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Abstract: In this paper we present a low dimensional adaptive neural network
controller for robot manipulators with fast convergence of tracking error. Its
novelty lies in the low dimensional network, smooth control input and very
fast convergence that reduce the computational cost that face the problem of
over parameterization. The control strategy is based on a second order sliding
surface which drives the controller and the online computation of weights with a
chattering-free control output. Furthermore, a time base generator induces well-
posed finite time convergence of tracking errors for any initial condition. We
validate our approach including experimental results obtained in a planar 2 dgf
manipulator. Copyright @ 2005 IFAC
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1. INTRODUCTION

Approaches based on neuro-adaptive or neuro-
sliding mode control (Ertugrul and Kaynak, 2000;
Lewis and Abdallaah, 1994; Ge and Harris, 1994;
Karakasoglu and Sundareshan, 1995) approxi-
mate the unknown dynamics of a plant using
an ANN, however, to achieve an exact approx-
imation it is required a large number of nodes,
even for simple applications (Cotter, 1990). Rele-
vant results constraint the network to a bounded
number of nodes that means reconstruction er-
rors which don’t guarantee the convergence of
tracking error (Yu, 2003), (M. Yamakita, 1999),
(Cotter, 1990), (F.L.Lewis, 1998), (Ge and Har-
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ris, 1994), (F.C Sun, 1999), (G. Kulawski, 2002),
(E. N. Sanchez, 2003). Some authors introduced
an additional high frequency input in a first or-
der sliding mode to assure the convergence how-
ever this design is usually impossible to imple-
ment (O. Barambones, 2002), (Ertugrul and Kay-
nak, 2000), (Karakasoglu and Sundareshan, 1995),
(C.H. Lin, 2001).

In this paper we present a controller where the
regressor of the system is approximated by a low
dimensional single layer neural network, and a
second order sliding mode compensates the recon-
struction error. Exponential convergence arises
and if a time varying gain is introduced, finite time
convergence of the tracking errors is guaranteed.
The close loop system renders a TBG sliding mode
for all time whose solution converges in finite time;
hence a perfect tracking is obtained. Furthermore,
the second order sliding mode drives synergisti-



cally the neural network dynamics. Experimental
results on a robot manipulator verify the closed
loop stability properties.

2. REGRESSOR IN AN ADAPTIVE
CONTROLLER

The dynamics of a rigid serial n-link robot ma-
nipulator is described by

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ (1)

with (q, q̇, q̈) ∈ <3n, generalized joint coordinates,
H(q) ∈ <nxn, symmetric positive definite inertial
matrix, C(q, q̇) ∈ <nxn, Coriolis and centripetal
forces, g(q) ∈ <n, gravitational torques, and τ ∈
<n the torque input.

Since (1) can be parameterized linearly in terms
of a nominal reference (q̇r, q̈r) ∈ <2n (Lewis and
Abdallaah, 1994), consider

H(q)q̈r + C(q, q̇)q̇r + G(q) = YrΘr (2)

where the regressor Yr = Yr(q, q̇, q̇r, q̈r) ∈ <nxp is
composed of know nonlinear functions, and Θ ∈
<p assumed to represent unknown but constant
parameters with (q̇r, q̈r) to be defined. Subtract-
ing equation (2) into (1), the open loop error
equation is given by

H(q)Ṡr + C(q, q̇)Sr = τ − YrΘ, (3)

where Sr = q̇ − q̇r, the extended error, carries
out a change of coordinates through (q̇r, q̈r). If
the regressor Yr is known, it suffices to design an
adaptive control

τ =−KdSr + YrΘ (4)

˙̂
Θ =−ΓY T

r Sr (5)

where Kd ∈ <nxn
+ and Γ ∈ <nxn

+ , to produce
an overparametrized asymptotically stable closed-
loop system. If the regressor is unknown, then (4)-
(5) cannot be implemented and we have to solve
the problem of finding a way to get an approxi-
mated regressor. Then the problem statement is
to design a continuous control τ based on low
dimensional neural control such that

∆q(t)
.
= q(t) − qd(t) = 0 ∀ t ≥ tg > 0 (6)

for 0 < tg < ∞, with measurable state (q, q̇)T ∈
R2n assuming that Yr is not available, for any
know desired trajectory qd ∈ C2.

The challenge lies in how to obtain fast conver-
gence of tracking errors ∆q(t) when the regressor
Yr is unknown, under the constraint of a smooth
controller τ .

