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Abstract: In this paper it is shown that the controller presented in (Espinosa-
Perez et al., 2004) for Switched Reluctance Motors can be improved, preserving its
passivity-based structure, by eliminating the necessity of solving a transcendental
equation to compute the desired behavior of stator currents when nonlinear
magnetic circuits are considered in the machine model. This advantage in the
controller design is obtained by considering the alternative expression for the
nonlinear relationship between fluxes and currents reported in (Vedagarbha et
al., 1997) that, as well as the previously used, includes the saturation phenomenon
presented in the motor windings. Regarding the controller structure, the main
implication of introducing this modification lies in the fact that it states the
possibility of implementing a control law for a general class of models for this
kind of motors. The usefulness of the proposed controller is evaluated by digital
simulations comparing it with that obtained when a simplified model is considered.
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The importance of Switched Reluctance Motors
(SRM) is a widely accepted fact due to its simple
structure and its ability to produce high torque at
low speeds, characteristics that are very attractive
in direct–drive applications (e.g. robotics) since
the use of gear boxes is eliminated. These advan-
tages, well-recognized by the drives community
(see (Krishnan, 2001) and references therein), mo-
tivated the control theory community to approach
the control problem of this kind of devices by
applying several nonlinear controllers, e.g. feed-
back linearizing (Ilic-Spong et al., 1987), sliding

1 This work has been partially supported by CONACyT
(41298Y) and DGAPA-UNAM (IN119003).

mode (Yang et al., 1996), backstepping (Ağirman
et al., 1999) and passivity-based (Espinosa-Perez
et al., 2000) control.

The main idea in the proposition of nonlinear
controllers for SRM, has been to improve their
dynamic performance by including in the motor
model, considered in the controller design, the
nonlinear behavior exhibited in the machine dur-
ing basic operation, namely, magnetic saturation
in the motor windings. In this sense, although
precise models are currently available to describe
this behavior (Ilic-Spong et al., 1987), due to the
difficulty to work with them (historically) a lot of
efforts were dedicated to the proposition of control



strategies based in simplified models, as those
mentioned in the previous paragraph, although it
is also possible to identify a limited number of
publications that deal with the control of the com-
plete model (Filicori et al., 1993), (Vedagarbha et
al., 1997), (Espinosa-Perez et al., 2004).

Unfortunately, the controller design based in the
complete model for SRM has produced results
that show some drawbacks. Namely, even that in
(Filicori et al., 1993) a novel modelling methodol-
ogy is applied to characterize the nonlinear nature
of the relationship beetwen fluxes and currents,
the disadvantage of the result appears in the ne-
cessity of dealing with singulatiries in the pro-
posed feedback linearizing controller. Although
in (Vedagarbha et al., 1997) a singularity-free
adaptive (with respect to parameters uncertainty)
backstepping controller is presented, the obtained
control law exhibits a high computational com-
plexity. In (Espinosa-Perez et al., 2004), the fea-
ture of proposing a control scheme with a clear
physical structure (that leads to an easy to tune
controller), became unworthy due to the require-
ment for solving a trascendental equation to com-
pute some controller variables.

In this brief note the controller reported in
(Espinosa-Perez et al., 2004) is re-visited. Since
the passivity-based methodology followed in its
design showed to be useful for the case of con-
sidering a SRM simplified model, the aim of this
paper is to remove the main obstacle that ap-
pears in the application of this technique to the
complete model of this kind of machines. In par-
ticular, the problem approached is related with
the well-known limitation of the passivity-based
controller design (Ortega et al., 1998) of requiring
to carry out some kind of system inversion. For
SRM, this requirement is stated as the necessity to
obtain an expression for stator currents in terms
of the generated torque, problem whose solution
strongly depends on the chosen model for the
motor fluxes since, from the D’Alembert principle
(Meisel, 1961), it is well-known that the structure
of generated torque is obtained from the fluxes
one.

