed form for a periodic communi-
cation sequence. Because the sequence is periodic, the
communication pattern is simply switching between
a finite set of graphs representing each step in the
sequence.



In Fig. 4, the communication pattern switches between
two patterns, and the meta-graph can be fully repre-
sented with only six nodes. In this case, information
flows back and forth between these two patterns as
denoted by the bi-directional edges contained in the
graph. This leads to a modified definition for the meta-
Laplacian as shown below, whereT represents the
period of the sequence.

Lk = I −D−1
k Ak

Dk =

D(T ) + ... + D(1) 0 0

0
... 0

0 0 D(T ) + ... + D(1)


Ak =

A(T ) A(T − 1) · · · A(1)
...

...
...

...
A(T ) A(T − 1) · · · A(1)

 (15)

As mentioned in Sec. 3, periodic graphs can lead to
decreased stability margins. For meta-graphs describ-
ing a periodic communications sequence as shown in
Fig. 4, we will naturally have cycles which have a
length equal to the period of the sequence. In order to
maintain stability margins, it will become important
to ensure that individual communication patterns do
not contain cycles with a length equal to an integer
multiple of the period of the overall sequence. As all
cycles in the meta-graph tend toward integer multiples
of each other, the entire meta-graph becomes more pe-
riodic and the eigenvalues of the meta-Laplacian will
migrate toward the imaginary axis. This may lead to
an unstable system once the eigenvalues cross over the
Nyquist plot for the dynamics of an individual vehicle
as can be seen in the unstable example given in Sec. 5.

5. MOTIVATING EXAMPLE

In order to verify the above results, consider building
a periodic sequence from stable and unstable static
communication patterns. Depending on the relative
instability, one should be able to alternate between sta-
ble and unstable patterns to form an overall sequence
which maintains the stability of the formation. The
eigenvalues of the meta-Laplacian for the sequence
will predict the stability of the system.

Consider the stable and unstable communication net-
works of six vehicles as given in Fax and Murray
(2002a) with individual dynamicsP (s) = e−s 1

s2 . A
controller which stabilizes the individual vehicles is
K(s) = 0.6s + 0.15. Two communications networks,
one stable and one unstable, are shown in Fig. 5. Fig. 6
shows the Nyquist plot for the systemK(s)P (s) along
with the negative inverse eigenvalues,−λ−1

i , of the
Laplacian for each communication pattern as required
by Theorem 3.2. The ‘o’ eigenvalues denote the sta-
ble communications pattern while the ‘x’ values are
from the unstable communications pattern. Consider
two communications sequences built from the given

Unstable pattern

1
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Stable pattern

1
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5 6

Fig. 5. Stable and unstable communication pattern
from Fax and Murray.
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Fig. 6. Nyquist plot with static Laplacian eigenvalues.

patterns. The first is composed of seven instances of
the stable network followed by an instance of the
unstable network. The meta-Laplacian eigenvalues for

Fig. 7. Meta-Laplacian eigenvalues for the sequence
of 7 stable networks followed by an unstable one.

the sequence are shown in Fig. 7, represented by a
‘+’. From the detail box in the upper right corner, it is
clear that the system should be marginally unstable. A
simulation was built which used this communication
sequence and buffering strategy defined by the peri-
odic meta-Laplacian. The response of the system is
shown in Fig. 8. Here, the positions of all six vehicles
are superimposed. One can see that the vehicles os-
cillate around each other with increasing amplitude.
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Fig. 8. System response for the sequence of 7 stable
networks followed by an unstable one.

Fig. 9. Meta-Laplacian eigenvalues for the sequence
of 8 stable networks followed by an unstable one.

It is clear that thezi variables are unbounded and
will tend to infinity as time increases. Therefore, the
formation is unstable and the simulation agrees with
the prediction based on the eigenvalues.

Consider now the sequence of eight stable graphs fol-
lowed by an unstable one. The eigenvalues for this
meta-Laplacian are shown in Fig. 9. From the detail
box in the upper right corner, it is clear that the eigen-
values have crossed to the other side of the Nyquist
plot and the system should now be stable. The system
response for the simulation of this communication pat-
tern is shown in Fig. 10. In this case, the positions
of the six vehicles differ by a decreasing amount.
Therefore, thezi variables will eventually go to zero
(albeit slowly) and the formation is stable as predicted.
In fact, the slow rate of convergence is also expected
due to the marginal stability of the eigenvalues as
shown in Fig. 9. In this manner, one can see how the
meta-Laplacian can be used as a tool to construct dy-
namic communication sequences which remain stable
although individual communication patterns may be
unstable.

6. CONCLUSIONS AND FUTURE WORK

One can envision examining both optimality and ro-
bustness using these methods. Using Theorem 3.1 as a
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Fig. 10. System response for the sequence of 8 stable
networks followed by an unstable one.

common characteristic that all stable control and com-
munication pattern pairs must have, it may be possible
to work backwards and determine a minimally com-
municative case. This could lead to potential improve-
ments in system robustness and/or efficiency. Finally,
it may be possible to compensate for communication
or vehicle failure by modifying communication pat-
terns such that the eigenvalues ofLk remain stable and
Theorem 3.1 still holds. Finding an algorithm which
would allow a formation to auto-stabilize in these sit-
uations would be ideal and could prove very useful. In
addition, these results could potentially be extended to
heterogeneous vehicle formations where each vehicle
has its own unique dynamics.
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