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Abstract: Recently, space science and engineering advanced new problem before the-
oretical mechanics and motion control theory: a spacecraft directed respinup by the
weak restricted control internal forces. The paper presents some results on this problem,
which is very actual for energy supply of the communication mini-satellites with plasma
thrusters at initial mission modes. Copyright c© 2005 IFAC
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1. INTRODUCTION

In the current practice, geostationary satellites en-
joying 15-year life and high-accurate station-keeping
maneuvers are equipped with thruster unit based on
plasma reaction thrusters (RTs) having high specific
pulse and large power consumption. While designing
mini-satellite weighted of 400 to 800 kg (as Russian
satellite Express-AK , Fig. 1) it is very attractive to
employ plasma RTs only for all modes. The constrains
at the problem are as follows (Titov et al., 2003):
• On separating from a launcher, a spacecraft (SC)
obtains an initial angular rate up to 20◦/s. During
that SC rotation an electric power required for the on-
board equipment is generated by solar arrays panels
(SAPs) or by chemical batteries. An energy generated
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by the SAPs depends on an angle between their
normal and direction towards the Sun.
• Plasma RT enjoy small thrust values (about several
grams) and large power consumption (magnitude of 1
to 1.5 kW). Small thrusts and therefore small control
torques are the cause of a long time period required
to damp initial SC rate. The plasma RTs can be
activated a specified time period Ta from several
hours to several days after the separation.

Fig. 1. The communication satellite Express-AK



• Severe requirements applied to the mass of the
attitude & orbit control system (AOCS) installed
on a mini-satellite result in the fact that the an-
gular momentum (AM) of a gyro moment cluster
(GMC) based on the reaction wheels (RWs) or on
the single-gimbal control moment gyroscopes — gy-
rodines (GDs), is significantly lower then the SC’s AM
obtained after its separation.

The engineering problem is to ensure such motion of a
SC separated with no plasma RTs used, under which
the energetic conditions are met, and then after the
specified period Ta to complete a SC orientation to-
wards the Sun by plasma RTs. The approach applied
is based on two main assumptions:
• the plasma RTs are applied to perform two tasks:

(i) satellite attitude control and unloading of an
accumulated AM, and (ii) satellite orbit control;

• a small-mass GMC having a small AM is applied
at initial mode without joining-up the RTs.

At a separation time moment t0, a satellite body AM
vector K0 ≡ Jω(t0) = G0 has an arbitrary direction,
therefore the principle problem is to coincide this
satellite vector with the maximum inertia satellite
body axis Oy using only the GMC having small
resources for the AM and control torque variation
domains. Essentially nonlinear dynamical processes
are arising from a moving the total AM vector G(t)
of mechanical system with respect to the satellite
body reference frame (BRF) Oxyz. Moreover, a Sun
sensor is switched on, the Sun position is determined
within the BRF and, if required, the SAPs are turned
by an angle γp, 0 ≤ γp ≤ 270◦. In result, the
SC angular rate is set along the axis Oy which is
perpendicular to the SAPs rotation axis. Depending
on the initial vector G angular position and direction
S towards the Sun, the SAPs will be illuminated
either continuously when the vectors G and S have
coincided, or periodically if G⊥S, see Fig. 2. At
this phase of the SC mission, the GMC is applied
to generate control torques and plasma RTs are not
activated. At next phase of the AOCS initial modes
the RTs are turned on and generate the control
torques to damp a SC angular rate.

In the paper, only principle aspects of strongly non-
linear dynamics related to the robust controlled co-
incidence of the SC body Oy axis with the SC’s AM
vector G are presented. Results early obtained (see
Fig. 3 in Somov et al. (2004)) are direct proofs for
large efficiency of the GDs as compared with the RWs.
The solution achieved is based on the methods for
synthesis of nonlinear robust control (Somov, 2002;
Somov et al., 2002) and on rigorous analytical proof
for the required SC rotation stability (Somov et al.,
2003b, 2004). These results were verified by computer
simulation (Somov et al., 1999a) of strongly nonlinear
oscillatory processes at respinuping a flexible SC.

