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Abstract: A regulator problem for a heat conduction system, of which the
eigenstructure is just partially known, is formulated to design a stabilizing
controller that keeps a performance index less than a prescribed value. The index
is made of the spatio integral of the squared deviation from reference temperature
distribution. It is shown that through characterizing frequency response from
input to temperature at each spatial point, a distributed parameter system with
nominal model and additive uncertainty weight, both of which are real rational,
is reconstructed using knowledge of the eigenstructure. A main result claims that
the formulated problem is reduced to a standard mixed H2/H∞ one for a linear
finite dimensional time-invariant system. Numerical study demonstrates feasibility
of the proposed design scheme. Copyright c©2005 IFAC
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1. INTRODUCTION

In most applications on process temperature con-
trol, it is desired to regulate temperature on whole
spatial distribution rather than ones at some mea-
surement points. Various difficulties may occur
when we formulate a problem to control such a
spatially distributed variable. One of the difficul-
ties is from infinite-dimensionality of the system
described by partial differential equations, but we
can cope with it by clarifying the error bound
for finite dimensional approximation. We make
use of finite dimensional approximation model
for design because a systems (of heat conduc-
tion) is expressed as partial differential equation
in principle, but in fact, its eigenstructures are
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only partially known. In the studies so far, it has
been established an uncertain distributed param-
eter system can be reconstructed using the given
eigenstructures and system norm conditions(Imai
et al., 2004). It is widely recognized the behavior
in state distribution can be evaluated via spatio
integrals; infinite-dimensional optimal regulator
has been established for the case where the whole
distribution can be measured. But operator Ri-
catti equations are needed to be solved and in-
finite dimensional observers are necessary to im-
plement the regulator(Curtain and Zwart, 1995).
A finite dimensional modeling technique focusing
on spatial error between the system and model
is proposed for flexible structures(Moheimani and
Heath, 2002). Moreover they also proposed spa-
tial control for flexible structures(Moheimani et
al., 2003). The problem considered in this pa-
per is to make the criterion function less than a



prescribed level. Our claim is that a stabilizing
controller that satisfies the condition is obtained
by solving a H2/H∞ mixed problem, which is
computationally tractable. Modeling using steady
state dc gain analysis enables one to keep the
linear quadratic criterion bounded.

In the rest of the paper, we present system and
problem formulation in chapter 2, and how the
original problem of distributed parameter systems
are reduced to a standard finite dimensional Lin-
ear Matrix Inequality (LMI) in chapter 3. Chapter
4 reviews the evaluation techniques of the error
bounds and chapter 5 demonstrates the feasibil-
ity of the proposed design strategy via numerical
studies.

2. SYSTEM FORMULATION

Let us consider a control problem of temperature
distribution for heat conduction system. Temper-
ature v(ξ, t) at time t > 0 on one dimensional
spatial coordinate ξ ∈ [0, L] obeys the partial
differential equation

∂v(ξ, t)

∂t
= α2

∂2v(ξ, t)

∂ξ2
− βv(ξ, t) + b(ξ)u(t) (1)

with boundary and initial conditions

v(0, t) = v(L, t) = 0 , v(ξ, 0) = 0 (2)

and measurement output

y(t) =

∫

Ω

c(ξ)v(ξ, t)dξ (3)

where α2 is non-negative diffusion coefficient, β
is heat transfer coefficient, and b(ξ) and c(ξ) are
smooth non-negative functions that describe spa-
tial heating and spatial measurement properties,
respectively. Here u(t) represents the input heat
quantity per unite time and y(t) the sensor output
at time t.

In this paper, under the constraints that defined
as in the following subsection, we aim to design
a finite stabilizing compensator that generates
the input by measuring the output in order to
regulates errors of temperature distribution to
reference.

2.1 System model

It is well known that a transfer function of linear
time-invariant system corresponding to heat con-
duction and diffusion, can be written as an infinite
series of first order modes:

G(ξ, s) =

∞∑

i=1

ki(ξ)

1 + Tis
(4)

where ki(ξ) is a mode coefficient and Ti is a time
constant for each i-th mode. Here Ti > 0 and
T1 ≥ T2 ≥ · · · → 0.

