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Abstract: This paper presents a general framework for the coordinated motion control of
autonomous swarms in the presence of obstacles. The proposed framework judiciously
combines concepts and techniques from potential flows, artificial potentials and dynamic
connectivity to realize complex swarm behaviors. To begin with, existing concepts from
potential flows in fluid mechanics are used to solve the single-agent navigation problem.
As an extension, an analytical solution to the stagnation point problem is provided.
The potential flow based framework is then modified significantly to facilitate the
coordinated control of swarms navigating through multiple obstacles. Artificial potentials
are employed for swarming as well as enhanced obstacle avoidance. A novel concept
of dynamic connectivity is utilized to improve the performance of obstacle avoidance
(Line of Sight Connectivity) and to organize diverse swarm behaviors (Probabilistic
Connectivity). Simulation results with a set of developed algorithms are included to
illustrate the viability of the proposed framework.Copyright©2005 IFAC
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1. INTRODUCTION
Recent years have witnessed a rising interest in the
dynamics and control of group behaviors for vehicu-
lar swarms, i.e., systems of multiple autonomous and
semi-autonomous vehicles. Swarm systems such as
insects, birds, fish or mammals are very common in
nature and have served as an inspiration in this re-
search theme. Outcomes of this research can impact a
wide variety of applications, especially in the fields of
cooperative control of autonomous robots, unmanned
air vehicles and mobile sensor networks.

In this paper, we focus on the problem of coordinated
motion control of autonomous swarms, i.e., how to
design the control algorithms to enable a group of
cooperative agents to move from a starting location
to a target location in the presence of multiple and
possibly moving obstacles. There are a number of
essential requirements for the swarm motion. First
of all, the swarm motion should be collision-free,

i.e., no inter-agent collision and no collision between
any agents and obstacles. Secondly, the swarm should
move in a formation or flocking mode, i.e., the agents
should stay together and move together. Lastly, there
may be additional optimality type of requirements.

The motion control problem of a swarm system has
typically been divided into two subproblems (Ogren,
2003). The first is on path generation and navigation
with obstacle avoidance, which deals with how to
move an agent (e.g., a robot) from location A to
location B in some efficient manner while avoiding the
obstacles. The second is how to keep the agents as a
swarm moving together based on the solution of the
navigation problem, i.e., every agent in the swarm is
coordinating with other agents to realize group motion
without inter-agent collision.

Robot navigation is a well studied problem in systems
and control. Typical approaches involve the use of



artificial potential fields, (APF), road maps (RM ) and
so on. Among these approaches, theAPF method has
been used extensively for path planning of mobile
robots. A fundamental problem in the application of
APF method is how to deal with the local minima that
may occur in a potential field environment.

In (Waydo and Murray 2003a), a method of using
stream functions to generate smooth paths for vehicle
motion planning is introduced. Concepts from hydro-
dynamic analysis are used to construct potential fields
with no local extrema for vehicle guidance. Related
work can also be found in (Waydo and Murray 2003b)
and (Sullivan,et. al., 2003). Despite the many positive
attributes of stream function based methods, a possible
problem may arise, i.e., the so-called stagnation point
problem (SP). A stagnation point in fluid dynamics
refers to a point at which the velocity of the fluid
becomes zero. Once a robot moves onto aSP, it will
stop there and can never reach the goal.

In this paper, we discuss how the stagnation point
may affect the robot navigation, concepts from fluid
mechanics are used to provide a solution to this prob-
lem. Based on the potential flow framework, addi-
tional concepts and techniques from artificial poten-
tials and dynamic connectivity are incorporated to re-
alize coordinated navigation of swarms. Specifically,
artificial potentials are employed for swarming as well
as enhanced obstacle avoidance. A novel concept of
dynamic connectivity is utilized to improve the per-
formance of obstacle avoidance (Line of Sight Con-
nectivity) and to organize diverse swarm behaviors
(Probabilistic Connectivity). Simulation results with a
set of developed algorithms are included to illustrate
the viability of the proposed framework.

2. BACKGROUND

As in (Waydo and Murray 2003a), this section gives
a brief introduction of some important concepts from
hydrodynamic analysis. For detailed information, please
refer to (Milne-Thomson, 1968) and (Currie, 1993).