2. THE PROBLEM BACKGROUND

Most satellites contain a GMC to provide gyroscopic
stability of a desired attitude of the SC body, prob-
lems of gyrostat optimal control (Krementulo, 1977;
Chernousko et al., 1980; Somov and Fatkhullin, 1975;

Fig. 2. The rotating SC attitude over the Sun

Junkins and Turner, 1986) and synthesis of control
laws (Zubov, 1975, 1982, 1983) had been studied.
V.I. Zubov’s results were essentially developed by
Ye.Ya. Smirnov (1981) and his successors (Smirnov
et al., 1985; Smirnov and Yurkov, 1989). Here a Lya-
punov function is applied with small parameter for its
crossed term. This idea for mechanical systems rises
to G.I. Chetayev (1955). Instead that A.V. Yurkov
(1999) applied a large parameter for a position term
at the Lyapunov function.

The SC spinup problems have been investigated by
numerous authors, see Hubert (1981b); Huges (1986);
Guelman (1989); Hall (1995a,b) et al. C.D. Hall
(1995a) have been obtained a bifurcation diagram
for all gyrostat spinup equilibria manifolds. Different
approaches were applied to convert the intermediate
axis spin equilibrium to those of major axis spin (to
respinup the SC body) by variation of the RWs AM
(Hubert, 1981a,b; Huges, 1986; Salvatore, 1991). If
enough AM is added, the desired spin is globally
stable in the presence of energy dissipation (Huges,
1986). However, no literature was found suggesting
the SC respinup feedback control by the GMC having
small resources, when the SC body AM vector have
a large value and an arbitrary direction.

3. MATHEMATICAL MODELS

3.1. Spacecraft rigid model

Let us have a free rigid body (RB) with one fixed
point O and any GMC. An inertia tensor J of the
RB with a GMC is a arbitrary diagonal one, i.e.
J = dJx, Jy, Jzc ≡ diag{Ji, i = x, y, z ≡ 1 : 3} within
the BRF Oxyz. Model of the RB motion is presented
at well-known vector form

K̇ + ω ×G = M ≡ −Ḣ, (1)

where ω = {ωi} is an absolute angular rate vector of
the RB; K = Jω is an AM vector of the RB equipped
with a GMC; G=K+H is a total AM for mechanical
system in the whole; H is a column-vector of a GMC
total AM determined in the BRF.

3.2. Spacecraft flexible model

Simplest model of a free flexible body (FB) motion
is presented also at the vector-matrix form with
standard notations

Ao{ω̇, q̈} = {Fω,Fq}, (2)



where G = Go + Dqq̇; Go = Jω + H(β);

Ao =
[

J Dq

Dt
q Aq

]
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3.3. The GMC based on the GDs

It is suitable to present any GMC type using a
canonical reference frame (CRF) Eg

c(x
g
c , y

g
c , zg

c ). The
necessary location of the required domain S of the
GMC AM H variation within the BRF is achieved

by the CRF orientation

Fig. 3. The 2-SPE scheme

versus the BRF. Applied
2-SPE (2 Scissored Pair
Ensemble) scheme on 4
GDs with own AM hg

is presented in Fig. 3.
Within precession theory
of control moment gy-
ros the AM vector H by
this scheme has the form
H(β)=hgAγh with con-
stant non-singular ma-
trix Aγ , where a normed
vector h=

∑
hp(βp) made

up from units hp(βp),
column β={βp} presents

the GD’s precession angles, column h ≡ {x, y, z},
where x = x12 + x34; x12 = x1 + x2; x34 = x3 + x4;
y = y1 + y2; z = −(z3 + z4); xp = Cβp ; yp = Sβp ;
zp = Sβp

, where Sα ≡ sinα and Cα ≡ cos α. At the
command column u = {up} the vector of the GMC
output control torque has the form

Mg =−Ḣ=−hgAh(β)u; β̇=u, (3)

where matrix Ah(β) = AγAh(β) and matrix

Ah(β)≡∂h(β)/∂β =

−y1 −y2 −z3 −z4

x1 x2 0 0
0 0 −x3 −x4

.

