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Abstract: Vibrating machinery such as pumps, generators and compressors nor-
mally use passive insulation materials to reduce sound radiation. This paper
provides a practical examination of possible solutions to active control of ma-
chine enclosures that reduces the radiated sound intensity from the enclosure to
the environment. The results show that a combination of simple sky-hook type
feedback controllers for active mounts, and relatively straightforward feedforward
frequency selective filter (FSF) based controllers for modal control, offer a practical
solution. Copyright c©2005 IFAC

Keywords: Active vibration control, modal analysis, system identification,
adaptive control.

1. INTRODUCTION

Active control of structural vibrations to reduce
sound radiation is called active structural acous-
tic control (ASAC) by Clark and Fuller (1991).
Active vibration and sound control has enjoyed
tremendous research input in recent years, see for
instance Kuo and Morgan (1996); Fuller and von
Flotow (1995); Fuller et al.; Tokhi and S. M. Veres
(2002).

This paper analyses the problem of, and provides
a generic solution to, the active structural acoustic
control of an enclosure around noisy machinery
(>90dBA). The machine vibration has a broad-
band spectrum as shown in Figure 1. The problem
is particularly challenging as the combined sys-
tem dynamics of enclosure/mounting, actuators
and of the machine show some nonlinearity. The
enclosure itself is fairly linear and allows modal
analysis. Because of the large number of modes
and complex coupling of the mounts and struc-
tural dynamics of the mounts, the idea of complete
state-space modelling proved to be impractical,

due to modelling inaccuracies and nonlinearities
that were affecting the derived controllers to such
a degree that controller performance was poor or
unstable. There is another reason why complete
state space modelling is not practical for state
feedback control using an observer: the filtering
requirements of the measured outputs, that are
needed to cut off high frequency mode vibrations
of the enclosure (that appear as disturbances for
low frequency mode control), cause detrimental
time delays and make a feedback control solution
ineffective.

There are several possibilities for feedforward con-
trol of complex systems. The filtered X LMS
(FXLMS) methods Bjarnason (1995); P. L. Fein-
tuch and Lo (1993) use disturbance source detec-
tion signals for feed-forward control. As it is dif-
ficult to find well correlated independent (”early
detection”) signal in this enclosure problem, the
novelty of this paper is the adaptation of a fre-
quency selective filter (FSF) Veres (2002) to the
enclosure control problem.



The next section outlines the technical problem,
then the modelling approaches are presented, the
control objectives, optimization of mount loca-
tions, suitable controllers for the active mount,
the new FSF control scheme is presented with
laboratory trials.

2. THE CONTROL PROBLEM

This section describes the machine enclosure used.
The main structural elements of the enclosure are
its 12mm aluminium plates that are thick enough
for bolted assembly of the corners into a six sided
L shaped enclosure. This enclosure is intended
to be used for a compressor but the laboratory
experiments (due to impracticality to run the final
compressor in the lab) were using only a mock
up machine, that consist of a a steel frame with
a powerful AC motor that is geared to several
unbalanced shafts and therefore strongly shaking
the steel frame at high speed of the motor. There
are currently 5 electromagnetic actuators (up to
200N force and bandwidth over 1000 rad/s, these
are fitted to active mounts which consist of a
spring and a damper.

The enclosure wall is strong enough for the re-
liable mounting of sensors, electromagnetic and
piezo actuators. Fig. 1 shows a photograph of the
opened up an experimental enclosure.
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Fig. 1. Enclosure control setup.
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Fig. 2. Electronically controlled suspensions.

3. OVERALL DYNAMICAL MODEL

The machine is vibrating and the spectrum of
the vibration near a mount of the enclosure is
illustrated in Fig. 3. There are 5 mounting points
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Fig. 3. Machine vibrations at a mount.

of the enclosure to the machine and the enclosure
receives excitation from two sources:

(1) Through the spring-damper mounts that can
also be controlled by co-located electromag-
netic (EM) actuators if these are activated.
Without the active control the mounts oper-
ate as passive mounts. When control is used
the mount will be called an active mount.

(2) Through direct sound radiation from the ma-
chine wall via the cavity dynamics between
the air filled space between the enclosure and
the machine.

Most of the high frequency sound is absorbed by
the enclosure wall and the low frequency excita-
tion mostly propagates through the mounts to the
enclosure. In this paper the enclosure wall will be
controlled to dampen the sound radiation of the
enclosure wall due to both of these excitations.