2.1 Potential Flows and Complex Potential
Potential Flows and velocity potential: If the flow
of an ideal fluid around a body originates in an ir-
rotational flow, then the flow will remain irrotational
even near the body. That is, the vorticity vectorω will
be zero everywhere in the fluid (ω = ∇× uf = 0).
Since∇×∇φ = 0 holds for any scalar functionφ ,
the condition of irrotationality can then be satisfied
identically by choosinguf = ∇φ . φ is calledvelocity
potential, and flow fields which are irrotational, and
so can be represented in the form ofuf = ∇φ are
referred to aspotential flows. Since the velocityuf can
be expressed asuf = u+ iv, we have

u =
∂φ
∂x

,v =
∂φ
∂y

(1)

For an ideal flow, the equation of continuity can be
expressed as:∇ · uf = 0. Substitute this expression
for uf into uf = ∇φ gives∇2φ = 0. So the velocity
potentialφ satisfies the Laplace’s equation.

Stream Function: In cartesian coordinates, the con-
tinuity equation can be expressed as∂u

∂x + ∂v
∂y = 0.

Introducing a functionψ which is defined as

u =
∂ψ
∂y

,v =−∂ψ
∂x

(2)

The functionψ is then calledstream function, and
by virtue of its definition it is valid for all two-
dimensional flows, both rotational and irrotational
(Currie, 1993). If the flow is irrotational, which means
∇2ψ = 0, then the stream function will also satisfies
the Laplace’s equation.

Complex Potential: The complex potentialω of an
irrotational two-dimensional flow of an inviscid flow
is defined by

ω(z) = φ + iψ (3)

here z = x+ iy, φ and ψ are thevelocity potential
and stream functionrespectively. Then by equating
the velocity components from (1) and (2) gives the
Cauchy-Riemann equation:∂φ

∂x = ∂ψ
∂y , ∂φ

∂y =− ∂ψ
∂x .

Instantaneous streamlines are determined bydx
∂ψ/∂y =

dy
−∂ψ/∂x. which is equivalent todψ = 0, so that along
any streamlinesψ =constant. Thecomplex velocityis
expressed as (Currie, 1993)

ω ′(z) =
∂φ
∂x

− i
∂φ
∂y

≡ u− iv (4)

The uniform flow, sink and vortex are the most im-
portant flow types to be implemented for modeling
the navigation of single robot, and their complex po-
tentials can be expressed as:fu = Uz, fs = −Cln(z),
fv = Ciln(z) respectively.

3. NAVIGATION WITH OBSTACLE AVOIDANCE

3.1 Avoidance of a Single Obstacle
Circular obstacle in a uniform flow : First, consider
in an uniform flow with strength U (fu = Uz) a single
stationary obstacle of radiusa is placed at (bx,by),
let b = bx + iby, apply the Circle Theorem (Milne-
Thomson, 1968) gives the complex potential:

ω = Uz+U(
a2

z−b
+b) (5)

For simplicity, suppose (bx,by) is at the origin (0,0),

then the complex potential becomesω = Uz+U a2

z ,
and the imaginary part gives the stream function of
the flow:

ψ = Uy(1− a2

x2 +y2 ) = Uy(1− a2

r2 ) (6)

Note that ψ = 0 on the boundary of the obstacle
therex2 + y2 = a2, this shows the flow is tangent to
the boundary of the obstacle. The complex velocity
ω ′(z) = U −U a2

z2 = U [1− a2

r4 (x2 − y2 − i2xy)]. i.e.

u = U [1− a2

r4 (x2− y2)],v = U a2

r4 2xy. Here r2 = (x−
bx)2 +(y−by)2. Usex1 andx2 to replacex andy, we
have:

ẋ1 = U [1− a2

r4 (x2
1−x2

2)], ẋ2 = U
a2

r4 2x1x2 (7)

a plotting is given as Fig.1 where the red lines rep-
resent the streamlines and the circle centered at the
origin with radius 2 is the obstacle. It can be seen that
none of the streamlines goes into the obstacle.

Circular obstacle in a sink flow: Similarly, consider
a single stationary obstacle of radiusa is placed in a



sink flow with strengthC. Detailed analysis for this
scenario can be found in (Waydo and Murray 2003b).
A plot of the streamlines passing through the obstacle
is also given in Fig.1.
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Fig. 1.Circular Obstacle in Different Flows

3.2 Avoidance of Multiple Obstacles

If there be multiple circular obstacles in the fluid, then
we need to solve the Laplace’s equation with multiple
boundary conditions. This is undoable analytically.
But basic ideas from single obstacle avoidance can
still be implemented by using method called addition
and thresholding, detailed information can be found in
(Waydo and Murray 2003a) and (Waydo and Murray
2003b). An example is given in Fig.2. In the simula-
tion, three circular obstacles are placed in an uniform
flow and a sink is induced to act as the goal.
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Fig. 2.Avoidance of Multiple Obstacles

4. STAGNATION POINTS

As discussed in (Waydo and Murray 2003a) and
(Waydo and Murray 2003b), one main advantage of
using stream functions is the absence of local extrema,
which means the situations of robots stop at local min-
ima when using theAPF method would not happen.
But there is another problem which still needs to pay
attention to: theStagnation Points(SP). As at anySP,
the velocity of the fluid becomes zero and if a robot
happens to get onto a stagnation point, it will forever
stay there.