The GDs’ precession angles vary within the full range,
but the domain S of the GMC’s AM vector H(β)
variations is limited. The ”control” up(t) of each GD
is module-limited by given positive parameter um :

|up(t)| ≤ um, p = 1 : 4, ∀t ∈ Tt0 . (4)

These constrains are converted into β-dependent con-
vex variation domain for a control torque M = Mg.

4. THE PROBLEM STATEMENT

Considering the model (1), let us denote an AM vector
of a RB at initial time moment t0 as K0. Let the
vector of a GMC’s total AM at the initial time be
equal to zero, i.e. H0 ≡ H(t0) = 0. A norm of
the vector K0 is assumed to be limited with the
given constant, i.e. ‖ K0 ‖≤ k∗o , k∗o > 0, but the
direction of this vector within the BRF is arbitrary.
Therefore, at the time t = t0 the total AM vector
related to the whole mechanical system G0 =K0 with
‖ G0 ‖≡ go ≤ g∗o = k∗o .

The inertial parameters of the RB are assumed to
be known, the same for the possibility to measure

the vector ω(t) and the vector H(t). Let us establish
a fixed unit vector f = ey = {0, 1, 0} or f = −ey =
{0,−1, 0} within the BRF — the unit of a RB having
the largest moment of inertia or the one opposite.

The problem consists in designing required GMC
control law which enable achieving such condition of
a gyrostat (1) with the specified accuracy by any time
moment t = Tf :

Kf = J ωf ; ωf = ωf f ; Hf = Hf f , (5)

where Kf ≡ K(Tf); Hf ≡ H(Tf); ωf ≡ ω(Tf)
and value of the total GMC AM’s module Hf is
established, in particular, as Hf = 0. Taking into
account the identity Jy ωf + Hf = go, where the
value Hf shall meet some constrains, one can find the
obvious relation ωf = (go −Hf)/Jy.

After solving this vital problem, it is necessary to
ensure the distribution of the AM H and control
torque M = Mg vectors between four GDs. It is
desirable to have the explicit distribution law (DL)
allowing to obtain all movement characteristics for
each electro-mechanical actuator based on the ana-
lytical relations. The GMC with collinear GD gimbal
axes obtains a significant advantage: all its singular
states are passable (Somov et al., 2003a). At 4 GDs
the same approach is possible only for 2-SPE scheme.
The DL for such GMC was early presented in Somov
(2002) and Somov et al. (2003a). It is also necessary
to consider a respinuping the flexible spacecraft struc-
ture through using four GDs.

5. SYNTHESIS OF MAIN CONTROL LAW

An AM vector G(t) = J ω(t) + H(t) of the whole
mechanical system with no external torques has its
value unchanged within any inertial reference frame
(IRF), in accordance with the theoretical mechanics
principles. The unit vector g(t)≡{gi(t)}=G(t)/go is
also a fixed one within the IRF, but within the BRF
this unit is moving in accordance with equation

ġ(t) = −ω(t)× g(t). (6)

Let the following be calculated within the BRF when
the system moves as per the measured values of the
ω(t) and H(t) vectors:
• position of an AM unit vector g(t);
• position of a vector ξ(t) = g(t)× f ;
• for ‖ ξ(t) ‖= Sϕ(t) ≡ sinϕ(t) ≥ ε1 = const the

unit vector value eξ(t) = ξ(t)/ ‖ ξ(t) ‖;
• a cosine of angle between the units g and f

Cϕ(t) ≡ cos ϕ(t) = 〈f ,g(t)〉.