3. ERROR: MANIFOLDS AND DYNAMICS

Let us now design a convenient open loop error
dynamic system. The nominal reference q̇r is

q̇r = q̇d − α(t)∆q + Sd − Kiσ (7)

σ̇ = sign(Sq)

where

Sq = S − Sd (8)

S = ∆q̇ + α(t)∆q, Sd = S(t0)exp−kt. (9)

with Ki = KT
i ∈ <nxn

+ > 0, α(t) time-varying
feedback gain, k > 0; the sign(x) is the discon-
tinuous signum(x) function of vector x ∈ <n;
Sd ∈ C1 converges monotonously to zero with
initial conditions Sd(t0) = S(t0) at time t = t0,
then Sd(t0) = 0.

The derivative of (7) becomes

q̈r = q̈d + Ṡd − α̇(t)∆q − α(t)∆q̇ − Kisign(Sq)

= q̈cont + KiZ (10)

where

q̈cont = q̈d + Ṡd − α̇(t)∆q − α(t)∆q̇ − Ki tanh(λSq)

Z = tanh(λSq) − sign(Sq), (11)

for tanh(.) the continuous hyperbolic tangent and
λ = λT ∈ <nxn > 0. Notice that q̈cont is continu-
ous which will be very useful in the next section.
The equation (11) has the following properties:
Z ≥ −1, Z ≤ 1, ZSq→0− = −1, ZSq→0+ = +1 and
ZSq→±∞ = 0.

Now, using equation (7) and (10), the parametriza-
tion of (1) becomes

H(q)q̈r + C(q, q̇)q̇r + G(q) = YcontΘ − τd(12)

where the regressor Ycont = Yr(q, q̇, q̇r, q̈cont) is
continuous due to (q̇r, q̈cont) ∈ C1, and τd =
H(q)KiZ stands for a bounded endogenous high
frequency signal. Adding and subtracting (12)
into (1) yields the following open-loop error dy-
namics

H(q)Ṡr = −C(q, q̇)Sr + τ − YcontΘ − τd (13)

where τd is a bounded endogenous high frequency
term and Sr has the form

Sr = ∆q̇ + α(t)∆q
︸ ︷︷ ︸

S

−Sd + Ki

∫

sign(Sq)

= Sq + Ki

∫

sign(Sq). (14)

which is obtained, substituting (7) in the extended
error Sr.



4. NEURAL NETWORK ESTIMATOR

Based on the Stone-Weierstrass theorem, any
smooth function f(x) ∈ Cm(S), where S is a
compact set simply connected set of Rn, can be
approximated using with a low dimensional neural
network

f(x) = φ(WT
2 X) + ε(x) (15)

where φ is a linear function, WT
2 is a subset of WT

1

the optimal bounded weight vector, X belongs to
a compact set K ⊂ <2n, that is S := {x : ‖x‖ ≤
S} such that f(x) = φ(WT

1 X) (Cotter, 1990), and
ε(x), a bounded functional reconstruction error,
‖ε(x)‖ ≤ εN with εN > 0. Consider now that the
unknown nonlinear function f(x) is parameter-
ized by static Adaline neural network with output
f̂(x,Wn2

) = WT
n2

X where Wn2
∈ <n2 is the

matrix of adjustable weights and n2 denotes a low
number of weights, and n2 � n1. This type of neu-
ral network provides easily an approximation of
f̂ without concerning about its accuracy. Besides
this, the size n2 of the network can be obtained
roughly by checking carefully the dynamics of a
general n-link rigid arm.

Without lack of generality, in the rest of the paper
we refer Wn2

as W, omitting its subindex. Now,
let

f̂(x) = YcontΘ ≡ Ŵ
T
X + ε(x) (16)

where Ycont ∈ Rnxp, Θ ∈ Rpx1 stand for the
function to be approximated

X = [q, q̇, q̇r, q̈cont]. (17)

In this way, using low dimensional neural network,
the estimation of f(x) is f̂(x), where f̂(x) stands
for the online estimation of YcontΘ̂. Notice that
for a 2 degrees of freedom robot, it is required a
total of 2 neurons, with 4 online adaptive weights
each.

Remark In this paper, our approach is similar
to (F.L.Lewis, 1998), (Ge and Harris, 1994) a
neural network approximation of f(x)

.
= YcontΘ,

while τd will be treated as an endogenous discon-
tinuous disturbance function. The difference is the
use of a low dimensional neural network, based
on linear associator, where we are able to prove
convergence, in contrast to those references that
guarantee only bounded tracking.

5. CONTROL DESIGN

5.1 Exponential Convergence

Substituting (16) in (13) we obtain

H(q)Ṡr =−C(q, q̇)Sr + τ − WT − ε(x) − τd(18)

Now consider the following adaptive control law

τ =−KdSr + Ŵ
T
X (19)

˙̂
W =−ΓXT Sr (20)

where Kd = KT
d ∈ Rnxn

+ , Ŵ ∈ Rnxp the adaptive
neural network weights, X ∈ Rp input to the
network and Γ = ΓT ∈ R

pxp
+ .

