
A HYBRID AUTOMATA APPROACH FOR
ROBOTIC PERCEPTIVE CONTROL AND

PLANNING

Yu Sun ∗ Ning Xi ∗

∗Department of Electrical and Computer Engineering,
Michigan State University, East Lansing, MI, 48823

Abstract: This paper presents a hybrid automata approach for modeling and
analyzing the robotic motion planning and control. Robotic systems acquire data
from perceptive sensors and respond to the perceptions through decision and
control process. The hybrid perceptive framework is built based on continuous and
discrete perceptive references. The robot can plan and modifying the original path
through switching the continuous controller at discrete level. The hybrid system
is stable in switching. The evolution of the hybrid references can be guaranteed
during the unexpected events that can block the continuous or discrete references.
Copyright c©2005 IFAC.

Keywords: Hybrid Automata, Perceptive Reference, Unexpected Events.

1. INTRODUCTION

As autonomous systems, robots process per-
ception, the environmental information obtained
from onboard sensors, and respond to the per-
ception by changing the original path planning
and control schemes. A perceptive frame can be
built for robotic systems modeling and analysis.
The perceptive framework introduces a concept
of a perceptive reference s, a parameter that is
directly relevant to measured sensory outputs and
the task. The s can be, for example, the distance
the robot system traveled. Thus, instead of time,
the control input is parameterized by the new
reference, which is a function of the real time
measurement. The planner is triggered by the
new reference and generates the desired values
of the system, according to the on-line computed
reference s. The perceptive frame has been applied
to the path planning and control for a single
manipulator and multiple manipulators coordina-

1 Research Partially supported under NSF Grant IIS-
9796300, IIS-9796287 and EIA-9911077.

tion with a continuous perceptive reference (Xi
et al., 1996) A perceptive scheme was developed
for integration of task scheduling, action planning
and control of robotic manufacturing systems in
(Song et al., 2000) . The perceptive approach
guarantees the stability of the robot system in
the presence of unexpected events. However, un-
expected events become serious problem, as they
can block the evolution of the reference, for ex-
ample, an obstacle. When the reference is blocked
by an unexpected obstacle, the robot will stop
until the blocked reference is released and then
resume evolution. It is crucial for the reference
to keep evolving. A hybrid perceptive framework
is considered to solve the break in evolution of a
single reference.

Hybrid systems have been attracting attention
from control engineers recently and extensively
investigated in (Lygeros et al., 2003), (Braniky,
1995), (Pettersson and Lennartson, 1993) and
a variety of hybrid system models and frame-
works have been proposed (Grossman et al., 1993)
(Antsaklis et al., 1993) (Braniky, 1995). Linguistic

Fig. 1. Perceptive Framework for Robotic Systems

method was proposed for motion planing and con-
trol of mobile robots by Brockett. In his research,
a motion description language was developed for
kinetic state machines, which are the continu-
ous analog of finite automata (Brockett, 1993).
(Manikonda et al., 1998) defined atoms in the
alphabet that describes motion behaviors. The
functions of the language are improved to deal
with multiple interruptions. In Egerstedt’s re-
search, a complexity problem of a multiple ob-
stacle avoidance is analyzed by using motion de-
scription language of Brockett’s hybrid model
(Egerstedt, 2001). However, both the continuous
part and the discrete part of the system use time
reference.

In this paper, using a hybrid framework, the hy-
brid perceptive references enable both the con-
tinuous and discrete part of the system to deal
with unexpected events. The discrete part of the
system governs the system based on perceptive
information such that the system can keep the ref-
erence evolving through modifying original plans.

2. HYBRID PERCEPTIVE FRAMEWORK

Based on (Song et al., 2000), a perceptive frame-
work represented as a hybrid system model, as
shown in Fig.1, is developed for robot system to
process both continuous and discrete information.
The perceptive framework is composed of two ma-
jor parts, a hierarchical command execution and
a hybrid perceptive reference. All the units of the
model are modeled by hybrid automata. in this
framework, the discrete level references trigger the
tasks and actions to execute. The information,
carrying commands and perceptive references, is
expressed using hybrid languages.

