
FAULT RECOVERING TASKBLOCKS AND
CONTROL SYNTHESIS FOR A CLASS OF

CONDITION SYSTEMS.

Jeff Ashley1, Lawrence E. Holloway1, Nathalie Dangoumau2

1Dept. of Electrical Engineering and Center for
Manufacturing,

University of Kentucky, Lexington, Kentucky 40506, USA
email: holloway, ashley@engr.uky.edu

and
2LAGIS - CNRS - UMR 8146

Ecole Centrale de Lille
BP 48, F 59651 Villeneuve d’Ascq Cedex, France

email: Nathalie.Dangoumau@ec-lille.fr

Abstract: In this paper, we define fault recovery in terms of condition system
languages, and show how to modify a component model to represent a fault that
limits the functionality of a component. We also show under what conditions a
control can be synthesized to work around such a fault. Finally, we consider the
propagation of faulty behavior throughout the system and present an algorithm
to evaluate whether some target specification is achievable by utilizing existing
control synthesis techniques. Copyright c©2005 IFAC

Keywords: Discrete-event systems, Petri-nets, Fault-tolerant systems, Fault
diagnosis, Control system synthesis, Intelligent manufacturing systems

1. INTRODUCTION

In this paper, we consider fault recovery using
condition system models introduced by (Sreenivas
and Krogh, 1991). This modified form of a Petri
net allows for distributed and hierarchical model-
ing where separate models communicate via con-
dition signals. Among other things, we have stud-
ied condition systems in the problems of control
synthesis (Holloway et al., 2000) and fault diag-
nosis (Ashley and Holloway, 2004) for classes of
condition systems. Here, we consider a method to
recover from such faults. Our initial approach uses
an off-line technique to generate a control module
(called a taskblock) given some faulty behavior.
First, we define fault recovery in terms of condi-
tion system languages, and show how to model
faults that limit the functionality of a component.

We then show that if a taskblock exists, we can
achieve a target condition set even in the presence
of a fault. Finally we consider the propagation
of faulty behavior throughout the system and
present an algorithm to evaluate whether some
target specification is achievable. A discrete event
systems approach to fault recovery has also been
investigated in (Moosaei and Zad, 2004).

Of course in using an off-line method, it is very
helpful to know the fault a-priori and this presents
a problem in that it either: requires exact knowl-
edge of failure modes; or, leads to a potentially
huge set of control modules needed to account
for every possible fault. This may be alleviated to
some extent by consideration of techniques found
in (Dangoumau and Craye, 2003).

2. CONDITION SYSTEMS

In this paper, we consider systems represented by
condition systems. Condition systems are a form
of Petri net with explicit inputs and outputs called
conditions. These conditions allow us to represent
the interaction of subsystems (here called compo-
nents) as well as the interaction of a system with
a controller (Holloway et al., 2000).

The systems that we consider interact with each
other and with their outside environment through
conditions. A condition is a signal that either has
value “true”, or “false”. Let C be the universe of
all conditions, such that for each condition c in C,
there also exists a negated condition denoted ¬c ,
where ¬(¬c) = c.

Definition 1. A condition system G is character-
ized by a finite set of states MG , a next state
mapping fG : MG × 2C −→ 2MG , and a condi-
tion output mapping gG : MG −→ 2C . In this
paper, we assume that MG , fG , and gG are defined
through a form of Petri net consisting of a set
of places PG , a set of transitions TG , a set of
directed arcs AG between places and transitions,
and a condition mapping function ΦG(·), where
(∀p)ΦG(p) ⊆ C maps output conditions to each
place, and (∀t)ΦG(t) ⊆ C maps enabling condi-
tions to each transition. The net is related to MG ,
fG , and gG in the following manner:

(1) The states are the markings of the Petri net:
each state m ∈ MG is a function over PG
that represents a mapping of non-negative
integers to places.

(2) The output conditions have their truth value
established by marked places: for any m ∈
MG ,
gG(m) = {c | ∃p s.t. c ∈ ΦG(p) and m(p) ≥
1} , where gG(m) is the set of output condi-
tions forced ”true” by marking m.