Now, substituting (19)-(20) into (18) gives rise to
the following closed-loop error dynamics

H(q)Ṡr =−C(q, q̇)Sr − KDSr +

∆WT X + ε(x) − τd (21)

∆W = ΓXT Sr (22)

for ∆W = W−Ŵ. Finally, we have the following
result.

Theorem 1 Exponential Stability. Consider the
closed-loop error dynamics (21)-(22). Then, ex-
ponential convergence of tracking errors arises if
Ki > ε4 and α(t) = α a constant. Furthermore,
a sliding mode is enforced for all time with a low
dimensional neural network and smooth control
effort.

Proof: See Appendix 1.

5.2 Finite Time Convergence, Faster that Exponential
Convergence

Terminal attractor have been proposed using frac-
tional power (X. Yu and Man, 1998), however
those are ill-defined for at least some initial pe-
riod of time. In (Parra-Vega, 2001) a well-posed
time base generator (TBG) is proposed to render
finite time convergence. The following result can
be stated now.

Theorem 2 Finite Time Stability. Consider the
closed-loop error dynamics (21). Then, arbitrarily
finite time convergence of tracking errors if Ki >

ε4 and if feedback gain α(t) is tuned as follows

α(t) = α0
ξ̇

1 − ξ + δ
, (23)

where α0 = 1 + ε with 0 < ε � 1 and 0 < δ � 1.
The time base generator ξ = ξ(t) ∈ C2 must be
provided by the user so as to ξ goes smoothly from
0 to 1 in finite time t = tb and ξ̇ = ξ̇(t) is a bell
shaped derivative of ξ such that ξ̇(t0) = ξ̇(tb) ≡ 0.
Furthermore, a sliding mode is enforced for all
time with a low dimensional neural network and
smooth control effort.

Proof: See Appendix 2.



6. EXPERIMENTAL RESULTS

In order to demonstrate usefulness of our con-
troller, we present some experimental results ob-
tained on a high performance robot showed in
figure 1. Real time implementation uses only two
nodes for each degree of freedom and four weight
to approximate the inverse dynamics in a given er-
ror coordinate system. The objective is the track-
ing of a desired trajectory by final effector in a
finite time. In this case, the task is a circle of 0.1m
radius in 2.5s centered at X = (0.5, 0)m in the
Cartesian workspace under different initial con-
ditions. The initial neural network weights were
zero, zero initial velocity and 100% of parametric
uncertain, this means, the neural network com-
pensate the regressor matrix only based in the
states of this function (extend error). Figs. (3) and
(4) show exponential convergence of errors and
(Fig.2) show a chattering free control input. Figs.
(5,6,7) shows the control input, tracking errors
applying Theorem 2, where the convergence of
errors is driven by a time base generator (TBG).
Each run has an average running of 12 s for 1 ms
sampling period on Pentium 4, running at 1.5Ghz

under Windows 2000.

7. CONCLUSION

A low dimensional neuroadaptive controller that
uses a simple continuous second order change of
coordinates is proposed to guarantee convergence
of tracking errors. Two theorems show formal
convergence results for exponential and finite time
stability. The second order sliding mode does not
exhibit high frequency commutation, typical of
standard first order sliding mode. The experi-
ments results allow to visualize the stability prop-
erties.

Fig. 1. Robot planar at Division of Mechatronics

Table 1. Parameters of robot arm.

Parameter m1 m2 l1 l2 lc1

Value 8 5 0.5 0.35 0.19

Parameter I1 I2 B1 B2 lc2

Value 0.02 0.16 5 5 0.12

This novel method solves two traditional draw-
backs in neural network control for robots: (i.)
very fast tracking error converges, and (ii.) few
nodes and weights are required. Besides these,
other important characteristic are: (iii.) smooth
control, and (iv.) the regressor is not required .

APPENDIX 1: PROOF OF THEOREM 1

The prove is divided in three parts: firstly, we
prove that above equation shows boundedness
of all system trajectories; secondly, we show the
conditions to induce sliding modes, and thirdly,
conditions of exponential convergence of tracking
errors are shown.
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Fig. 2. Theorem 1: Control input for both joints.
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Fig. 3. Theorem 1: Position and velocity tracking
errors
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Fig. 4. Theorem 1: Cartesian tracking error.
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Fig. 5. Theorem 2: Control input for both joints
for tb = 1.5s

Part 1 Boundedness of Closed-loop Trajectories.
Consider the following Lyapunov function

