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Abstract: This paper presents an application of numerical optimization via
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1. INTRODUCTION

Evanescent field spectroscopy is proving to be
a viable and useful mechanism for the optical
sensing of chemicals, toxins, gases and other
species (Sutherland et al., 1984; Anderson et al.,
1994; Hale and Payne, 1994; Kumar et al., 2002;
Helmers et al., 1996; Singh and Gupta, 1995; John
et al., 2002; Preejith et al., 2003). Such sen-
sors exploit the interaction between guided modes
of electromagnetic radiation propagating through
and around the sensing device (in this case, an
optical fibre), and the surrounding environment
in which the species resides. Of fundamental im-
portance in such a sensing setup is the propor-
tion of the total guided field power contained in
the evanescent field. By increasing this relative
evanescent field power, the gain of the sensor can
be improved. As the evanescent field is determined
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by the refractive index profile of the sensor and
the surrounding environment, design of the sensor
refractive index profile is critical. Typically, this
profile has been selected in an ad-hoc way (Gibson
et al., 2001) by computing the evanescent field
power for a set of different profiles and choosing
the maximizer from that set. Clearly this is a
suboptimal approach.

This paper presents a rigorous and explicit so-
lution to a specific refractive index profile de-
sign problem, based on the results of (Dower et
al., 2004).

2. AN OPTICAL WAVEGUIDE MODEL

2.1 Separated scalar wave equation

We consider the propagation of electromagnetic
radiation through an axially symmetric transla-
tionally invariant optical fibre waveguide struc-
ture.



Weak guidance (Snyder and Love, 1983) is a
phenomenon that arises in optical waveguides
when the range of refractive indices available
within the fibre structure is relatively narrow.
The effect of this approximation is to significantly
simplify the optical waveguide model required.

Assumption (WG): The weak guidance approx-
imation (Snyder and Love, 1983) holds.

Theorem 2.1. (Snyder and Love, 1983) Suppose
that assumption (WG) holds. Then, an axially
symmetric translationally invariant optical waveg-
uide can be modelled via the following separated
scalar wave equation (SSWE):

0 = ΓΦΦl(φ), (1)

0 = Γ̃FFl,β,n(s), (2)

where s := r
R

defines the normalized radial coordi-
nate, with R the radius of the fibre structure, and
ΓΦ and Γ̃F are the ordinary differential operators

ΓΦ :=
d2

dφ2
+ l2

Γ̃F :=
d2

ds2
+

1

s

d

ds
+ k2R2[n(s)]2 −

l2

s2
− β2R2,

where k = 2π
λ

is the wave number, λ is the
wavelength, β is the group velocity and R is
the fibre radius. The subscript notation Fl,β,n,
Φl denotes the dependence of both the radial
and angular components of the transverse field on
the choice of separation parameter l. The total
transverse component of the electric field is then
ψ(s, φ) := Fl,β,n(s)Φl(φ).

2.2 Boundary conditions

The boundary conditions for (1) and (2) follow
from Assumption (FD), and state that

Φl(0) = Φl(2π),
dΦl

dφ
(0) =

dΦl

dφ
(2π) (3)

lFl,β,n(0) = 0,
dFl,β,n

ds
(0) = 0 (4)

for all l ∈ Z. Boundary condition (3) restricts
l to integer values, thereby defining a modal
parameter. Additional boundary conditions arise
when the field power is restricted to be finite. In
that case,

lim
s→∞

Fl,β,n(s) = 0, lim
s→∞

dFl,β,n

ds
(s) = 0 (5)

for all l ∈ Z. In this paper, all boundary conditions
(3), (4) and (5) apply.

2.3 State space representation

A state space representation for SSWE (2) will
motivate the definition of another equivalent (and
easier to solve) evanescent field maximization
problem. To this end, define the state vector

x(s) :=

[
x1(s)
x2(s)

]

=

[
Fl,β,n(s)
dFl,β,n

ds
(s)

]

. (6)

Applying to SSWE (2) yields the state equation

ẋ(s) = f(s, x(s), u(s)) (7)

where

f(s, x, u) :=





0 1
l2

s2
− u −

1

s



x,

u := k2R2[n(s)]2 − β2R2, (8)

with trajectory x(·) initialized at the fibre / envi-
ronment interface,

[
Fl,β,n(1)
dFl,β,n

ds
(1)

]

=

[
x1(1)
x2(1)

]

= x1 ∈ R2. (9)

2.4 The evanescent field

The evanescent field describes the solution of
SSWE (2) in the environment surrounding the
fibre, that is, for s ≥ 1. For general RIPs, this
solution is difficult to determine, requiring the
application of numerical methods in most cases.
However, in many sensing environments, the RI is
approximately constant, motivating the following
assumption.