In the ideal case, all correct mode coefficients and
time constants can be found, but actually only a
few of relatively accurate mode coefficients and
time constants are given. Then
(i) Suppose that N pairs of (ki(ξ), Ti) for i =
1, 2, · · · , N are given but all the rest (for i = N +
1, · · · ) are unknown.
Denote the N -th partial sum of G(s), the known
part, by

GN (ξ, s) =

N∑

i=1

ki(ξ)

1 + Tis
(5)

(ii) Suppose

∞∑

i=1

|ki(ξ)| ≤ ρ(ξ) (6)

for some given ρ(ξ) > 0.
(iii) Suppose that D.C. gain

G(ξ, 0) =
∞∑

i=1

ki(ξ) (7)

is given.

Consider a nominal model that consists of partial
sum of G(ξ, s) and compensating static deviation
G(ξ, 0)−GN (ξ, 0) as a feedthrough term, and an
additive perturbation magnitude. That is,
(a)Nominal model

Gnom(ξ, s) = GN (ξ, s) + G(ξ, 0)−GN (ξ, 0)
(8)

(b) Additive perturbation

G(ξ, s) = GN (ξ, s) + ∆(ξ, s)V (ξ)Wb(s) (9)

where ∆(ξ, s) ∈ H∞ with ‖∆(ξ, s)‖∞ ≤ 1 and
|V (ξ)Wb(jω)| denotes error bounds on frequency
domain due to the finite dimensional approxi-
mation. The detail of error bounds is shown in
Section 4.

3. CONTROLLER DESIGN

3.1 Problem statement

Taking temperature distribution as controlled
variable, we consider criterion function

J1 =

∫ ∞

0

{∫

Ω

Q(ξ)v̂(ξ, t)2dξ + uTRu
}
dt (10)

v̂(ξ, t) = vr(ξ)− v(ξ, t) (11)

where Ω ∈ [0, L], and vr(ξ) ∈ span{ki(ξ)}Ni=1 is
user-specified reference.

A compensator that makes criterion function J1
minimum can be designed by solving a infinite
dimensional Riccati equation(Curtain and Zwart,
1995). In this paper, however, we consider the
problem designing a finite dimensional stabilizing
compensator that makes criterion function J1 less



than a certain value J under the constraints that
the eigenstructures of the system are partially
known.

3.2 Deign of stabilizing compensator

The next result claims that the original problem is
reduced to one for a finite dimensional time invari-
ant system, which is computationally tractable.

Theorem 1
For any uncertainty ∆(ξ, ·) ∈ H∞ with
‖∆(ξ, ·)‖∞ ≤ 1 (ξ∀ ∈ Ω), and any square in-
tegrable input u(·), the criterion function (10)
satisfies the relation

J1(u) ≤ I1(u) (12)

where

I1 =

∫ ∞

−∞

∫

Ω

[
2Q(ξ){|vr(ξ, jω)− vN (ξ, jω)|2 +

|V (ξ)Wb(jω)u(jω)|2}dξ + u(jω)TR(jω)u(jω)
]
dω

(13)

and vN (ξ, t) is partial sum of infinity series (15).

It is straightforward to show that the problem to
find a controller that minimizes the criterion func-
tion I1 can be solved by a general H2 problem for
finite dimensional linear time-invariant systems.

The aim is to design a finite dimensional stabiliz-
ing controller that regulates errors of temperature
distribution to reference. Under the constraints
that the eigenstructures are known partially, we
can design a controller that guarantees that the
original criterion function J1 be less than a certain
value J .

Stability should also be guaranteed, due to the
error caused by truncation of unknown eigenstruc-
tures until N -th mode makes feedback loop unsta-
ble. The destabilization of the system is prevented
by constraining a infinity norm from w to z∞ in
Fig. 2, i.e. controller K needs to satisfy

‖V (ξo)Wb(·)K(I +GN (·)K(·))−1‖∞ < 1. (14)

The problem that design a controller achieves
two conditions: minimizes the finite dimensional
criterion function and needs to be robust to the
inaccuracies, can be solved by mixed H2/H∞
problem.

Proof of theorem 1 (Sketch)
Consider a temperature distribution for controlled
variable in the criterion function (10),(11).

Here v(ξ, t) is defined by

v(ξ, t) =

∞∑

i=1

xi(t)φi(ξ) (15)

where φi(ξ) is eigenfunctions.