(3) Next-state dynamics depend on state enabling
and condition enabling: for any m ∈ MG and
any C ⊆ C of conditions with value “true”,
m′ ∈ fG(m,C) if and only if there exists some
transition set T such that
(a) T is state-enabled, meaning (∀p ∈ PG)

m(p) ≥ |{t ∈ T | p
is input to t}|

(b) T is condition-enabled, meaning (∀t ∈ T)
ΦG(t) ⊆ C

(c) the next marking m′ satisfies ∀p ∈ PG ,
m′(p) = m(p)−|{t ∈ T | p is input to t}|
+ |{t ∈ T | p is output of t}|

(4) MG is closed under fG(·): if m ∈ MG and
m′ ∈ fG(m,C) for some C ⊆ C, then m′ ∈
MG .

We define the output condition set for a system G
as Cout(G) = {c ∈ ΦG(p) | p ∈ PG}. Similarly,

define Cin(G) = {c ∈ ΦG(t) | t ∈ TG}. Note
that a condition system can be subdivided into
components, where each component is a condi-
tion system over a set of connected places and
transitions which are disconnected from all other
places and transitions. For the remainder of this
paper we will use the notation G to indicate the
complete system, and the notation {G1, . . . Gn} to
indicate the set of components in G. We also make
the following assumption on the structure of our
components.

Assumption 1. For any component Gi ∈ G and
any condition c ∈ Cout(Gi), the following are
assumed to hold:

(1) c is not an output of any other component:
∀j 6= i, c 6∈ Cout(Gj).

(2) Gi does not output contradictions: the condi-
tion system Gi is such that for all markings
m ∈ MGi

, either c ∈ gGi
(m) or ¬c ∈ gGi

(m),
but not both.

(3) Gi is a state graph with one token.

The behavior of a condition system can be de-
scribed by sequences of condition sets. A condi-
tion set sequence, called a C-sequence, is a finite
length sequence of condition sets. Each condition
set sequence is of the form (C0C1 . . . Ck) for some
integer k and sets Ci ⊆ C for all 0 ≤ i ≤ k. A
set of C-sequences is called a language, and the
language consisting of all C-sequences is denoted
L. The empty condition set, ∅, is important in
specifying desired behavior for controller genera-
tion. It represents a ”don’t care” condition in a
C-sequence meaning we don’t care what output
(via conditions) a system takes in completion of
some task under direction.

3. TASKBLOCKS

The plants that we consider to be controlled are
modeled by collections of condition models rep-
resenting the components of the plant. Let this
set of condition models representing components
be denoted as Gcompo. The controllers that we
consider are also represented as collections of con-
dition models. The set of these controller mod-
els, representing elements of the control logic, are
called taskblocks, and are denoted as the set Gtasks.
A system G then can consist of a collection of
both component models and taskblocks operating
together.

Each taskblock has a specific control function.
A taskblock becomes activated to begin its con-
trol function upon its activation condition, which
uniquely identifies the taskblock. Let Cdo ⊂ C be
the set of activation conditions associated with

taskblocks. For each element do ∈ Cdo we asso-
ciate the following:

• TB(do) ∈ Gtasks is the unique taskblock
(condition system model) for which do ∈
Cin(TB(do)). No other taskblocks or com-
ponents have do as an input.

• compl(do) ∈ Cout(TB(do)) is a condition
output from the taskblock, indicating task
completion.

• idle(do) ∈ Cout(TB(do)) is a condition out-
put from the taskblock and indicates that the
taskblock is not activated.

• Gcompo(do) ∈ Gcompo is a component model
associated with the task do. The same com-
ponent model may be associated with many
different tasks.

• goal(do) ∈ Cout(Gcompo(do)) is a condition
output from the component model.

• Cinit(do) ⊆ Cin(TB(do))∩Cout(Gcompo(do))
is a set of initiation conditions for the
taskblock that are output from the compo-
nent Gcompo(do).

For a given activation condition do and its associ-
ated taskblock, TB(do), a taskblock is said to be
effective if it operates as follows:

(1) If the taskblock has its activation condition
do become true while its initial conditions
are true (all c ∈ Cinit(do) are true), then
the taskblock is said to become active. It
will remain active as long as the do condition
remains true.

(2) When the taskblock becomes active, then its
idle(do) condition signal becomes false.

(3) An active taskblock will interact with the
component model (Gcompo(do)) (and possi-
bly through other components) in such a
manner that it eventually outputs the com-
pletion signal compl(do).