4. ENCLOSURE MODE SHAPES

Mode-shapes will be defined with regard to a
two dimensional map that covers the enclosure
surface. Thus ψi(x(ν), y(ν), n) denotes the nth
mode shape function on side of plate No. ν,
where ν = 1, 2, ..., 6 indexes the enclosure plates.
Location [x(ν), y(ν)] is understood then in a local
coordinate system, fixed once for all. The total
surface of the enclosure will be denoted by S.
The mode shape function fi(x(ν), y(ν), n) means
transversal displacements on the surface of the
enclosure relative to its vibration free stationary
position. Tonal vibration of the enclosure at a
single frequency is characterized by

w(x, y, ω)ejωt =
∑

n

An(ω)ψn(x, y, n)ejωt



where w(x, y, ω) defines the complex amplitude
(hence phase and amplitude) of harmonic transver-
sal motion at a surface point [x, y] ∈ S (if it
does not cause ambiguity we leave off index ν for
simplicity). The complex amplitudes An(ω) are

An(ω) =
1

ω2
n − ω2 + 2jζnωnω

∫

S

f(x, y, ω)ψn(x, y, n)dxdy

where f(x, y, ω) is an input force distribution.
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Fig. 4. An excitation point and a measurement
point on an L shaped plate of the enclosure.

By linearity the effect of a mix of tones with
force distribution described by the Dirac’s delta
functions δ as

fm(x, y) = δxm,ym(x, y)
∑

k

dm
k ejωkt

at locations [xm, ym] ∈ S,m = 1, ..., M is de-
scribed by the time signal

W (x, y, t) =

=
∑
m

∑

k

∑
n

ψn(xm, ym)
dm

k ejωktψn(x, y, n)
ω2

n − ω2
k + 2jζnωnωk

A special case of this is when there is only one
tone of frequency ω in the input and for a single
input location [xm, ym] and output measurement
point [x, y] this gives transfer function

G(ω; x, y, xm, ym) =

=
∑

n

ψn(xm, ym)
dmψn(x, y, n)

ω2
n − ω2

k + 2jζnωnωk

An example of a modelled transfer function from
the circled point in Fig. 4 to a measurement point
is illustrated in Fig. 5, that was obtained by fitting
a model using measurements and a structural dy-
namics software Balmes (1998). From the infinite
number of modes here only the most dominant 42
are used in model modelling. The modal model
of the enclosure is estimated on the basis of a
large number of shaker tests applied to various
points on each plate and the measurements were
taken by a sliding accelerometer probe that can be
held anywhere on the enclosure surface. The most
important transfer functions are the ones from
piezo disc actuators to piezo disc sensors. Transfer
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Fig. 5. A transfer function example.

functions from the mounts (without the machine
installed) to the piezo discs were also measured
to see the transfer from mount locations over the
structure. The combined pairwise measurements
were processed to obtain the natural frequencies,
mode shapes and associated damping ratios by the
methods in Balmes (1998). There is no space here
to list all the frequencies and damping factors,
Fig. 5 illustrates a subset of the relevant frequen-
cies.

5. CONTROL OBJECTIVES

The machine is vibrating and the total power
of sound radiation has to minimized. This is
proportionate with the volume velocity or rate of
volume displacements of the enclosure and is also
correlated with the kinetic energy of the enclosure.
The total kinetic energy is

E =
M

2S

∫

S

(
∂w(x, y, t)

∂t
)2dxdy

For an input spectrum and by the orthogonality of
the mode shapes, this can be easily approximated
for a given discrete input spectrum at a given set
of locations [xm, ym],m = 1, ..., M :

Eestim =
M

4

∑
n

∑

k

vnkvT
nk

{vnk}m =
dmωkψ(xm, ym, n)
ω2

n − ω2
k + 2jωnωk

m = 1, 2, ...M

In this paper the control objective is to reduce the
E by the use of

(1) suitable active mounts and
(2) by feedforward control of the piezo disk ac-

tuators on the enclosure surface.

Fig. 6 outlines the overall controller structure
used. The active mounts operate independently as
no gain was experienced in trials with multivari-
able control schemes. The mount locations that
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Fig. 6. The controller architecture used.

result in the smallest amount of kinetic energy
transfer Eestim from the vibration machine to the
enclosure are considered the optimal ones. The
nonlinear optimization was carried out by the
Nelder-Mead simplex methods as in MATLAB.
The optimal locations are shown in Fig. 4.