In the case of the controller reported in (Espinosa-
Perez et al., 2004), the structure considered to
describe the behavior of the motor fluxes was orig-
inally presented in (Ilic-Spong et al., 1987). The
main feature of the proposed flux model is that it
fits with a high accuracy degree the actual behav-
ior of these variables. Unfortunately, the obtained
analytical expression produces a generated torque
model that is not invertible, i.e. it is not possible
to obtain a closed expression of stator currents
in terms of torque. In this context, the main
contribution of this paper is to show that this
drawback can be eliminated by considering the

flux model reported in (Vedagarbha et al., 1997).
This alternative flux representation has the ad-
vantage that the derived expression for generated
torque is invertible while, as well as the used in
(Ilic-Spong et al., 1987), recovers very closely the
actual fluxes behavior. The importance of intro-
ducing this modification on the motor model used
in the controller design lies in the fact that it
is possible to implement a passivity-based con-
trol, preserving all its attractive features, for the
SRM complete model, fact that in its turn implies
an improvement in the motor performance when
compared with the simplified-based controller.

The rest of the paper is organized as follows:
In section 1 the considered model of the motor,
including the flux representation, is presented.
The main result of the paper, an implementable
passivity-based controller for the SRM complete
model, is developed and numerically evaluated in
section 2. A comparision between the proposed
(complete) and the simplified controllers, via dig-
ital simulations, is carried out in section 3. Section
4 is dedicated to include some concluding remarks.

1. SRM COMPLETE MODEL

The usual configuration of a SRM-based drive,
depicted in Fig 1, includes the electric motor itself
and a static power converted (electronic conmu-
tator). The purpose of this electronic device is
to excitate (by inyecting electric current) each
of the phases of the motor, three in the partic-
ular case of the illustration, in order to produce
mechanical torque by mean of a reluctance ac-
tion, i.e. one identical to the observed when two
displaced opposite polarized magnets are aligned.
The main characteristics of this energy conversion
mechanism are, on the one hand, that in order to
maximize torque the windings must be saturated,
giving as a result a highly nonlinear dynamic
behavior for the drive, and on the other hand,
that there exist some ripple in the mechanical
variables, due to the presence of the switching
device. While dealing with the nonlinear nature
of the system imposes the main challenge in the
control of this kind of machines, the disruption in
generated torque, and then in position and speed,
can be significatively reduced if smooth transi-
tion between phases is accomplished by blend-
ing the applied currents to two adjacent wind-
ings, i.e. by following a torque sharing approach
(Taylor, 1992).

Under the conditions described above and consid-
ering (without loss of generality) a 3φ SRM, it
is widely accepted that the dynamical behavior
of the machine can be represented by the set of
differential equations given by



ψ̇j + rij = uj; j = 1, 2, 3 (1)

Jθ̈= Te(θ, i1, i2, i3) − TL(θ, θ̇) (2)

where uj is the voltage applied to the stator ter-
minals of phase j, ij is the stator current of phase
j, ψj(θ, ij) is the flux linkage of phase j, r is the
stator winding resistance, θ is the angular position
of the rotor, TL(θ, θ̇) is the load torque and J is
the total rotor and load inertia. The mechanical
torque of electrical origin Te(θ, i1, i2, i3), which
depends on both the angular position of the rotor
and stator currents, is given as the sum of torques
Tj(θ, ij) produced by each one of the three phases,
i.e.

Te(θ, i1, i2, i3) =
3∑

j=1

Tj(θ, ij) (3)

where each single torque is given by

Tj(θ, ij) =
∂W ′

j(θ, ij)
∂θ

(4)

with W ′
j(θ, ij) the magnetic co–energy function of

each winding, computed as

W ′
j(θ, ij) =

∫ īj

0

ψj(θ, ij)dij

In this paper, the considered structure for the flux
linkage ψj(θ, ij) is the proposed in (Vedagarbha et
al., 1997) given by