2.1 Hybrid Perceptive Automata and languages

As described in (Sun et al., 2003) , the task set T ,
action set A, corresponding reference sets RTask

and RAction, and continuous perceptive reference
s, are defined in perceptive frame.

The formal languages LA, LT , LRA and LRT can
be built by the alphabets ΣA, ΣT , ΣRA, and ΣRT

that are generated by sets A, T, RAction, RTask,
respectively.

A Hybrid Language (HL) is generated from an
original alphabet Σ, consisting of discrete atoms,
and numbers N ∈ Rn. The alphabet of the HL
is an extended alphabet of a formal language. An
HL is defined as the set of all the strings over the
extended alphabet ΣH . a string is concatenation
of the elements lying in the product set of the
original alphabet and the Euclidean spaces. An
HL derived from the extended alphabet ΣH is
denoted LH . A word in a hybrid language LH

T

can be “T1(x, y)” meaning “going to point(x,y)”.
The alphabet gives the qualitative description, the
numeric part is the quantization of the linguistic
expressions.

A perceptive automaton can be defined as a tuple

Me = (Q, Σ, ΣR, δ,Q0, η, O). (1)

where Q is the set of the discrete states of the
automaton and Σ is the discrete control input set.

The following properties describe the state tran-
sitions and the output action triggered by the
control command input and the reference inputs.

qj = δ(qi, σj), Ok = η(qi, σk) (2)

where qi, qj ∈ Q, Ok ∈ O, σj ∈ Σ, σk ∈ ΣR.

Corresponding different inputs the automaton can
have different responses including state switching
and command issuing. A hybrid automaton is ca-
pable of bridging the two kinds of variables. Based
on (Lygeros et al., 2003) it can be considered to
be a tuple

MH = (Q,X, Σ, δ,Q0, η, 0), (3)

where X is the set of continuous variables. The
automaton can be described as

qj = δ(qi, σj , X), σj ∈ Σ (4)

Ok = η(qi, σi, X) (5)

A hierarchical automaton consists of several
nodes, some of which are other automata. The
first automaton is an upper automaton, the other
automata denoting the nodes of the upper au-
tomaton are called embedded automata. This ar-
chitecture can be described as a tuple, Mh =
(QU , QEM , ΣU , ΣEM , δU , δEM , QU0, QEM0, O),

ΣU is the input set for the upper automaton,
ΣEM is the input set of embedded automaton,
QU is a set of the states(the nodes of the upper
automaton), QEM is a set of the states of the
automata embedded into nodes of QU , QU0 is
the set of the starting states of QU , QEM0 is the
set of the starting states of QEM . δU and δEM

describe the transition functions of QU and QEM ,
respectively.

Perceptive, hybrid and hierarchical automata re-
fer to three basic prototypes of automata in the
framework.

2.2 Hierarchical Task Execution Architecture

As shown in Fig.1, The task execution includes
three parts: task scheduler, action and motion
planner. which can be modeled using automata.

The task scheduler sequentially generates tasks
according to the commands and discrete task level
references. It is a perceptive automaton hybrid
variables.

MTaskSch = (Q, ΣH
T , ΣH

RT , X, δ,Q0, η, OTaskSch),
where the unexpected event input and task level
reference input are in language LH

RT , and LH
T , re-

spectively. The inputs from the Task Level Refer-
ence automaton trigger the task output in hybrid
language LH

T . Logically, it chooses the higher pri-
ority task from the inputs, e.g. obstacle avoidance.

The function of the planner is to generate a se-
quence of actions according to the task input from
the task level. According to the discussion above,
the action planner is modeled as a hybrid percep-
tive automaton which can be described as a tuple,
MActP lan = (Q, ΣH

T , ΣH
RA, X, δ,Q0, η, OActP lan).

It has perceptive reference inputs in hybrid lan-
guage LH

RA and task inputs in hybrid language
LH

T denoted as:

IActP lan1 = LH
T (6)

IActP lan2 = LH
RA (7)

The output OActP lan is in the language LH
A .

The continuous variables in set X carried out
by hybrid language inputs give the automaton
continuous evolutions and can also be used to
generate the outputs in the hybrid language.