Assumption (E): The refractive index ne(·) ∈
N0[1,∞) of the environment surrounding the fibre
sensor is constant. That is, ne(s) ≡ ne ∈ R≥0 for
all s ∈ [1,∞).

Assumption (E) admits a well-known characteri-
zation of the general solution of SSWE (2), as per
(Agrawal, 2001), (Snyder and Love, 1983).

Theorem 2.2. Fix l ∈ Z, β, ne ∈ R≥0 and suppose
that assumption (E) holds. Then, the general
solution of SSWE (2) for s ≥ 1 (that is, in the
environment surrounding the fibre structure) is

Fl,β,ne
(s) = Cl,β,ne

Kl(Wβ,ne
s)

+Dl,β,ne
Nl(Wβ,ne

s),
(10)

where Cl,β,ne
, Dl,β,ne

, Wl,β ∈ R are constants,

Wβ,ne
:= kR

√

n2
eff − n2

e, neff :=
β

k
, (11)

and Kl, Nl are respectively an order l modified
Bessel function and an order l Neumann function.



Note that Wβ,ne
∈ R as neff > ne. Furthermore,

the following properties of Kl and Nl hold (see
(Agrawal, 2001)):

lim
s→∞

|Kl(s)| = 0, lim inf
s→∞

|Nl(s)| = ∞,

lim
s→∞

∣
∣
∣
∣

dKl

ds
(s)

∣
∣
∣
∣
= 0, lim inf

s→∞

∣
∣
∣
∣

dNl

ds
(s)

∣
∣
∣
∣
= ∞.

(12)

Corollary 2.3. Fix l, β, ne ∈ R≥0 and suppose
assumption (E) holds. Given a solution F of the
SSWE (2), the following statements are equiva-
lent:

(1) F is of the form (10) with Dl,β,ne
= 0.

(2) Boundary condition (5) holds.

2.5 Finite evanescent field power

The power in the transverse electric field ψ(s, ·)
for normalized radii in the range s ∈ [s1, s2) is
proportional to

P̂ (s1, s2;ψ) :=

s2∫

s1

sFl,β,n(s)2 ds

︸ ︷︷ ︸

=:P (s1,s2;Fl,β,n)

2π∫

0

Φl(φ)2 dφ

︸ ︷︷ ︸

=:Q(Φl)

(13)

where the field amplitude Fl,β,n(·) is a solution to
the boundary value problem (2), (4), (5), whilst
the angular dependence Φl(·) is a solution of the
SSWE (1), (3). Note that the angular depen-
dence can be calculated explicitly and is always
finite. This motivates the following more general
assumption.

Assumption (FP): The evanescent field power
is finite.

Theorem 2.4. Fix l, β, ne ∈ R≥0 and suppose
that assumption (E) holds. Given a solution F

of the SSWE (2), the following statements are
equivalent:

(1) Assumption (FP) holds.
(2) Boundary condition (5) holds.

Assumptions (E) and (FP) also have important
implications for the field at the interface of the
fibre structure and the surrounding environment.

Theorem 2.5. Fix l ∈ Z, β, ne ∈ R≥0 and suppose
that assumption (E) holds. Let F be a solution
of the SSWE (2). Then, the following statements
are equivalent:

(1) Assumption (FP) holds.
(2) F is of the form

F (s) = Cl,β,ne
Kl(Wβ,ne

s). (14)

for all s ≥ 1.

(3) F satisfies the fibre / environment interface
boundary condition given by

dF

ds
(1) = γl,β,ne

F (1), (15)

where γl,β,ne
∈ R is a constant.

2.6 Normalized evanescent field power (NEFP)

Given a solution of the boundary value problem
(1), (2), (3), (4), the unnormalized evanescent field
power is the total power P̂ (1,∞;ψ), ψ(s, φ) :=
Fl,β,n(s)Φl(φ), in the field outside the fibre (s ≥
1). The normalized evanescent field power ρ(ψ) is
then defined by

ρ(ψ) :=
P̂ (1,∞;ψ)

P̂ (0,∞;ψ)
=
P (1,∞;Fl,β,n) ·Ql(Φl)

P (0,∞;Fl,β,n) ·Ql(Φl)

=
P (1,∞;Fl,β,n)

P (0,∞;Fl,β,n)
.

(16)

As ρ(ψ) is independent of the angular compo-
nent Φl of the transverse electric field, we will
occasionally abuse notation by writing ρ(ψ) =
ρ(Fl,β,n,Φl) = ρ(Fl,β,n).

Theorem 2.6. Where defined by (16), the normal-
ized evanescent field power operator ρ is invari-
ant with respect to scalar multiplication. That is,
given fixed l, β, n ∈ N [0,∞) and a solution ψ(·)
to the boundary value problem (1), (2), (3), (4),
(5), ηψ(·) is a solution to the same boundary value
problem and satisfies ρ(ηψ) = ρ(ψ) for all η ∈ R.