6. ACTIVE CONTROL OF MOUNTS

A block diagram of the a single active mount
dynamics is displayed in Fig. 7. The transfer
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Fig. 7. Block diagram of the active mount feed-
back system for vibration isolation.

functions involved are

H(s) =
fs + K

ms2 + fs + K
d, P (s) =

1
(ms2 + fs + K)

y(s) = P (s)u(s) + H(s)d(s)

Here d is the excitation and H is the transfer
function of the mount dynamics from the machine
vibration to the enclosure mounting through the
passive spring damper system. P is the transfer
function of the mount dynamics from the elec-
tromagnetic actuator to the enclosure mounting
point. For passive mounts C ≡ 0.

The effective enclosure mass m as seen by one
mount is taken as 4kg and the damping coef-
ficients f and spring stiffness K were designed
to keep the machine firmly in place without
natural vibrations. The softest possible springs
have been choosen that still keep the machine in
placed Taking 100kp weight of the machine per

mounting and permitting it to move 10mm (by
pressing in mounting springs), 0.01m ×K=100kp
gives K=104kp/m = 105N/m. This provides a
natural frequency of about ωb =

√
K/m =

158rad/s=25Hz. The associated damper coeffi-
cient for critical damping is f = 2mωb =
1264kps/m. This means that the passive mount
has a bandwidth of fb = 25Hz, so for instance
at 250Hz the vibration isolation is 23dB which is
significant for the high frequency vibrations of the
machine. (See dotted line in the top plot of Fig.
8 for the Gain plot of the passive mount.) The
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Fig. 8. Bode plots of the vibration isolation dy-
namics of the passive mount (dashed lines)
and the active mount (solid lines).

machine vibrations around and below 25Hz can
further be isolated by using the EM actuators to
form active mounts using a controller

C(s) =
f1s−K1

(1 + s/τ)2

This ”sky-hook type” of controller contains the
square of a first order low pass filter to atten-
uate high frequency excitation at the mounting
accelerometer due to higher mode plate vibration.
The top plot in Fig. 9 shows a bandwidth of
around 1 rad/s for filtering out high frequency
vibrations at the mounting accelerometer.

This simple active mount controller C(s) is eas-
ily implemented using analogue circuits (using
opamps), hence reducing computational demand
for the overall system. Use of analogue circuits
for control also avoids inevitable delays associated
with digital solutions due to conversion times,
sampling cycle and smoothing filters. The active
mount performance suffers very little to 20-30%
changes in stiffness and damping coefficient val-
ues, so a digital system is not needed for adapta-
tion.
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Fig. 9. The controller gain and phase (solid lines)
and the gain bound (dashed line) due to
actuator limitation.

7. FSF BASED MULTIRATE
FEEDBACK/FEEDFORWARD MODAL

CONTROL (M2FMC)

FSF based M2FMC can be applied to linear plants
where the disturbance spectrum is dominated by
a finite set of sinusoidal components, i.e. tonal
disturbances. The aim is to iteratively tune a
model free controller for the disturbance frequen-
cies and also for modal natural frequencies of
the enclosure. For a single frequency the enclo-
sure dynamics can be represented by a complex
gain and the signals by complex amplitudes. The
complex gain indicates the amplitude and phase
shift of a signal passing through a system. Hence
the controller can also be implemented by using
only two coefficients which reduces the number
of necessary calculations to adjust them towards
the optimal solution. The method tunes in parallel
these complex controller gains for many frequen-
cies (Veres (2002),Meurers et al. (2003)).

Let ωn, n = 1, 2, ..., N denote the disturbance and
structural natural frequencies of interest.

Let y denote the measurement signals (S of them)
from the piezo array of sensors and use u (R of
them) to denote the array of control signals for the
piezo actuators. For a given ωn the input-output
relationship can be described by an equation as

y(ωn) = G(ωn)u(ωn) + d(ωn)

where

y def=




yr1

yi1

...
yrS

yiS




u def=




ur1

ui1

...
urR

uiR




d def=




dr1

d1i

...
drS

diS




(1)

G def=




Gr11 −Gi11 · · · Gr1R −Gi1R

Gi11 Gr11 · · · Gi1R Gr1R

...
...