The criterion function J1 become a infinite dimen-
sional problem, and a controller that minimize it
can be designed theoretically by solving infinite
dimensional Ricatti equation. However it’s not al-
ways possible to obtain the eigenstructures such as
eigenfunctions and eigenvalues. Therefore in this
case, a controller is need to be designed under the
constraints that the eigenstructures are unknown
afterN -th mode. Consequently, consider the other
finite dimensional criterion function with partial
sum until N -th mode,

J ′1 =

∫ ∞

0

[ ∫

Ω

Q(ξ)v̂′(ξ, t)2dξ + uTRu
]
dt (16)

v̂′(ξ, t) = vr(ξ)− {vN (ξ, t) + ve(ξ, t)} (17)

where ve(ξ, t) is a error caused by truncation.

However error ve(ξ, t) is always unknown. There-
fore we use a error bound instead of ve(ξ, t). Equa-
tion (16) is transformed into frequency domain
using Parseval’s equality, and the error bound
v̄e(ξ, jω) = ∆(ξ, jω)V (ξ)Wb(jω) is substituted for
the error ve(ξ, jω) to derive the following index
J ′′1 :

J ′1 =
1

2π

∫ ∞

−∞

[∫

Ω

Q(ξ)
∣∣∣v̂′(ξ, jω)

∣∣∣
2

dξ

+ u∗(jω)Ru(jω)
]
dt (18)

v̂′(ξ, jω) = vr(ξ)− {vN (ξ, jω) + ve(ξ, jω)}
(19)

J ′′1 =
1

2π

∫ ∞

−∞

[∫

Ω

Q(ξ)
∣∣∣v̂′′(ξ, jω)

∣∣∣
2

dξ

+ u∗(jω)Ru(jω)
]
dt (20)

v̂′′(ξ, jω) = vr(ξ)− {vN (ξ, jω)

+ ∆(ξ, jω)V (ξ)Wb(jω)u(jω)} (21)

where V (ξ) = {ρ̄(N)(ξ) + |G(ξ, 0)−GN (ξ, 0)|}/2，
Wb(jω) = ωT/

√
1 + (ωT )2, and they are calcu-

lated next section. Here upper bound J1 can be
calculated by two inequalities as follows

|A(jω)±B(jω)|2

= |A(jω)|2 + |B(jω)|2 ± 2Re{A(jω)B∗(jω)}
≤ |A(jω)|2 + |B(jω)|2 + 2|A(jω)||B(jω)|

(22)
∣∣|A(jω)|+ |B(jω)|

∣∣2 ≤ 2
∣∣|A(jω)|2 + |B(jω)|2

∣∣
(23)

I1 =

∫ ∞

−∞

∫

Ω

[
2Q(ξ){|vr(ξ)− vN (ξ, jω)|2 +

|V (ξ)Wb(jω)u(jω)|2}dξ + u(jω)TRu(jω)
]
dω

(24)

An criterion function in the form of equation (24)
can be solved by a general H2 problem. Moreover
J1 and I1 are satisfied inequality J1 ≤ I1, because
of the inequalities (22),(23).



It is easy to see that we may have a gap between
J1 and I1 because of the loose estimate of two in-
equalities (22),(23). The results below come from
efforts to bridge the gap and it might improve the
upper bound.

Theorem 2
Assuming γ (0 < γ ≤ 1) which satisfying the
following inequality:

∫

Ω

|V (ξ)Wb(jω)u(jω)|2dξ ≤

γ

∫

Ω

|vr(ξ)− v(ξ, jω)|2dξ (25)

, and for any uncertainty ∆(ξ, ·) ∈ H∞ with
‖∆(ξ, ·)‖∞ ≤ 1 (ξ∀) ∈ Ω, and any square in-
tegrable input u(·), the criterion function (10)
satisfies the relation

J1(u) ≤ I2(u) (26)

where

I1 =
1

2π

∫ ∞

−∞

∫

Ω

[
Q(ξ){η · |vr(ξ, jω)− vN (ξ, jω)|2

+ |V (ξ)Wb(jω)u(jω)|2}dξ + u(jω)∗Ru(jω)
]
dω

(27)

η = (1 + 2γ
1

2 ) (28)

.
Proof of theorem 2 (Sketch)
The finite dimensional criterion function which
containing the uncertainty is represented by equa-
tion (20). Looking at spatial integration in equa-
tion (20) and using inequality (22), the following
equation is obtained.
∫

Ω

Q(ξ)
∣∣∣v̂′′(ξ, jω)

∣∣∣
2

dξ ≤
∫

Ω

Q(ξ){|v(ξ)− vN (ξ, jω)|2 + |V (ξ)Wb(jω)u(jω)|2

+ 2|v(ξ)− vN (ξ, jω)||V (ξ)Wb(jω)u(jω)|}dξ
(29)