(4) When the taskblock outputs the signal
compl(do), then this implies that the asso-
ciated component Gcompo(do) is outputting
the condition goal(do) true.

In (Holloway et al., 2000), the term effective for
taskblocks is defined formally using condition lan-
guages, and methods were presented to automat-
ically synthesize an effective taskblock TB(do)
by considering only the component Gcompo(do).
The taskblock is activated by a do signal asso-
ciated with some goal condition of the compo-
nent, and it then outputs activation signals for
other taskblocks for lower level components that
respond with their own goal signals that drive
Gcompo(do). If lower level taskblocks and compo-
nents are guaranteed to be effective, then (un-
der mild assumptions on the interaction of lower
level taskblocks over shared components) the syn-
thesized higher level taskblock can be shown to
be effective operating through them. Because of

this result, when synthesizing taskblocks, it is
sufficient to abstract away all lower levels into
a Direct Translator. Simply put, a Direct Trans-
lator abstraction represents a set of lower layers
of taskblocks and components as a single system
that takes activation signals (such as dox) for the
lower levels and directly returns the corresponding
completion signals (such as compl(dox)) to the
taskblock and goal signals (such as goal(dox)) to
drive the higher layer component. This abstrac-
tion of lower layers allows synthesis of any given
taskblock to be done efficiently by using informa-
tion only about single components.

In this paper, we are not concerned with the
details of a taskblock synthesis method, so we
consider a function to represent such a method.
In the definition of such a function below, we
consider that the specification for the closed-
loop behavior of the taskblock and its component
is given as a c-sequence s = (Cinit, ∅, Cgoal).
Figure 1 shows how taskblocks and components
interact. Note that in the figure, DTi for i =
1, 2, 3, 4 represents the three Direct Translators
required for this system. We note that for this
paper, the specification net represents the top-
level taskblock that has a target condition set
equal to the singleton set {cdoSpec}.

G1

G4

G3

G2

TB2

TB4

TB3

TB1

DT1

Specification net

DT2

DT3

Control conditions: do_mL

and do_mR

Activation conditions: mL

 and mR

sensor

sensor

horizontal

 position

motor

TB3(do)

INSET: i/o detail

of TB3

compl(do)idle(do)

goal(do)

compl(doSpec)doSpec

DT4

Fig. 1. The condition system and controller.

Definition 2. Given some component model G,
an assumed initial condition set Cinit (possi-
bly empty, indicating no requirement), and a
goal condition set Cgoal ⊆ Cout(G), define
MakeControl(G, Cinit, Cgoal) as the set of pairs
(TB,CTB,init) where TB is a taskblock effective
for G for goal conditions Cgoal under true initial
conditions CTB,init, where Cinit ⊆ CTB,init ⊆
Cout(G).

The statement Cinit ⊆ CTB,init means that
a taskblock returned by the function can ex-
pect more stringent initial condition require-
ments than the specification required. Note that
MakeControl(G, Cinit, Cgoal) can return an empty

set, meaning that no effective control exists. In
(Holloway et al., 2000), the procedure presented
generated pairs in MakeControl of the form
(TB, ∅) which implies that the taskblock will work
from any initial state for the component. Here, we
also assume that a taskblock must also work from
any initial state.

Finally, we define a steerable path within a com-
ponent Gi implies the ability of some controller
(captured by some taskblock and some direct
translator) to enable required transitions and to
prevent other transitions from firing in order to
eventually reach Cgoal.

4. COMPONENT LEVEL FAULT
RECOVERY

In this paper, we assume there exists a special
set of conditions called assumables (Ashley, 2004).
We refer to this set of assumables as Casmbl,
where the set Casmbl must be contradiction free.
Assumables are not outputs of any component.
Rather, they are inputs which are not directly
observed. They are used to represent assumptions
of correct operation of the system. Under normal
operation, each c ∈ Casmbl has value true. We
model a fault as an assumable condition that has
become false.

When an assumable becomes false, thus represent-
ing a fault, then any transitions that rely on it for
enabling cannot become enabled, thus changing
the dynamics of the component which has the
assumable as an input. Some transitions may also
have the negation of the assumable as a condition
input. Such transitions are normally disabled, but
could become enabled if the assumable becomes
false. In either case, any resulting change in the
reachability of the component will change the pos-
sible combinations of condition values that can be
output by the component. This then can prevent
the enabling of transitions in other components,
preventing other conditions from becoming true,
and propagating the fault through other compo-
nents.