. . .
...

...
GrS1 −GiS1 · · · GrSR −GiSR

GiS1 GrS1 · · · GiSR GrSR




(2)

Here the y(ωn),G(ωn) are obtained by frequency
selective filtering (FSF) as described next. d(ωn)
is an unknown harmonic signal due to the modal
dynamics of the enclosure plates. The objective is
to estimate such a u(ωn) that the y is brought to
nearly zero. More precisely, the control criterion
will be to minimize the following quadratic cost
function

J
def= yHy =

S∑
s=1

|ys(jωn)|2 =
S∑

s=1

[
(yrs)2 + (yis)2

]
(3)

where yrs indicates the real and yis indicates the
imaginary part of the sth component of

y. The H denotes the Hermitian, i.e. complex
conjugate, transpose.

The different frequency components of the output
signal y are filtered out by frequency selective
filters (FSFs). Iterative tuning of harmonic control
for single input single output systems is described
for instance in Veres (2002) where convergence
properties were proven. Here we adopt it to the
multivariable case of the enclosure ASAC prob-
lem.

By moving the complex controller gain u into the
negative gradient direction of the criterion J the
output cost function will be reduced. The gradient
of the cost function can be calculated by

∇ J = 2GT y. (4)

Again it is desired to calculate this gradient with-
out any models for the secondary path transfer
function matrix. In the MIMO case it is not
enough to perform only one more recording. The
number increases to R× S. The following record-
ings have to be done to calculate the gradient.
The first S recordings are to use the conjugate
complex output ys respectively as an addition to
input u1 and use the unchanged remaining R− 1
inputs. The output vector z1 is recorded but only
the components zrs1 and zis1 are of interest. The
other components can be discarded. The update
for the first control signal becomes

[
ur1

ui1

]

k+1

=
[

ur1

ui1

]

k

− µ

S∑
s=0

[
zrs1

−zis1

]

k

. (5)

This set of recordings is then repeated for every
input signal, use the complex conjugate of the
previous recorded output signals as an additional



input and record the output vector. The controller
update for all channels becomes




ur1

ui1

...
urR

uiR




k+1

=




ur1

ui1

...
urR

uiR




k

− µ

S∑
s=0




zrs1

−zis1

...
zrsR

−zisR




k

. (6)

Next an outline is given to indicate the conver-
gence of the controller gains. The steady state of
the given linear stable system can be calculated
as

−[I− (I− µGT G)]−1µGT (d)|q=1 =
= − (

GT G
)−1

GT d
(7)

and in the case of the fully-determined system this
can be simplified to (−G−1d).

Therefore the controller converges

(i) for the overdetermined system (S > R)
to

lim
k→∞

uk = uopt = − (
GT G

)−1
GT d (8)

(ii) and for the fully-determined system
(S=R) to

lim
k→∞

uk = uopt = −G−1d (9)

where u = −G−1d is the ideal control input to
eliminate the noise of the output.

8. EXPERIMENTAL RESULTS

The FSF control system was implemented on
a TI C44 quad parallel processor card running
compiled C code and the data were analysed in
the MATLAB environment. The methodology was
so far tested on the control of single L shaped
base plate with two active mounts as part of
the enclosure while the machine was providing
vibration excitation. The kinetic energy of the
enclosure’s main L-shaped plate was estimated
based on Eest. As the realtime data are analysed
in batches it is possible to serialize the filtering of
signals for 66 frequencies. The control signals are
synthesized realtime, the iteration steps are done
every 0.25s, sampling rate is 32kHz. The method
inherently tries to interfere with vibrations in the
plate and constantly adapts its gain to achieve
that.

The attenuation results are 25% and 45% in terms
of the kinetic energies of the main L-shaped plate
for the active mount and for joint active mount
plus FSF control, respectively.

9. CONCLUSIONS

The multi variable enclosure vibration attenua-
tion problem was given a solution that uses in-
dependent active mounts and iterative/adaptive
FSF based feed-forward control of plate vibrations
that uses multirate sampling and no source detec-
tion signal (as filtered-X LMS does, see Bjarnason
(1995)).

These solutions appear to be practical and easier
to implement than feedback control based on com-
plex state-space models where performance may
suffer from changing plant dynamics and from
time delays due to output filtering requirements.
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