A mismatch between the actual and required values
of the SC rate vector is presented as

η(t) = δω(t) ≡ ω(t)− ωf f . (7)

Let us assume that at time t0 there is also calculated
an indicator af = Sgn Cϕ(t0) of the unit vector
direction f by the definition

Sgn x=1 for x ≥ 0 and Sgn x=−1 for x < 0,
and then we determine the unit vector f = afey. At
the denotation ζ(t) = g(t) − f as a nearby measure
for the unit vectors g and f , it is suitable to use a
scalar function



vp(t)≡vp(ζ(t))= |ζ(t)|2/2=1− 〈f ,g(t)〉>>0. (8)

This function has positive values under g(t) 6= f
and obtains zero value at the above vectors coincided
only. With the above selection of the unit vector
f = af{0, 1, 0}, we always have vp(t0) ≤ 1. Taking
into account standard vector identities 〈a, (b× c)〉≡
〈b, (c× a)〉≡〈c, (a×b)〉 and ζ̇(t) ≡ −ω(t)× g(t) by
(6), we have derivative of the function vp (8) as

v̇p =〈ζ(t), ζ̇(t)〉 = 〈ξ(t),η(t)〉. (9)

Vectors ξ(t) and ζ(t) are connected by identities

ξ2≡ζ2(1− ζ2/4); ζ2≡2ξ2/(1 + (1− ξ2)1/2), (10)

moreover the vector ξ(t) is moving by equation

ξ̇=η − φ; φ≡ωfζ + g〈f ,η〉+ (η+ωf f)ζ2/2. (11)

Taking into account that due to (7) ω̇(t) = η̇(t);

G(t)=gog=gof + go(g(t)− f) = Kf + Hf + goζ(t);

ν ≡ Jη − goζ = −(H−Hf); ν̇ = Jω̇ + ω ×G,

the equation (1) is presented in simplest form

ν̇ ≡ Jη̇ − goζ̇ = M = −Ḣ. (12)

The function ve(ν) ≡ ν2/(2jh) = (H − Hf)2/(2jh)
defines a GMC kinetic energy at its motion with
respect to required equilibrium in the BRF, where
any constant jh > 0 presents its inertia properties.

The RB movement required Oη ≡ {ξ = 0;η = 0} is
the same Oν ≡ {ξ = 0;ν = 0} due to the identities
(10). For denotation ρ2(t) ≡‖ ξ(t) ‖2 + ‖ η(t) ‖2 in
the first let us consider any small domain

O ≡ {‖ ξ ‖< ε1} ∩ {‖ ρ ‖< ερ = const},

within which no constrains for the control torque
M vector have occurred. To justify the structure of
the control torque M law into the equation (12), we
introduce the Lyapunov function

V(ζ, ξ,η)=abvp(ζ) + (a/jh)〈ν,Pξ〉+ ve(ν), (13)

where scalar parameters a > 0, b > 0 and P is a
constant definitely-positive matrix. For large value of
parameter b the function V (13) is definitely positive
with respect to the vector variables ζ and η. The
derivative of this function with (9) and (12) taken
into account have the form

V̇=ab〈ξ,η〉+ [〈M,µ〉+ 〈ν,Pξ̇〉]/jh, (14)

where vector µ ≡ ν + aPξ. For domain O the GMC
control law is selected in the form

M = Mξ ≡ −qjhDµ = −m [ ξ + kDν] (15)

with parameters q > 0, m = qjha > 0, k = 1/a > 0
and definitely-positive matrix D = P−1.

Theorem For the RB movement required Oη of the
system’s model (11), (12) with the control law (15)
the property of exponential stability

ρ(t)≤βρ(t0) exp(−α(t− t0)), α, β=const > 0 (16)

is guaranteed for arbitrary vector of initial conditions
{ξ(t0),η(t0)} ∈ O0 ⊆ O at chosen large value q(go).