The transition function and the output functions
of the Action Planner are as follows

qActP lanj = δ(qActP lani, σj), σj ∈ ΣH
T (8)

OActP lank = η(qActP lani, σk), σk ∈ ΣH
RA (9)

The task inputs cause the state transition of
the automaton. The perceptive reference input

triggers the output, The output can be a vector
comprising of several commands.

The motion planner in Fig. 1 can generate a con-
tinuous trajectory for the desired motion, based
on the actions from the action planner. The mo-
tion planner is a hybrid automaton triggered by
the perceptive reference. We describe it as a tuple:
MMotPlan = (Q, ΣH

A , s, X, δ,Q0, η, OMotPlan) The
output is parameterized by reference s. Another
input of the automaton is in hybrid language LH

A

from the alphabet ΣH
A . The discrete part of the

input σ in LH
A make the automaton switch to the

appropriate node. Each node of the automaton is
a dynamic system (or a controller) which can issue
the planned continuous trajectory.

Therefore, it can be formulated as:

qMotPlanj = δ(qMotPlani, σj), σj ∈ ΣA (10)

OMotPlank = η(qMotPlani, s) (11)

It can be seen that the state transition and
output are triggered separately by two different
inputs. For motion actions, the output to the
robot controller can be a vector, OMotPlank =
[X(s), Y (s), Ẋ(s), Ẏ (s)]T , for a complete motion
trajectory.

2.3 Reference Generation

The system has configuration sensors and environ-
mental sensors. The environmental sensory mea-
surements are used by the higher levels for discrete
perceptive reference generation, and the motion
reference can be issued based on the configura-
tion sensor measurements. Reference generation
can be described as automata. Task and action
level references are mechanism to trigger the next
task or action based on the environmental sensor
measurements and unexpected events.

The detailed description of reference generation
can be found in (Sun et al., 2003).

3. HYBRID PERCEPTIVE CONTROL FOR
MANIPULATION AND TELE-OPERATION

A typical task is to pick up an object and trans-
port it to a desired destination with a mobile
manipulator. In the route of transporting the ob-
ject, an unexpected obstacle occurs. In order to
complete the task, the mobile manipulator will
execute an obstacle avoidance task. The mobile
manipulator will then resume its original task and
reach the destination.

To build the hybrid languages from task set and
action set, some continuous variables can be in-
volved to the atoms. In the extended task set,

the T1(m1, n1)(m2, n2) denotes “transporting
an object from point(m1,n1) to point(m2,n2).”
T2(m,n, lO) denotes “to avoid an obstacle at(m,
n) at the distance lO.” In the extended action set,
A1(m,n,l) denotes “following a straight line with
directional cosine (m,n) and length l.” A2(m,n,r)
denotes “go through an arc centered at (m, n)
with length r.” A3 and A4 denote “close the grip-
per” and “open the gripper”, respectively.
In manipulation, the units behaves as follows:
Task Scheduler: The output of the task sched-
uler is T1(m1, n1)(m2, n2) until the obstacle
has been detected. Action Planner: Based
on T1(m1, n1)(m2, n2), the transition and the
outputs are qAP1 = (q0, T1) and oAP1 =
η(qAP1, reset) = A1. When the planner has the
reference input A1 meaning that the A1 action
is finished, the output action triggered by A1
is a vector oAP1 = η(qAP1, A1) = [A2, A3]T .
The output triggered by action reference A11
is another action oAP1 = η(qAP2, A11) = A4.
The directional cosines and the length in A1
and A11 can be found with the parameters in
T1. Motion Planner: The inputs A1(m1, n1, l1),
A11(m11, n11, l11) ∈ ΣH

A cause the states transi-
tion of the motion planner. qMotPlan1 = δ(q0, A1),
qMotPlan11 = δ(q0, A11). The states denote differ-
ent vector fields, i.e., trajectories, namely, straight
line path and arc path.

4. ANALYSIS ON SWITCHING SYSTEM

During switching between the tasks, which can be
described in subspaces, stability is a very crucial
issue. The values of the vector in each subspace
represent the parameter disturbance of the low
level controllers.