Assuming γ (0 < γ ≤ 1) which satisfying the
following inequality:

∫

Ω

|V (ξ)Wb(jω)u(jω)|2dξ ≤

γ

∫

Ω

|vr(ξ)− v(ξ, jω)|2dξ, (30)

and apply equation (30) to Hölder’s inequality, we
can obtain
∫

Ω

|v(ξ)− vN (ξ, jω)| · |V (ξ)Wb(jω)u(jω)|dξ

≤
(∫

Ω

|v(ξ)− vN (ξ, jω)|2dξ

·
∫

Ω

|V (ξ)Wb(jω)u(jω)|2
) 1

2

≤ (γ)
1

2

∫

Ω

|v(ξ)− vN (ξ, jω)|2. (31)

Therefore equation (29) is reduced to
∫

Ω

Q(ξ)
∣∣∣v̂′′(ξ, jω)

∣∣∣
2

dξ ≤
∫

Ω

Q(ξ){η · |v(ξ)− vN (ξ, jω)|2

+ |V (ξ)Wb(jω)u(jω)|2}dξ

where η = (1 + 2γ
1

2 )
1

2 . Consequently J1 and I2
are satisfied inequality J1 ≤ I2, because of the
inequalities (22),(30).

We can design a controller by applying the The-
orem 2. Procedures for designing controller is
shown as follows.
Step 1
Choose the designing parameter γ should be

determined arbitrarily.
Step 2
Design a controller K(jω) by solving finite di-

mensional H2/H∞ mixed problem.
Step 3
Find out whether the assumption, represented by
inequality (25), is satisfied or not. If the assump-
tion is not satisfied, the designing parameter γ
should be increased and go back to Step 1.

In Step 3, we can calculate the following equation,
and then we can verify whether the assumption is
satisfied. A designed controllerK(jω), linear finite
dimensional model {A,B,C,D} and error bound
Wb(jω)V (ξ) are given, then the assumption (25)
is reduced to

|L(jω)|2 ≤ γ

M
(32)

where

L(jω) = Wb(jω)K(jω){I −DK(jω)}−1C

M =

∫

Ω

|V (ξ)|2dξ.

If inequality (32) is satisfied for all ω, the assump-
tion (25) is also satisfied. Equation (32) depends
on no state variables and it is easy to calculate.

4. CRITERION OF ERROR BOUNDS ON
FREQUENCY DOMAIN

Consider the heat conduction system (1),(2), then
a transfer function can be written as an infinite se-
ries of first order lag models G(s) =

∑∞
i=1 ki/(1+

Tis). Here ki(ξ) is a mode coefficient ,Ti > 0
is time constant for each i-th mode and T1 ≥
T2 ≥ · · · → 0. A model truncated unknown part
is denoted by GN (s). Under the constraints that
ki(ξ), Ti, and upper bound ρ(ξ) of

∑∞
i=1 |ki(ξ)| are

known, the radius of possible existence bound on
frequency response never less than ρ̄(N) = ρ(ξ)−∑N

i=1 |ki(ξ)| independent on frequency.

The error bound for a finite dimensional model
(8) is established in literature(Imai et al., 2004)



ρ̄(N)(ξ) + |G(ξ, 0)−GN (ξ, 0)|
2

· ωT
√

1 + (ωT )2

(33)

where T ≤ TN satisfies condition 0 < Ti ≤ T (i >
N), and ρ̄(N)(ξ) = min{ρ1(ξ), ρ2(ξ)}. Here

ρ1(ξ) =

√∫ 1

0

b2(ζ)dζ ·
∫ 1

0

c̄2ξ(ζ)dζ

ρ2(ξ) =

√∫ 1

0

b̄(ζ)b(ζ)dζ ·
∫ 1

0

c̄ξ(ζ)cξ(ζ)dζ

where cξ(ζ) = δ(ζ − ξ) and δ(·) is Dirac’s delta
function. b̄(ζ) is a solution to the steady state
problem for the unit step input. c̄ξ(ζ) is for a dual
problem with input spatial properties cξ(·).
The spatial error bound for the model with 3rd
modes is depicted in Fig. 4.

Fig. 1. Error bounds v̄e(ξ, jω) (N = 3)

5. NUMERICAL EXAMPLE

5.1 System model

We consider again the one-dimensional heat con-
duction problem in equation (1) and (2). In this
section we will design a stabilizing compensator
regulating the spatially distributed states to a
prescribed reference, and see how it works in nu-
merical simulation.