3. NEFP MAXIMIZATION

3.1 Formulation

The main idea here is to maximize the field
power that interacts with the environment outside
the fibre structure. The is formalized in view of
assumption (E). Note that assumptions (FD)
and (FP) will be a direct consequence of the
specified constraints.

Problem (P1): Given the modal parameter l,
the group velocity β and the environment RIP of
assumption (E), determine the maximizing RIP
n ∈ N∞[0, 1) for the normalized evanescent field
power ρ(Fl,β,n), subject to the ODE constraint (2)
and the boundary constraints (4) and (5).

3.2 Separation principle

Problem (P1) can be simplified via separation
into a constrained power minimization problem
for the field confined inside the fibre structure,
and a direct integration to yield the evanescent



field power (outside the fibre structure). The fields
inside and outside the fibre structure are then
linked through the boundary condition (9), and
when augmented, form a solution to the SSWE
(2) with boundary conditions (4) and (5).

Problem (SPC): Given the modal parameter l,
the group velocity β, and any boundary condi-
tion x1 ∈ R2 for (9), determine the minimizing
RIP nx1 ∈ N∞[0, 1) for the confined field power
P (0, 1;Fl,β,n) subject to the ODE constraint (2),
and the boundary conditions (4) and (9). For-
mally, determine the value (left-hand side) and
the corresponding minimizer for

ΠC
l,β(x1) = inf

n∈N [0,1)






P (0, 1;Fl,β,n)

∣
∣
∣
∣
∣
∣

Fl,β,n

satisfies
(2), (4), (9)







(17)

Problem (SPE): Given the modal parameter
l, the group velocity β, any boundary condition
x1 ∈ R2 for (9), and the environment RIP of
assumption (E), determine the evanescent field
power P (1,∞;Fl,β,ne

) subject to the ODE con-
straint (2), the boundary constraints (5) and (9).
Formally, determine the value

ΠE
l,β(x1) = P (1,∞;Fl,β,ne

)

∣
∣
∣
∣

Fl,β,ne
satisfies

(2), (5) and (9)
(18)

Problem (P2): Find the RIP n∗ ∈ N [0, 1) such
that n∗ ≡ nx1∗ , where nx1∗ solves problem (SPC)
and x1∗ ∈ R2 is the minimizing x1 for ΠC

l,β(x1)
subject to the normalization constraint

ΠC
l,β(x1) + ΠE

l,β(x1) = 1, (19)

where ΠE
l,β(x1) solves problem (SPE).

Lemma 3.1. Given any η ∈ R and • ∈ {C, E},
the value function Π•

l,β : R2 → R≥0 satisfies

Π•
l,β(ηx) = η2Π•

l,β(x) (20)

for all x ∈ R2.

The separation principle can then be stated as
follow.

Theorem 3.2. Problems (P1) and (P2) are equiv-
alent.

3.3 Recipe

Problem (P2) and Theorem 3.2 present the
evanescent field power maximization problem
(P1) in a form that is amenable to solution
via the simpler problems (SPC) and (SPE)

and the normalization condition (19). Problems
(SPC) can be addressed via dynamic program-
ming (Bellman, 1957) and finite difference meth-
ods (Kushner and Dupuis, 1992), whilst problem
(SPE) can be addressed via direct integration
of Bessel function solutions. This motivates the
following recipe, described by problem (P2) and
applicable under assumptions (FD) and (E), for
solving the evanescent field power maximization
problem (P1):

(1) Fix the refractive index class N , mode num-
ber l ∈ Z and propagation constant β ∈ R>0.

(2) Determine the fibre axis boundary conditions
(4).

(3) Compute ΠC
l,β : R2 → R and the correspond-

ing optimizer via dynamic programming.
(4) Compute ΠE

l,β : R2 → R via direct integra-
tion of solutions of SSWE (2).

(5) Determine the level set

X1 :=

{

x ∈ Rn

∣
∣
∣
∣
ΠC

l,β(x) + ΠE
l,β(x) = 1

}

. (21)

(6) Determine the minimizer x1∗ of ΠC
l,β(x) on

the level set X1, that is

x1∗ := argmin
x∈X1

ΠC
l,β(x). (22)

(7) Use the gradient of the function ΠC
l,β to

determine the optimal control (and hence the
optimal refractive index) from x1∗.

Here, 3) solves problem (SPC), 4) solves prob-
lem (SPE), 5) applies the normalization (19), 6)
finds the interface condition that maximizes the
evanescent field power, and 7) delivers the optimal
refractive index profile.