Here is a simple example ofSP: from (7), suppose
the right side of both equations equal to zero, i.e., the
velocity of the fluid becomes zero:u = 0 andv = 0.
Then by solving the equations:U [1− a2

r4 (x2− y2)] =

0,U a2

r4 2xy= 0, we can find the solutions:x=−a,y= 0
andx = a,y = 0, which are pointA andC in the left
plot of Figure 1. So at these points the fluid will come
to rest. Similarly, it’s easy to show in the right plot of
Fig.1 A and C are also stagnation points. Since atSPs
the velocity of the fluid becomes zero, the equation
for calculating stagnation points can be expressed as
(Currie, 1993):

dω
dz

= 0 (8)

A remark is in order here. When applying the stream
function method, the dimension of the circular obsta-
cle is typically chosen to be bigger than that of the real
obstacle for the sake of safety. So if any robot happens
to get onto aSP, although it will stay but it will not
collide with the obstacles. An example is given in
the left plot of Fig.3, one of the robots (the middle
one) stopped at one of theSPs. To solve the problem,
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Fig. 3.Stagnation Point Problem

methods such as adopting certain random walking al-
gorithms when reaching aSP can be incorporated.
However, in this paper, we will use concepts from
hydrodynamics to reach a solution for this problem.

In fluid mechanics, the complex potential of vertex
fv = Ciln(z) applies to the circulation motion of fluid
between two concentric cylinders. Adding this to the
complex potential of a circular obstacle in certain
types of flow, it will change the positions of stagnation
points (Milne-Thomson, 1968). Here is a brief analy-
sis based on the earlier example of a circular obstacle
in a uniform flow: AddingCiln( z

a) to ω = Uz+U a2

z ,
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the new complex potential becomesω = Uz+U a2

z +
iCln( z

a). As can be seen whenz= aeiθ , ω = 2Ua, the
imaginary part ofω is constant0. which means the
boundary of the cylinder is still part of the streamline.
To find the new positions of the stagnation points,
by applying (8) we can getz

2

a2 + z
a

iC
aU − 1 = 0. The

solution can then be found as

z= a(− iC
2aU

±
√

1− C2

4a2U2 ) (9)

So the positions of stagnation points will be decided
by the relationships between C andaU (Currie, 1993).

Case 1: IfC < 2aU, suppose C
2aU = sinβ . Thenz =

a(−i sinβ ±cosβ ), so the stagnation points lie on the
cylinder below the center.

Case 2: IfC = 2aU, thenβ = π
2 , this time the stagna-

tion points coincide at the bottom of the cylinder.

Case 3: IfC > 2aU, suppose C
2aU = coshβ ,thenz =

ai(−coshβ ±sinhβ ) =−aie±β , calling the two solu-
tionsz1 andz2, then|z1z2| = a2. this time the stagna-
tion points are inverse points on the y-axis(imaginary
axis), and one of the SP is inside the obstacle cylinder.
Plottings of all three cases are shown in Fig.4



It can be seen from above analysis that for those added
vertex flows with different strengthC the positions of
correspondingSPs are also be different, so if a vertex
flow with its strength a function of time is added, then
the SPs would keep changing with time. Therefore
once a robot gets onto aSP, next step when it updates
its position, it will be out of theSP. This will help
the robots which happen to get ontoSPs to get out of
them. An example is given in the right plot of Fig.3,
there a vertex flow with its strength a sine function is
added:C = Ksin(ωt) with K = 1.5aU. It can be seen
the robot which is supposed to stop atSPnow has no
trouble to pass the obstacle.

5. SWARM NAVIGATION USING STREAM
FUNCTIONS

In the real world, phenomena of insects or birds ag-
gregating and flocking in swarms are very common.
Swarm systems can exhibit diverse adaptable behav-
iors such as split, rejoin and squeezing maneuvers. In
this paper the scenario of interest is the navigation
of a swarm such as a school of fish passing through
a water course with reefs to their spawning place.
Similar research can be found in (Saber and Murray,
2003) and (Saber, 2004), therein models of nets and
flocks are discussed based on the graph theory and
different types of agents (α, β andγ) are designed to
solve the problem of flocking in the presence of mul-
tiple obstacles. Here we present a general framework
that judiciously combines the stream function based
method with dynamic swarm models for coordinated
swarm navigation.