In this section, we consider that we are given a set
of condition sets that are forced false. This could
include a singleton set with an assumable, or it
can include sets of conditions that are outputs of
other subsystems.

Definition 3. Define a minimal set of condition
sets failed false, Cfail,F ⊂ 2C , such that:

(1) For any C ∈ Cfail,F , the conditions in C
cannot be simultaneously true under any
reachable marking, given casmbl is false;

(2) For any C ∈ Cfail,F , there does not exist a
strict subset C ′ ⊂ C that is also in Cfail,F .

For example, for a system with conditions a and
b, the occurrence of a fault may result in the
set {a,¬b} being in the failed false set. Thus,
the system could output a and b both true, both
false, or a false and b true. However, a true with
b false could not occur, and so any transition
with condition input including {a,¬b} cannot be
enabled to fire. Finally, we note that any condition
c that will be forced true from the fault can be
represented by having {¬c} ∈ Cfail,F .

The following defines a transform of a component
model so it captures the behavior of some given
fault.

Definition 4. Given a component Gi , the sets of
conditions Cfail,F failed false then transform the
component as follows. Define this new component
as G(Gi, Cfail,F).

(1) For each transition t ∈ Ti such that C ⊆ Φ(t)
for some C ∈ Cfail,F , then remove t.

(2) For each transition t ∈ Ti such that Φ(t) =⋃
¬c for some distinct singleton sets {c} in

Cfail,F , then for each t′ ∈ p(t) for p ∈ (p)t
where t′ 6= t and Φ(t′) 6=

⋃
¬c for some

distinct singleton sets {c} in Cfail,F then
remove t′.

Item 1 represents removing transitions that can-
not be enabled due to condition sets that are failed
false. For item 2, under a fault some transitions
may become enabled (and cannot be disabled).
Since we cannot prevent these t from firing then
we don’t want to explore paths through t′, since
we cannot be guaranteed to steer the system
through these transitions.

Next we show that a component model operat-
ing under some failed false input conditions, will
behave the same as the transformed component
model resulting from applying definition 4.

Lemma 1. Given a component Gi, a marking m,
a target set Cgoal, and a set of conditions Cfail,F ,
there exists a steerable path to achieve Cgoal from
m in G(Gi, Cfail,F) if and only if there exists a
steerable path to achieve Cgoal from m in Gi under
Cfail,F .

Proof:

Only if : Any steerable path in G(Gi, Cfail,F)
from m that achieves Cgoal must exist in Gi since
application of definition 4 to create G(Gi, Cfail,F)
only removes transitions from Gi. Since the path
exists in G(Gi, Cfail,F) it must also exist in Gi.

If: First note that all transitions t removed from
Gi in creation of G(Gi, Cfail,F) are either: a) dis-
abled in Gi since they have an condition enabling
Φ(t) that is a superset of some C in Cfail,F ; or b)

cannot be forced to fire in Gi since there exists
a transition t′ leading from its input place such
that t′ is always condition enabled. In case a, these
transitions cannot be enabled and so there cannot
exist a steerable path to Cgoal from m through
any of these transitions in Gi under Cfail,F . In
case b, since t′ cannot be disabled we cannot be
guaranteed to fire t, and hence we cannot have
a steerable path through t. So if there exists
some steerable path to achieve Cgoal in Gi from
m under Cfail,F then it does not include any
transitions disabled by items a) and b) above.
Since creation of G(Gi, Cfail) only removes these
transitions then it follows that the steerable path
must also exist in G(Gi, Cfail,F). 333

Thus any Cgoal that cannot be reached would
be failed false. The following immediately follows
from the previous lemma and definition 3.

Corollary 1. Given a component Gi, a marking
m, and a set of conditions Cfail,F , then the set
of all Cgoal sets non-reachable from marking m in
G(Gi, Cfail,F) have a corresponding minimal set
of condition sets failed false.