ψj(θ, ij) = ψs arctan (βfj(θ)ij) ; ij ≥ 0 (5)

where ψs is the saturated flux linkage, β is an ex-
perimentally obtained positive constant and fj(θ),
known as the winding inductance, is a strictly
positive periodic function of the form

fj(θ) = a+
∞∑

m=1

{bm sin [mNrθ − (j − 1)2π/3]

+cm cos [mNrθ − (j − 1)2π/3]}
(6)

where Nr is the number of rotor poles. Hence, the
resulting structure for each single torque is

Tj(θ, ij) =
ψs

2βf2
j (θ)

∂fj(θ)
∂θ

ln
(
1 + β2f2

j (θ)i2j
)
(7)

which clearly illustrates the complexity and non-
linear nature of the developed model.

Remark. Contrary to the flux linkage model used
in (Espinosa-Perez et al., 2004), first reported in
(Ilic-Spong et al., 1987), equation (5) has the
great advantage that the derived expression for
generated torque, given in (7), is invertible, i.e. it
is possible to obtain an expression for the motor
currents in terms of the mechanical torque. In
addition, this model also captures the physical
features of the motor, namely, the maximum value
that the flux can reach is the saturation value
ψs, the torque sign is only determined (if stator

currents are positive) by the variation of fj(θ)
with respect rotor position θ and both flux linkage
and generated torque in each phase are zero if no
current is applied to stator windings.

In order to complete the mathematical structure
of the SRM-based drive, following ideas reported
in (Taylor, 1992), taking into account the torque
sharing objective and exploiting the fact that the
torque sign is only determined by the variation of
the inductance fj(θ), it is possible to formulate
the electronic conmutator in the following way:

Given two sets

Θ+
j =

{
θ :

∂f(θ)
∂θ

≥ 0
}

Θ−
j =

{
θ :

∂f(θ)
∂θ

< 0
}

where the superscript + and − stand for required
positive and negative torque, respectively, choose
any functions m+

j and m−
j such that

m+
j (θ) > 0 ∀θ ∈ Θ+

j ;
3∑

j=1

m+
j (θ) = 1 ∀θ

(8)

m−
j (θ) > 0 ∀θ ∈ Θ−

j ;
3∑

j=1

m−
j (θ) = 1 ∀θ

Then, these sharing functions can scale each
phase torque in expression (3) in order to generate
a total desired torque by assigning

mj(θ) =
{
m+

j (θ), Td ≥ 0
m−

j (θ), Td < 0
(9)

with Td the desired torque to be delivered.

2. MAIN RESULT

In this section, the main result of the paper
is presented, namely, a passivity-based control
for SRM complete model. Since the passivity
properties of the model do not depende on the flux
structure, as has been stated in (Espinosa-Perez
et al., 2004), then it can be given as a fact that
the methodology developed in this last reference
can be applied and hence the proposed controller
is directly presented in the following proposition.
However, before doing this presentation, it is
convenient to re-write the complete model (1-2)
in the equivalent form given by

D(θ, i)
di
dt

+ C(θ, i)θ̇i + Ri = u

Jθ̈ = Te(θ, i) − TL(θ, θ̇)
(10)

with u = [u1, u2, u3]
T , i = [i1, i2, i3]

T , R = rI3,
I3 the identity matrix, ψ = [ψ1, ψ2, ψ3]

T , Te(θ, i)
as in (3), while



D(θ, i) = diag

{
ψsβfj(θ)

1 + βf2
j (θ)i2j

}
; j = 1, 2, 3

(11)
and

C(θ, i) = diag

{
ψsβ

1 + βf2
j (θ)i2j

∂fj(θ)
∂θ

}
; j = 1, 2, 3

Remark. Notice that under the assumed machine
operation with non–negative currents, each entry
of D(θ, i) is strictly positive for every bounded
current. Hence, D(θ, i) is strictly positive definite.

Once the alternative representation above has
been introduced, the presentation of the proposed
controller is given in the next

Proposition.