5.1 Swarm Modeling

The basic idea to model a swarm system is to express
the mutual attractive and repulsive effects between
every agent in the swarm. So far many methods have
been brought forward and in this paper the model
developed in (Gazi and Passino, 2004) and (Gazi and
Passino, 2003) will be used. In (Gazi and Passino,
2004) the model considers a swarm ofM individuals
in an n-dimensional space. Here we will consider the
situation whenn = 2.

Suppose the position of an individual agenti can be
described asxi ∈ R2. The equation of motion for each
individual agenti is (Gazi and Passino, 2004) :

ẋi =−∇xi σ(xi)+
M

∑
j=1, j 6=i

g(xi −x j), i = 1, ...,M,(10)

σ : R2 → R represents the attractant/repellent profile
of the environment.g(·) represents the function of
mutual attraction or repulsion between individuals and
is an odd function of the form:g(x) = −x[ga(‖x‖)−
gr(‖x‖)]. The function in (Gazi and Passino, 2004) is

g(x) = −x[a− bexp(−‖x‖
2

c )] and it will also be used
in this paper. To avoid confusion with (9), we rewrite

it as:g(x) =−x[k1−k2exp(−‖x‖
2

k3
)]. Detailed analysis

of g(x) can be found in (Gazi and Passino, 2004) and
(Gazi and Passino, 2003).

5.2 Swarm Navigation Based on Stream Functions

As motivated by swarm phenomena in nature, in this
paper we assume each robot only interact with those
that are in front of it along the navigating direction (as

indicated in Fig.5) and each robot has a limited sensor
range.

Simple Superposition: A natural (and naive) scheme
to facilitate swarm navigation based on stream func-
tions would be a superposition: Let the streams "carry"
every robot to the "catchment area" while at the same
time apply the interaction forces between neighbor
robots to keep the group as a swarm.

For example, when considering a swarm navigating
in an uniform flow with only one obstacle in the
origin, the model can be expressed as:ẋi

1 = U [1−
a2

r4 (x2
1− x2

2)] + ∑Ni
j=1g(xi

1− x j
1) and ẋi

2 = U a2

r4 2x1x2 +

∑Ni
j=1g(xi

2−x j
2). HereNi is the number of robot within

the sensor ranger of agenti. A more general expres-
sion can be written as:

ẋi = ẋi
f low + ẋi

swarm (11)

A problem with this strategy is that the robots may
collide with the obstacles due to the extra "pushing or
pulling effects" among every robot in the effort to stay
together in a swarm. See Fig.7 for such an example.

Simple Superposition with Switching: To solve the
problem of the preceding section, one strategy is to
introduce switching control, i.e., once a roboti gets
close to any obstacle, stop the swarm control for all
the robots. Then since every robot will now only keep
navigating along streamlines, no collision with the
obstacles will happen. Simulation result as shown in
Fig.8 indicates that when using this switching method
no collision happens.

Adding Repellent Profile for Obstacles: Using the
switching method can help avoid collision with obsta-
cles, but it introduces added complexity in the control
algorithm and may also lead to nonsmooth motions.
For instance, in Fig.8, it can be seen robot3 follows
its own streamline and becomes separated from other
robots.

As the reason for a robot to collide with an obsta-
cle when using the simple superposition is due to
the pushing and pulling effects from other robots,
therefore another method is to add repellent effects
for all the obstacles, once a robotk gets close to a
obstacle, then the repulsive effect from the obstacle
will try to balance the interactions onk from other
robots, and thus avoid the obstacle-agent collision. To
do this, we just need to add the−∇xi σ(xi) term back
to (10). But at this time, the added term will only be
used to represent obstacles. In this paper, the Gaussian
type function from (Gazi and Passino, 2004) is used:

σ(x) = −Aσ
2 exp(− ‖x−cσ ‖2

lσ
) + bσ . Now (10) can be

rewritten as

ẋi = ẋi
f low + ẋi

swarm+ ẋi
obs (12)

As the reason for adding the repellent profile for an
obstacle is to balance the pushing or pulling effects
from other robots, so the scope for this term to be
effective should be confined within a limited range. If
the radius of the circular obstacle isa, then the range
for ∇xσ(x) would beRrep = ma. Usually1≤m≤ 1.5.
The simulation results is shown in Fig.9.