4.1 Mapping from high level task to low level
controllers and regions

Task space can be defined as a N-dimensional
linear vector space.

T s = [T1T2...Tn]T (12)

Ti = diag[0...Ii...0] (13)

T s = [0...xi1, xi2...xip...0]T

Where Ii is a diagonal matrix with order p. There-
fore, for each task, we have a multidimensional
vector space. For several independent tasks, the
combined task space can be generated and, each
task is defined in a subspace. For example, the
Ti is a task in p dimensional space. The dimen-
sion of the subspace depends on the specific task.
Similarly, the action space can be defined as:

As = [A1A2...Am]T (14)

Aj = diag[0...Dj ...0]As (15)

As = [0...xj1, xj2...xjq...0]T

Where Dj is a diagonal matrix with order q.
The transform would result in mapping the task
from a task subspace into an action subspace. The
mapping T s− > As, therefore, can be described
as a linear mapping.

According to the control model of action planning,

OA
k = L(qi, σi, σk) = L′(qi, σk, T s) (16)

Where Di is a diagonal matrix. The switch be-
tween the task level inputs is equivelent to the
switch of the Linear mappings. Given a different
task level input, there exist a linear mapping to
generate the the vectors in Action Space.

OM = LM (η(qM
i , σi, s)) = L′′(qi, s, A

s) (17)

Where the Dj is a diagonal matrix. L′ and L′′ are
linear mappings.

Fig. 1 describes the model with hybrid percep-
tive references and states, A hybrid perceptive
trajectory is a finite or infinite sequence of ref-
erence interval e = {STRiSARjSK}, where SK ∈
[Sk, s′k], STRi ∈ ΣH

RT , SARj ∈ ΣH
RA. Furthermore,

An execution of a hybrid perceptive automaton
describes a collection χ = {e, q, x}, where e is
a hybrid perceptive reference trajectory. q is a
map from STRiSARj to q, x maps the continuous
reference s to the continuous state space.

4.2 switching conditions for low level controllers

For the system dx/ds = f(x), we say that V (s)
is a candidate Lyapunov function if V (s) is a
continuous positive definite function (about the
origin) with continuous partial derivatives. Note
this assumes V (0) = 0.

Considering switched hybrid systems, the systems
operate in a hybrid metric space. The stability
property of such systems can be described in
a hybrid state space of the perceptive frame.
Therefore, multiple Lyapunov function can be
used to discuss the stability issue.

Given a dynamical system in the perceptive frame,
if there exist Lyapunov functions V1(sh), V2(sh)...
with hybrid perceptive references, correspond-
ing to the hybrid perceptive reference trajectory
and different segments of executions, for a given
strictly increasing sequence of STRiSARj (discrete
reference values), denoted by I = STRiSARj in
perceptive reference, we say that V is a Lyapunov-
like function for function f and execution χ =
{e, q, x}, if

1. Given s ∈ (si, si+1) where dV (x(sh))/ds ≤ 0
2. V is monotonically non-increasing on ordered
set I.

Theorem 1 (Stability): Suppose we have candi-
date Lyapunov functions Vi,i = 1...N , and vector
field dx/ds = fi(x) with fi(0) = 0, Let E be the
set of all switching sequences associated with the
system. If for each sh ∈ E we have for all i, Vi is
Lyapunov-like for fi. Then the system is stable in
the sense of Lyapunov.

Theorem 2(Exponential Stability): Suppose
we have candidate Lyapunov functions Vi,i =
1...N , and vector field dx/ds = fi(x) with fi(0) =
0, Let E be the set of all switching sequences asso-
ciated with the system. In the perceptive frame, if
for each sh ∈ E we have for all i, Vi is Lyapunov-
like for fi. Then the system is exponentialy stable
in the sense of Lyapunov. If There exist constants
αg, βg, γg, g = 1, ..., l, such that:

−−∀x ∈ Ω, αg(‖ x ‖) ≤ Vg(x) ≤ βg(‖ x ‖)(18)

−−∀x ∈ Ω,

−−∀x ∈ Egr, Vr(x) ≤ Vg(x). (19)

for switching from q to r.