Consider the complete model of a SRM given by
(10) and (3) in closed loop with the control law

u = D(θ, i)
did
dt

+C(θ, i)θ̇id+Rid−Kv(i−id) (12)

where id = [i1d, i2d, i3d]
T is the desired current

behaviour and Kv = diag{K1v,K2v,K3v} is such
that

C(θ, i)θ̇ + R + Kv > 0 (13)
The desired current behavior is computed as

ijd =



i+jd if

∂fj(θ)
∂θ

�= 0

0 otherwise

(14)

where

i+jd =
1

βfj(θ)

√√√√√

exp


Tdj(θ, ij)2βf2

j (θ)

ψs

(
∂f(θ)

∂θ

)

− 1




with j = 1, 2, 3 and Tjd related to the desired
torque Td by means of the mj(θ) functions as

Tjd = mj(θ)Td; j = 1, 2, 3

The desired torque is related to the speed error
˙̃
θ = θ̇ − θ̇d by

Td(z) = Jθ̈d − z + TL(θ, θ̇) (15)

with controller state

ż = −az + b
˙̃
θ (16)

and a, b positive constants.

Under these conditions, asymptotic speed track-
ing is insured, i.e. limt→∞

˙̃θ = 0, with all internal
signals bounded.

Proof. The proof closely follows the presented in
(Espinosa-Perez et al., 2004). If the current error
is defined as e = i − id, model (10) can be
equivalently written as

D(θ, i)
de
dt

+ C(θ, i)θ̇e + Re = Φ (17)

where

Φ = u−
{
D(θ, i)

did
dt

+ C(θ, i)θ̇id + Rid

}

Then, considering the proposed controller (12),
expression (17) takes the form

D(θ, i)
de
dt

+
[
C(θ, i)θ̇ + R + Kv

]
e = 0

Since D(θ, i) is a strictly positive definite matrix,
this last equation can be re-arranged as

de
dt

= −D−1(θ, i)
[
C(θ, i)θ̇ + R + Kv

]
e

which, due to the diagonal structure of the matri-
ces, defines a set of three decoupled linear time–
varying differential equations of the form

dej(t)
dt

= −aj(t)ej(t); j = 1, 2, 3

If inequality (13) holds, then aj(t) is bounded
and always positive. Thus it is insured exponential
convergence of the current error to zero.

Consider now the following definition, motivated
by (7), for the desired generated torque

Tjd(θ, ijd) =
ψs

2βf2
j (θ)

∂fj(θ)
∂θ

ln(1 + β2f2
j (θ)i2jd)

which is actually the expression that determines
the estructure of the current ijd given by (14).
Writing the difference between this variable and
the generated phase torque as

Tj − Tjd =
ψs

2βf2
j (θ)

∂fj(θ)
∂θ

×
{
ln(1 + β2f2

j (θ)i2j ) − ln(1 + β2f2
j (θ)i2jd)

}
=

ψs

2βf2
j (θ)

∂fj(θ)
∂θ

ln

(
(1 + β2f2

j (θ)i2j)
(1 + β2f2

j (θ)i2jd)

)

it is shown that e tending to zero implies torque
convergence due to the fact that the term in
brackets on the right hand size in the above
expression tends to the unity.

The final step in the proof is to show that speed
error also tends to zero and that the internal
stability of the overall system is guaranteed. This
can be done by following the procedure developed
in (Ortega et al., 1996) for the case of induction
motors.

���
The following remarks are in order about the
presented result:

• It is important to notice that expression (14)
is always well–posed. This is due to the nat-
ural operation of the motor, namely, when
the desired torque is negative then the cur-
rent must be applied when ∂fj(θ)

∂θ is negative



and vice versa. This behavior gives as a re-
sult a positive argument of the exponential
function, which in its turn, guarantees that
term into the radical could not be negative.