This then characterizes how faulty behaviors may
propagate throughout a system. Thus a faulty
component that is unable to output certain tar-
get condition values may propagate faulty be-
haviors to other components (which may not
have failed, but nevertheless act faulty). The
next lemma shows extends these ideas to the
entire system within a language framework. Let
GcompFlt be equal to the new system created
by replacing Gi with G(Gi, Cfail,F) in Gcompo.
Define Lcontrol(G, s, M0) as the set of all C-
sequences of G that satisfied control specification
s = (Cinit, ∅, Cgoal) given a set of markings M0.

Lemma 2. Given some system Gcompo, a trans-
formed system GcompFlt, a set of initial markings
M0, and a control specification s = (Cinit, ∅, Cgoal),
then the following statements are true.

(1) Lcontrol(GcompFlt, s, M0) ⊆
Lcontrol(Gcompo, s, M0).

(2) If Lcontrol(GcompFlt, s, M0) = ∅ then there
does not exist an effective control policy that
will achieve the desired C-sequence s.

(3) If Lcontrol(GcompFlt, s, M0) 6= ∅ then there
exists an effective control policy that will
achieve the desired specification s.

Proof: To prove item 1, consider the language
generated by Gi and G(Gi, Cfail,F). It is obvi-
ous that the language of L(Gi,m) for all m ∈
M0 contains more or at least all of the se-
quences in L(G(Gi, Cfail,F),m) for all m ∈ M0.
Or, L(G(Gi, Cfail,F),m) ⊆ L(Gi,m). By Theo-

rem 1 from (Ashley and Holloway, 2004), then
it follows that L(GcompFlt,m) ⊆ L(Gcompo,m)
for all m ∈ M0. Since a control C-sequence
s restricts the behavior of Gcompo to a set of
possible outputs consistent with its target, and
that it does so consistently across GcompFlt and
Gcompo, we see that Lcontrol(GcompFlt, s, M0) ⊆
Lcontrol(Gcompo, s, M0). Items 2 and 3 follow di-
rectly from item 1. 333

The next theorem ties Lemma 1 to the notion of
an effective taskblock that can steer a faulty com-
ponent around disabled transitions. In particular,
it shows if there exists a set of initial conditions
and a taskblock in
MakeControl(G(Gi, Cfail,F), Cinit, Cgoal) then
they also exist in the set of taskblocks for the
original component Gi under the fault.

Theorem 1. Given some component Gi, a set
of conditions Cfail,F failed false, the trans-
formed component G(Gi, Cfail,F), a set of ini-
tial conditions Cinit, a target set of conditions
Cgoal, if there exists some pair (TB,CTB,init) ∈
MakeControl(G(Gi, Cfail,F), Cinit, Cgoal) then
(TB,CTB,init) ∈ MakeControl(Gi, Cinit, Cgoal).

Proof: If (TB,CTB,init) exists in
MakeControl(G(Gi, Cfail,F), Cinit, Cgoal) then
that implies that there exists some steerable path
in G(Gi, Cfail,F) that achieves Cgoal. It immedi-
ately follows from lemma 1, that the same steer-
able path exists in Gi and so (TB,CTB,init) ∈
MakeControl(Gi, Cinit, Cgoal). 333

5. PROPAGATION OF FAULTS IN THE
CONDITION SYSTEM AND FAULT

RECOVERY.

As previously noted, a faulty component may
affect other components thereby making them
behave in a faulty manner. This propagation of
faults then affects multiple components in the
system and may make a top-level control objec-
tive cdoSpec unachievable. However, if there exists
redundancy or means within a component to work
around a fault, then will exist a sequence of con-
trol inputs that can still achieve cdoSpec even in
the presence of a fault. In this section, we present
a method to propagate faults through a system
and show when such a fault prevents cdoSpec from
being realized by the system.

The following algorithm propagates the influence
of faulty condition sets throughout the system.
First, note CALL

fail contains all elements of Cj
fail for

all j. Cj
fail is the set of all failed false conditions

up to iteration j in the algorithm. Cj
∆ is the set

of all failed conditions added at iteration j in the
algorithm.

Algorithm 1. Given system G = {G1, G2, . . . , Gn},
a set of assumable conditions Cfail,F failed false
associated with a single Gi.