4.3 continuity of input-output mapping

The offset on the continuous variables of the task
level linguistic inputs. For the tasks, which have
the same discrete task but different continuous
variables, i.e., two task controls in the same task
subspace, if the continuous parts approximate
sufficiently, then the states of the system are
sufficiently close to each other.

It can be formally described by the followings:

For a given task subspace Ti, the mapping L
is referred to as a continuous mapping, if there
always exists an ε, for given δ such that ‖ ∆A ‖<
ε, when ‖ ∆T ‖< δ. The intuitive meaning is
that both the task and the action will evolve
continuously. The norm ‖ ∆A ‖ is referred to as
the sum of all the action offset. I.e., ‖ ∆A ‖=
Σ ‖ ∆Ai ‖. Thus, the input and output of the
task controller in the linear space T s and As are
continuously dependent.

4.4 stability conditions for switched systems

The stability conditions include two parts. First,
the switching between the task subspace with dif-
ferent dimension is stable under certain conditions
of Lyapunov functions. Second, the continuous
variable of the task input do not spoil the stability,
if for a given value, the system is stable.

Assumption: The input and the output of the
task controllers in linear space are continuous
dependent.

Claim 3: If the vector fields corresponding to
the switching task T1 and T2 in Ω1 and Ω2 are
exponentially stable. Then given any continous
part T1 and T2, the switching tasks will be stable.

5. MODELING OF UNEXPECTED EVENT
PROCESSING

The ability to deal with unexpected events is cru-
cial for a perceptive control system. Q represents
the set of the vector fields, (q1, ..., qn), for a m-
dimensional space, at least it has m m-dimensional
orthogonal vector fileds. f1...fm. Therefore, for
any 2 points x1 and x2, the system can start
from x1, x2 within finite time of switches over the
vector fields. The continuous reference s should
satisfies: LfS(q, x) > 0, it guarantees that the
continuous reference is increasing over time t.

5.1 Unexpected Event(UE) Processing

Unexpected events can be described as follows:
For a given e = {STRiSARjSK}, where SK ∈
[Sk, s′k], STRi ∈ ΣH

RT , SARj ∈ ΣH
RA. and an ex-

ecution of a hybrid perceptive automaton χ =
{e, q, x}, A unexpected event happends, when the
following two condition hold:

ds/dt |sh
u

= 0, sh
u ∈ (sh

0 , sh
f), (20)

sh
u 6= STRi, SARj . (21)

Furthermore, an unexpected event represents a
convex region UA that is an open set of states,
in which the above conditions hold, the boundary
is a scalar function ω(x) = 0, and ω(x) > 0 for x ∈
UA, when UE happens, using “Lie Derivative”, we
have Lfω(x) > 0, ω(x) = 0.

It is a local blocking event of Task T if we can find
a subset of the trajectory χ1 = {st, q, x}, where
st = (sh

u, sh
f) 6∈ UA.

For hybrid automata, the unexpected events can
be described as a disturbance for a system. The
system is desired to be able to return to the
designed trajectory after the disturbance. Or,
the unexpected events can be treated as a task
executed before finishing the current task. The
new task is to switch out of the blocking state
then return to and resume the previous task. For
the given model, the unexpected event will affect
the states, causes a discrete state transition. A
new vector field will be applied on the continuous
states of the system. which is an orthogonal vector
field to the old one, < fi(x) ·fi+1(x) >= 0, then it

can satisfy the following conditions: Lfi+1ω(x) <
0, Lfi+1S(q, x) > 0, the former makes the system
leave domain UA from the boundary ω(x) = 0, the
latter guarantees the evolution of the continuous
reference.

Theorem 4 shows the existence of the solution at
unexpected events in the perceptive frame.

Theorem 4: if the unexpected event eu is a local
blocking event, there exists another finite automa-
ton and with the same alphabet, corresponding to
the new automaton, the automaton can go back to
the original task trajectory χ = {e, q, x}.
The detailed proofs of Theorem 1-4 can be found
in (Sun, 2004).