• In general terms, the matrix Kv will depend
on the rotor position θ, the rotor speed θ̇ and
stator currents i. In fact, in the simplest way,
this matrix can be chosen as Kv = C(θ, i)θ̇+
K̄v with K̄v = K̄T

v > 0.
• Although the developed controller was spe-

cialized on speed control, it must be noticed
that the torque control problem is also solved
when it is shown that the difference between
the actual and the desired torque tends to
zero. Moreover, as pointed out in (Espinosa-
Perez et al., 2004), the position control prob-
lem can also be solved by defining

Td(z) = Jθ̈d − z − f θ̃ + TL(θ, θ̇)

where f > 0 and θ̃ = θ − θd is the position
error.

The performance of the proposed control scheme
was investigated by digital simulations. The con-
sidered motor parameters are the same as in
(Taylor, 1992), Nr = 4, l0 = 30mH , l1 = 20mH ,
r = 5Ω, J = 10−3kg − −m2 while ψs = 0.25
and β = 0.6. The load torque, for simplicity of
presentation, was set to zero. With the aim to
illustrate the global properties of the control, the
motor was initially at standstill. Regarding the
torque generation mechanism, the sharing func-
tions were designed with a structure based on
polinomial functions of the mechanical position θ
as the sum of a raising polynomial (fifth order), a
constant unitary function and a falling polynomial
(fifth order). The structure of the raising one is

pr(h) = 10
h3

θ3m
− 15

h4

θ4m
+ 6

h5

θ5m

where θm = π
12 and h = |θ − αθm| with α =

int
(

θ
θm

)
. The falling polynomial is given by

pf (h) = 1 − pr(h).

Figure 2 shows the speed behavior when a square
wave of ±25rad/sec of amplitude was used as
a speed reference. The electric gain was set to
Kvj = 100 while filter values were varied as
a = 100, 150, 200, b = 10 each cycle of the
reference. In this figure it can be observed how the
mechanical transient response is improved as the
damping injected by the controller is increased.
On the other hand, to illustrate the electrical
performance, in Figure 3 the current error for
phase one is shown. Also concerning with the
electrical performance, in Figure 4 it is shown the
actual behavior for the torque error.

3. COMPLETE VS SIMPLIFIED CONTROL

With the aim to obtain a cuantitative answer
about the advantage of using the complete model-
based controller with respect to the simplified one,
several numerical experiments were carried out
considering the controller proposed in this paper
and the presented in (Espinosa-Perez et al., 2004).
The first feature of them was that both control
laws were implemented using the complete model
(1-2). Since both controllers have equivalent para-
meters, tuning was carried out in an exactly way.
Specifically, electric gain was Kvj = 100 while
a = 200 and b = 10. The indices of evaluation
included variables such that transient response,
supplied and dissipated energy, steady state error
among other. Due to space limitations, the whole
evaluation can not be included in this document, a
complete analysis will be reported elsewhere, but
to illustrate this claim in Figure 5 it is presented
the speed behavior, for both controllers, when
the reference was set to 25 [rad/sec]. It can be
observed in this figure how the transient response
is clearly improved with the complete control law.
Moreover, it must be noticed that the simplified
one introduces a non zero steady state error. To
confirm the superiority of the controller proposed
in this paper, in Figure 6 the integral of the square
speed error is presented. Again, a remarkable ad-
vantage of considering in the controller design the
complete model is evident.

4. CONCLUDING REMARKS

The control problem of a saturated nonlinear
model for SRM was approached in this paper.
The main result is related with the proposition
of a passivity-based control law that solves the
torque/speed/position tracking control problem
without ussuming a linear relationship between
fluxes and currents. The result was obtained
due to the use of the flux model proposed in
(Vedagarbha et al., 1997) which has the advantage
to generate an invertible constitutive relationship
for the generated torque in terms of motor cur-
rents. The performance achieved with the pro-
posed controller is remarkable according to the re-
sults obtained in the presented digital simulation
evaluation. Moreover, it has been shown, also via
numerical evaluation, that this new control law is
better than the usual scheme developed for the
SRM simplified model.
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