(1) j ⇐ 0
(2) Cj

fail ⇐ Cfail,F and Cj
∆ ⇐ Cfail,F

(3) While Cj
∆ 6= ∅ :

(4) Cj+1
fail ⇐ Cj

fail

(5) Cj+1
∆ ⇐ ∅

(6) For each Gk s.t. C ∩Cin(Gk) 6= ∅ for some
C ∈ Cj

∆:
(7) For each C ′ ∈ 2|Cout(Gk)| in set of possi-

ble target condition sets output by Gk :
(8) If 6 ∃ a (TB, ∅) ∈ MakeControl(G(Gk,

Cj
fail), ∅, C ′) then :

(9) Add C ′ to Cj+1
fail.

(10) Add C ′ to Cj+1
∆ .

(11) Minimize Cj+1
fail, Cj+1

∆ using defi-
nition 3.

(12) j ⇐ j + 1
(13) CALL

fail ⇐ Cj
fail

We are ready to present the final result of this
paper. The following proof states that if our
top level specification is in CALL

fail then it is not
achievable under the conditions presented.

Theorem 2. Given some top-level control specifi-
cation {Cinit, ∅, {cdoSpec}}, a condition set CALL

fail

resulting from applying Algorithm 1 for some G
and Cfail,F , if cdoSpec is in CALL

fail then cdoSpec

is not achievable given any arbitrary marking
m ∈M.

Proof: We prove by induction on the index j. For
j = 0: C0

fail = Cfail,F and any C ∈ Cfail,F , by
definition, is unachievable.

For j > 0: For some j ≥ 0 , suppose that all
C ∈ Cj

fail implies C is not achievable. Then
consider some C ′ /∈ Cj

fail but C ′ ∈ Cj+1
fail. By

the algorithm lines 8 and 9, C ′ is only added
to Cj+1

fail if no taskblock exists with (TB, ∅) ∈
MakeControl(G(Gk, Cj

fail), ∅, C ′) for the Gk that
outputs the condition set C ′. Thus, C ′ ∈ Cj+1

fail is
not achievable. By the induction, if {cdoSpec} is in
CALL

fail , then cdoSpec is not achievable. 333

Our current taskblock synthesis method for the
class of systems we consider are guaranteed to be
able to complete a task given any initial condition
set for the associated component (Holloway et
al., 2000). In as much, our current taskblock
synthesis method is consistent with this proposed
algorithm. However, this statement may obviously
be violated under a fault, and so generating a

controller under the restriction of a required set of
initial conditions is an important subject of future
research.

6. DISCUSSION

We have presented and defined fault recovery for
the condition system/taskblock framework based
on the languages of these systems. For a class of
faults that limit functionality, we show how to
modify a component model to account for this
behavior. If a new taskblock does not exist for
this modified component then there in no way
to achieve the target for the component. This
in turn can propagate faulty behavior to other
components. If this propagation continues to the
top-level specification net, then we show that the
top-level target in unachievable given that the
system can start from any state.

7. ACKNOWLEDGMENTS

This work has been supported in part by the
National Science Foundation grant ECS-0115694,
Office of Naval Research N000140110621, and the
Center for Manufacturing at the University of
Kentucky.

REFERENCES

Ashley, Jeffrey (2004). Diagnosis of Condition
Systems. PhD thesis. University of Kentucky.

Ashley, Jeffrey and Lawrence E. Holloway (2004).
Qualitative diagnosis of condition systems.
Discrete Event Dynamic Systems: Theory
and Applications 14(4), 395–412.

Dangoumau, N. and E. Craye (2003). Modeling for
reconfiguration of production systems: Multi-
point of views. In: 31st International Confer-
ence on Computers and Industrial Engineer-
ing). San Francisco, CA.

Holloway, L. E., X. Guan, R. Sundaravadivelu
and J. Ashley (2000). Automated synthesis
and composition of taskblocks for control of
manufacturing systems. IEEE Transactions
on Systems, Man and Cybernetics: Part B
30(5), 696–712.

Moosaei, M. and S. Hashtrudi Zad (2004). Fault
recovery in control systems: A modular
discrete-event approach. In: Proc. 2004 Inter-
national Conference on Electrical and Elec-
tronics Engineering (CINVESTAV / IEEE).
Acapulco, Mexico. pp. 445–450.

Sreenivas, R.S. and B.H. Krogh (1991). On con-
dition/event systems with discrete state re-
alizations. Discrete Event Dynamic Systems:
Theory and Applications 1(2), 209–236.