Temperature distribution v(ξ, t), at time t > 0,
on one dimensional spatial coordinate ξ ∈ [0, L]
obeys the partial differential equation

vt(ξ, t) = α2vξξ(ξ, t)− βv(ξ, t) + b(ξ)u(t)

(0 < ξ < L)

v(0, t) = v(L, t) = 0.

Furthermore

y(t) =

∫ L

0

c(ξ)v(ξ, t)dξ (34)

b(ξ) =

{
η (for ξ ∈ [0, l])
0 (otherwise)

(35)

c(ξ) =

{
1/ε (for |ξ − ξo| ≤ ε/2)
0 (otherwise)

(36)

where α2 = 1.16 × 10−4 [m2/s], L = 1 [m], β =
0.018 [1/s], η = 0.014 [K/sV2], l = 1/5 [m], ε =
1/500, ξo = 1/4 [m]. The values of β and η
are obtained by experiment using a cupper rod
(Length: 1 [m], Diameter: 2[mm]). The eigenvalues
λi and eigenfunctions φi(ξ) of system (1), (2) are
φi(ξ) =

√
2 sin(iπξ), λi = −(iπ)2.

5.2 Design of controller

Our aim is to design a controller that makes
the finite criterion function (24) to minimize,
and makes the feedback loop stable even tak-
ing the modeling error into account. These two
criteria can be achieved solving mixed H2/H∞
problem(Scherer, 1995).
In this paper, we proposed two finite dimensional
stabilizable compensators that can be designed by
solving H2/H∞ problem. Their criterion function,
respectively, give upper bounds to the original
criterion function (infinite dimensional criterion
function). It will be demonstrated here after by
numerical example how the finite criterion func-
tions give upper bounds to the original function
is shown .
A generalized plant for controller design is shown

in Fig. 2, Fig. 6. Here Vi =
(∫
Ω
V (ξ)2dξ

) 1
2 =

0.1931 in Fig. 2. Assuming that only the first
three eigenvalues and eigenfunctions of system
(1), (2) are known, i.e. N = 3. In the numerical
example, we regard 100 dimensional model as a
plant. H2/H∞ problem is solved by LMI Control
Toolbox(Gahinet and Nemirovski, 1995). Spatial
distribution of a error bound is shown in Fig. 6,
and weighting functions and designing parameter
using for controller design are as follows :

Q(s) = 1 , R(s) = 0.01

Wb(s) =
0.2078s

27.1606s+ 1
, γ = 0.15.

Here, assuming initial temperature distribution
v(ξ, 0) = 0, then temperature distribution is
controlled to reference vr(ξ) that is steady state
distribution that can be realized by heat source
located. A result of simulation is shown in Fig 6.

The original criterion function J1 and the finite
criterion function I1 and I2 can be calculated
on numerical example and they are shown in
Table 1. It is straightforward to see that finite
criterion functions I1 and I2 give upper bounds,
respectively, to the original criterion function J1.
Moreover criterion function I2 can be restrained
comparing to I1, if we choose the designing param-
eter γ as small as the assumption (25) is satisfied.
It is difficult to solve infinite dimensional Riccati
equation, and so the original criterion function
was calculated by solving of order high enough
finite dimensional Riccati equation. (Banks and
Wang, 1989)



Table 1. The value of criterion function

J1 (Original) I1 (Theorem 1) I2 (Theorem 2)

2.55× 103 6.07× 103 5.39× 103

6. CONCLUSION

We formulated a regulator problem for a heat
conduction system with partially known eigen-
structure to design a stabilizing controller that
guarantees a performance index with spatio inte-
gral of the squared deviation in temperature dis-
tribution to be within a prescribed value. Through
characterizing frequency response from input to
temperature at each spatial point, a distributed
parameter system with nominal model and ad-
ditive uncertainty weight, both of which are real
rational, was shown to be characterized just using
knowledge of the eigenstructure. It was shown
that a solution to a standard H2/H∞ mixed
problem for a specific linear finite dimensional
time-invariant system should be the one to the
originally formulated problem. Numerical study
demonstrates feasibility of the proposed design
scheme.

Fig. 2. Spatial error bounds V (ξ) (N = 3)

++

+

+

Fig. 3. Mixed H2/H∞ solver (Theorem 1)

+

+++

Fig. 4. Mixed H2/H∞ solver (Theorem 2)

Fig. 5. Reference distribution vr(ξ)

Fig. 6. Time evolution of temperature v(ξ, t)
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