V =
1

2
ST

r HSr +
1

2
∆WT Γ−1∆W (24)

whose total derivative along its solution is as
follows

V̇ = ST
r HṠr +

1

2
ST

r ḢSr + ∆WT Γ−1∆Ẇ

=−ST
r KdSr + ST

r ε(x) − ST
r τd

≤−ST
r KdSr + ST

r εN − ST
r τd (25)
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Fig. 6. Theorem 2: Cartesian tracking error for
tb = 1.5s
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Fig. 7. Theorem 2: Position and velocity tracking
error for tb = 1.5s

Note that the term τd is radially unbounded only
when Sr → ∞ and for bounded signals it is zero
only at Sr = 0. This arguments implies that
‖ST

r τd‖ ≤ η‖Sr‖ where η = ‖H(q)‖ ‖Ki‖, with

‖X‖ =
√

λmXT X and λm stands for the

maximum eigenvalue of matrix X. Then, equation
(25) becomes

V̇ ≤ −ST
r KDSr + η‖Sr‖ + ‖Sr‖‖ε‖ (26)

If Kd is large enough, and initial errors are suffi-
ciently small, we conclude the seminegative defi-
niteness of (26) outside a hyperball ε0 = {Sr|V̇r ≤
0} centered in the origin such that the following
properties of the state of the closed loop system
arise

Sr ∈ L∞ =⇒ ‖Sr‖ < ε1 (27)

where ε1 > 0 is a bounded scalar. Then (Sq, σ) ∈
L∞ and since desired trajectories are C2 and feed-
back gains are bounded, we have that (q̇r, q̈cont) ∈
L∞, which implies that Ycont ∈ L∞. In this way,
from equation (26) render ‖Sr‖‖ε‖ ≤ ε2 with

ε2 > 0 is bounded and Ŵ ∈ L∞. The right hand
side of (18) is therefore bounded and aimed at the
boundedness of the inertial, coriolis and gravita-
tional matrices, then Ṡr ∈ L∞ and therefore there
exists a bounded scalar ε4 > 0 such that

‖Ṡr‖ < ε4 (28)

So far, we conclude the boundedness of all closed-
loop error signals.

Part 2 Sliding Mode. Now, we show that a sliding
mode at Sq = 0 arises for all time. If we derivative
(14), and multiply by ST

q , rearranging we obtain
the sliding mode condition

ST
q Ṡq = ST

q (Ṡr − Kisign(Sq))

≤ ε4|Sq| − Ki|Sq| (29)

≤−µ|Sq| (30)

with µ = Ki − ε4. Thus, we can always choose
Ki > ε4, in such a way that µ > 0, guarantees
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Fig. 8. Theorem 2: Phase plane for tb = 1.5s



the existence of a sliding mode at Sq = 0 at time

tq ≤
|Sq(t0)|

µ
. However, notice that for any initial

condition Sq(t0) = 0, and hence tq ≡ 0 implies
that a sliding mode in Sq(t) = 0 is enforced for all
time without reaching phase and then (8) renders
S = Sd ∀ t.

Part 3 Exponential Convergence. If k in (9) is
tuned large enough such that Sd ≈ 0 for some
small time 0 < td � 1 then (8) yields

S = 0 ∀ t ≥ td > 0. (31)

guaranteeing exponential stability of tracking er-
rors since the solution of S = 0 goes to zero
exponentially. QED

APPENDIX 2: PROOF OF THEOREM 2

Parts 1 and 2 are similar to theorem 1, which
guarantee the existence of a sliding mode for all
time. Part 3 is as follows

Part 3: Convergence in Finite Time Substi-
tuting (23) in (9), and eliminating the indepen-
dent variable t we obtain

d

dξ
∆q = −α0

∆q

(1 − ξ) + δ
(32)

which attains the solution

∆q(t) = ∆q(t0)[1 − ξ(t) + δ]α0 (33)

Then, tracking errors converge in finite time to
an arbitrary small vicinity of the equilibrium.
Afterwards, and since by assumption ξ(t) = 1 at
time t = tb > 0, then (33) becomes

∆q(tg) = ∆q(t0)δ
1+ε. (34)

Considering that δ and ε are very small, then at
t = tb, tracking errors belong to a very small
vicinity ε of the origin [∆q,∆q̇]T = [0, 0]T , which
in practice may stand for the required precision
or zero error. Note that at t > tb the time-
varying feedback gain α(t) becomes a positive
constant near zero. Thus α(t) must be reset to
a desired constant αc > 0 at time t = tb. Now
considering that a sliding mode is enforced for all
time and that vq > 0 and (30) guarantee the finite
time monotonic decreasing behavior of ‖S(t)‖(≡
‖∆q̇(t) + αc∆q(t)‖), thus for t > tb we have
that ∆q(t) ∈ ε and furthermore ∆q(t) converges
exponentially since ∆q̇(t) = −αc∆q(t) ∀t > tb.
QED
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