Remark 3.3. Steps 5) and 6) above can be simpli-
fied significantly through the application of The-
orem 2.5. In particular, as the normalization (19)
necessarily implies assumption (FP), Theorem
2.5 states that we need only search over those
interface conditions defined by the manifold (15).
Typically, this involves considering only two ele-
ments of R2.

3.4 Dynamic programming

Problem (P2) defines an optimal control problem
over the radial interval [0, 1]. In particular, ΠC

l,β as
given by (17) is the value function for a minimum
energy control problem with boundary constraints
(4) and (15).

As a first step towards computation, define a finite
horizon version of (17), ΠC

l,β : [0, 1] × [0, 1] ×

R2 → R≥0, as



ΠC
l,β(r, s, xs) := inf

u∈U [r,s)
{J(r, s, xs;u) |x(s) = xs,

x(r) satisfies (4) }

(23)

where

J(r, s, xs;u) :=

s∫

r

σx′(σ)Lx(σ) dσ,

L :=

[
1 0
0 0

]

,

U [r, s) := {u | n ∈ N [r, s), u defined by (8)}

with x(·) a solution of (7) for input u ∈ U [r, s).

The infinite horizon definition (17) of ΠC
l,β(·) can

be recovered via the identity

ΠC
l,β(x) = lim inf

r↓0
ΠC

l,β(r, 1, x). (24)

This can be used to compute Πl,β(·) by first de-
riving a PDE representation of (23) via dynamic
programming (Bellman, 1957). The dynamic pro-
gramming principle (DPP) for (23) is presented
in the following lemma, the proof of which is
omitted.

Lemma 3.4. ΠC
l,β as defined by (23) satisfies the

following dynamic programming principle (DPP)
for any p ∈ [r, s):

ΠC
l,β(r, s, xs) = inf

u∈U [p,s]

{ s∫

p

σx′(σ)Lx(σ) dσ

+ΠC
l,β(r, p, x(p))

∣
∣
∣
∣
x(s) = xs

}
(25)

DPP (25) is an integral equation whose solution
ΠC

l,β may be nonsmooth and even discontinuous.
However, utilizing notions of viscosity solutions
(see for example (Elliot, 1987)), the incremental
form of this integral equation can be defined. The
proof of the following lemma is omitted.

Lemma 3.5. For any r ≤ s ≤ 1, x ∈ R2, the
finite horizon value function ΠC

l,β given by (23)
is a viscosity solution of the PDE

0 = sx′Lx−
∂ΠC

l,β

∂s
(r, s, x)

− sup
u∈U

{
∇xΠC

l,β(r, s, x) · f(s, x, u)
} (26)

subject to the boundary condition

ΠC
l,β(r, r, x) =

{
0 x satisfies (4) via (6),
∞ otherwise.

(27)

Together, (23), (24) and Lemma 3.5 form the
basis for completing step 3) in the recipe of the
preceding section.

3.5 Numerical method

In order to compute the solution of PDE (26), an
implicit Markov chain approximation method (IM-
CAM) was applied (Kushner and Dupuis, 1992).
Essentially, the IMCAM is an iterative finite dif-
ference method that provides local consistency
between the continuous dynamics of (7) and an
approximating Markov chain defined on a grid of
discrete states and positions. See (Kushner and
Dupuis, 1992) for further details on this method.

4. APPLICATION

A tapered 5µm fibre sensor with prescribed re-
fractive index limits of nmin = 1.456 and nmax =
1.600 is considered. The refractive index profile
bounded by these limits is to be designed to
achieve maximal evanescent field power, given a
phase velocity of 107ms and a pump laser wave-
length of 850nm. In summary,

nmin = 1.456 nmax = 1.600
ne = 1.333 neff = 1.476
R = 5µm λ = 850nm
l = 0 β = 1.091 × 107

Wl,β = 23.41 γl,β,ne
= −23.90

N = N∞

(28)

Following the steps of the optimal refractive index
profile RECIPE,

(1) See (28) above.

(2) l = 0 and (4) ⇒ x(0) =

[
Fl,β,n(0)
dFl,β,n

ds
(0)

]

=

[
x1

0

]

for all x1 ∈ R.

(3) IMCAM yields the approximation shown in
Figure 1.

(4) Direct integration of (14) yields Πl,β,ne
(·).

See Figure 2.
(5) The level set (21) consists of two points c1

and c2 obtained from Figure 2. Then, X1 =
{c1, c2}.

(6) The minimizer (22) can (in this case) be
either element in X1. Choose x1∗ = c2.

(7) Applying the optimal control obtained from
IMCAM yields the optimal refractive index
profile dependency n∗ ∈ N [0, 1) as shown
in Figure 3. The optimal RIP can then be
obtained from (8). The fraction of power in
the evanescent field can also be determined
to be approximately 15%.
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