Proof The derivative (14) of function (13) by the
relation (11) taken into account is presented as

V̇ = −qa2〈ξ,Pξ〉+ a(b 〈ξ,η〉 − 2q〈ξ,Jη〉)
−q〈ν,Dν〉+ (a/jh)〈ν,P(η − φ(η, ζ))〉,

(17)

where vector ν =Jη − goζ and the function φ(·) was
defined in (11). Taking into account
〈ν,Dν〉=〈DJη,Jη〉 − 2go〈DJη, ζ〉+ g2

o〈Dζ, ζ〉
and analogous representations of the terms 〈ν,Pη〉,
〈ν,Pζ〉, 〈ν,Pφ〉 in (17), and also identities (10), one
makes sure of the majoring V̇ ≤ −W(ξ,η), where
scalar function W(·) is definitely positive with respect
to variables ξ and η for large values of parameters b
and q, depending on total AM value go. By analogy
with Smirnov (1981) there is proved that W(t) → 0
at t → ∞ and function V(t) is decreased monotoni-
cally. Standard estimates (Smirnov and Yurkov, 1989;
Yurkov, 1999) are derived from majoring functions V
and W by quadratic forms

a1ρ
2≤V≤a2ρ

2, a1 > 0; b1ρ
2≤W≤b2ρ

2, b1 >0,

from where the condition (16) is appeared with the
parameters α = b1/(2a2) and β = (a2/a1)1/2. 2

Due to the identity ν ≡ Jη − goζ =−(H − Hf) the
control law (15) is appeared in very simple form

Mξ = −m[ ξ(t)− kD(H(t)−Hf) ]
interior to nearest neighborhood of required gyrostat
state Oη. Outside this neighborhood the control law
is not effective because of various equilibria manifolds
(Hall, 1995a) which exist at conditions Mξ = Jη̇ −
goζ̇ ≡ 0 but Jη − goζ = c and aPξ = −c with
a constant vector c 6= 0. Therefore other simple
control laws are needed for fastest the SC respinuping
without sticking its motion on any equilibria manifold
differing from the state Oη. For denotations

Mr
ξ(t)≡−m [ eξ(t)SgnCϕ(t)− kD(H(t)−Hf) ],

Mr(t) ≡ −M∗ {Sgn gi(t), i = x, y, z},
where M∗ is a large constant parameter, developed
control law has the form

M =


Mξ(t) ‖ ξ(t) ‖< ε1;
Mr

ξ(t) ε1 ≤‖ ξ(t) ‖≤ ε2;
Mr(t) ‖ ξ(t) ‖> ε2,

(18)

where for example, the parameters ε1 = 0.1 (angle
ϕ = 6◦) and ε2 = 0.5 (angle ϕ = 30◦).

6. COMPUTER SIMULATION

Based on the above control laws, the SC motion have
been simulated with the following parameter values:
Jx = 2900, Jy = 3600 and Jz = 870kgm2 (Somov et
al., 2003c). Fig. 3 in Somov et al. (2004) summarizes
the simulation results for initial position of the SC
AM vector along the unit g(t0) = {0, 0, 1} within
the BRF and module go = 300 Nms, and its final
position coincided with the unit f = {0, 1, 0}. For
clearness, where the simplest canonical GMC schemes
were applied: on 3 RWs (constrains Mm = 0.15 Nm
and Hm = 5 Nms) and the 2-SPE scheme on 4 GDs
with hg = 7.5 Nms, see Fig. 3, with angle γg = π/4
and constrains um = 10 deg/s.

Optimization (Somov, 2000) and robust gyromoment
control problems (Somov et al., 1999b; Somov, 2001;
Matrosov and Somov, 2003) were also considered for



Fig. 4. Dynamics of the flexible SC respinup by 4 GDs with hg = 7.5 Nms and constrains um = 10 deg/s.

respinuping the flexible spacecraft. Some results on
the flexible spacecraft dynamics during its respin-

uping by four GDs with the same parameters, are
presentd in Fig. 4.



7. CONCLUSIONS

Principle aspects of nonlinear dynamics related to the
controlled coincidence of any SC body axis with the
SC AM vector by the GDs were presented. Methods
for synthesis of nonlinear control and analytical proof
for the required SC rotation stability were developed.
Optimization and robust gyromoment control prob-
lems were considered for respinuping a flexible space-
craft. Obtained results were verified by the careful
computer simulation.
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