5.2 UE Processing in Mobile Manipulation

After an UE that blocks the evolution of continu-
ous reference is detected, the task reference gener-
ates the UE with the obstacle info T2(mo, no, lo),
the output of the task scheduler is T2(mo, no, lo).
It causes a discrete switch over discrete variables,
an obstacle avoidance on the task execution to
switch and resume the evolution of the continuous
reference, which leads the robot to the previous
task and reach the destination. The perceptive
reference is never blocked.

The transition function and the output function
are qAP2 = δ(qAP1, T2(mo, no)) and oAP2 =
η(qAP2, reset) = A2(ma2, na2, ra2), respectively.

The motion planner receives the action A2(.) from
the action planner to generate the trajectory.
This automaton has a state transition on the
upper automaton due to the unexpected event and
returns to the previous state after processing the
unexpected event. The triggered procedure is the
same as in the task execution process.

In teleoperation, The time delay of the commu-
nication between the operator and controller will
significantly affect the control performance. it is
crucial to synchronize the command from the op-
erator to the arm controller. If the controller can
not receive the next position or velocity command
before it finishes executing the current one. It has
to stop or just keep going on the current velocity,
the former reduces the smoothness of execution
while the later causes control errors. In the hybrid
model, the delayed command is thought of as an
unexpected event on action level, that can prevent
the discrete reference from evolving.

The routing for the UE is to switch to another
action which decelerates the motion to make the
trajectory smooth until the next control command
is received then switch back to the previous state
and the path plan is modified. As the result, the
hybrid perceptive reference can not be blocked.

6. CONCLUSION

This paper presents a hybrid model for the per-
ceptive robotic systems. The model integrates
the continuous perceptive reference and discrete
references for planning and control using hybrid
automata. Compare to continuous reference, the
hybrid perceptive reference keeps evolving despite
the occurrence of an unexpected event, which
could block the continuous perceptive reference or
the discrete perceptive reference. It can be shown
that the system is stable during the switches.

REFERENCES

Antsaklis, P. J., M. D. Lemmon and M. D.
Lemmon (1993). Hybrid systems modeling
and autonomous control systems. In: Lec-
ture Notes in Computer Science. Vol. 736.
pp. 336–392. Springer-Verlag.

Braniky, M. S. (1995). Studies in hybrid sys-
tems: Modeling, analysis, and control. In:
MIT Ph.D. Dissertation.

Brockett, R. W. (1993). Hybrid model for motion
control systems. In: Perspectives in Control.
Vol. 135. pp. 29–54.

Egerstedt, M. (2001). Linguistic control of mobile
robots. Proceedings of IEEE/RSJ IROS.

Grossman, R. L., Anil Nerode, A. P. Ravn and
H. Rischel (1993). Hybrid systems. In: Lec-
ture Notes in Computer Science. Vol. 736.
Springer-Verlag. New York.

Lygeros, J., K. H. Johansson, S. N. Simic,
J. Zhang and S. S. Sastry (2003). Dynamical
properties of hybrid system. IEEE Transac-
tions On Automatic Control.

Manikonda, V., P.s. Krishnaprasad and J. Hendler
(1998). Behaviors, hybrid architectures and
motion control. In: Mathematical Control
Theory. Springer-Verlag.

Pettersson, S. and B. Lennartson (1993). Con-
troller design of hybrid systems. In: Lec-
ture Notes in Computer Science. Vol. 1201.
Springer-Verlag. New York.

Song, M., T.J. Tarn and N. Xi (2000). Integra-
tion of task scheduling, sensing, planning and
control in robotic manufacturing system. Pre-
ceedings of the IEEE.

Sun, Y. (2004). Design and vlsi implementation
of perceptive controller for robotic systems.
In: Michigan State University Ph.D. Disser-
tation.

Sun, Y., N. Xi and J. Tan (2003). Hybrid system
model for event-based planning and control of
robot operations. Proc. of the IEEE CIRA.

Xi, N., T. J. Tarn and A. K. Bejczy (1996). In-
telligent planning and ctrl for multirobot co-
ordination: An event-based approach. IEEE
Transactions On Robotics and Automation.