Navigation with Connectivity Testing: In (Gazi and
Passino, 2004 and 2003), the algorithm assumes that



every robot will interact with all the other robots, i.e.,
the robots are fully connected. It can be seen this as-
sumption to some extent overlooks the information of
obstacles when building the inter-robot connections.
In this paper, we introduce a more natural algorithm
called navigation with connectivity testing or naviga-
tion with line of sight (LOS) connectivity to take into
account the presence of obstacles.

Navigation with connectivity testing means for any
robot i, other robots within its sensor range are to
be tested for suitable connectivity, i.e., only when
the connecting line between robotsi and j does not
go into any obstacles, can robotj be considered as
a neighbor fori. This means any robot will only
interact with the robots which are within its sensor
range as well as light on sight (i.e., no obstacles be-
tween interacting robots). The idea of connectivity
testing stems from the so-called probabilistic Road
Map method (PRM)in which testing the connectivity
between randomly generated nodes is a very important
process. More information can be found in (Kavraki
and Latombe, 1998), and (Guang,et. al., 2003). A
definite advantage of connectivity testing is that for
every robot the chance of being pushed or pulled to
obstacles is greatly reduced. Suppose the set of robots
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Fig. 5.Line of Sight Connectivity

within the sensor range of roboti is K i
1 and the robots

within sensor range ofi but the connecting lines with
i will goes into obstacles isK i

2 , then when calculat-
ing ẋi

swarm, only x j ∈ K i
1−K i

2 will be considered. For
example, in Fig.5,K i

1 = {1,2,4,5}, K i
2 = {2,4}, so

for robot i only robot1 and5 will be considered. If
K i

2 = K i
1, then x j ∈ /0, if robot i is not within any

effective range of the obstacles, then the governing
equation will be simplified aṡxi = ẋi

f low, as no stream-
lines will go into obstacles, so the robot can safely
keep marching along the streamline till it find other
robots.

Navigation with Probabilistic Connectivity : Again
looking for inspiration from nature, for example in
marathon, the most possible action for an athlete to
take is to catch up with the nearest runner in front
of him. So another algorithm, namely ”Navigation
with Probabilistic ConnectivityPC”, is designed as
follows: Suppose for roboti the set of robots which
are within the sensor range ofi and also have suitable
connectivity withi is {S | s1

i ,s2
i , ...sn

i}, the distances
to i is {D | d1

i ,d2
i , ...dn

i}, then the probability for
agent j to be chosen as a partner for robot i to follow
is expressed as:

Pr(choose m) =
1

dm
i

n
∑

k=1
( 1

dk
i )

(13)
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Fig. 6.Probabilistic Connectivity

Every time when agenti update its position, it will cal-
culate theẋi

swarm term only by choosingx j = xm with
probability Pr(choose m). For example, in Fig.5, the
neighbors for roboti are robot1 and5. The distances
d1

i = 4 and d5
i = 6, using (13), the probability for

robot1 and5 to be considered arePr(choose1) = 3/5
andPr(choose5) = 2/5 respectively, now roboti gen-
erates a sample of a random variablePdec which is
uniformly distributed between[0,1]; for example, if
0.45 is the number generated, as it is within[0,0.6], so
robot1 will be selected; if the number is 0.8, since it
is within [0.61], then robot5 would be selected. The
designed algorithm means any robot would put more
emphasis upon closer neighbors, far away ones will be
also be considered but with a smaller possibility. This
algorithm is more natural and it further decreases the
possibility for a robot to collide with obstacles since
in most situations the effect between two "connected"
robots will not likely go through obstacles.

6. SIMULATION RESULTS

In this section, simulation results are shown to illus-
trate the effectiveness of the algorithms discussed in
the proceeding section. Fig.7 to Fig.9 are the snap-
shots of simulation results of simple superposition,
simple superposition with switching, and adding re-
pellent profile for obstacles, respectively. For all three
simulations, there are two circular obstacles with ra-
dius1 and centered at(0,2) and(0,−2) in an uniform
flow with strengthU = 2. The initial positions of all
the robots are same for all these simulations:(−3,5),
(−3,0.5), (−2.5,−6), (−2.5,0) and (−2,−1). For
simulation result in Fig.9, the parameters for the added
repellent profiles are:Aσ1 = Aσ2 = 65, cσ1 = (0,2),
cσ2 = (0,−2), lσ1 = lσ2 = 1.1. Fig.10 and Fig.11 are
snapshots of simulation results of navigation with con-
nectivity testing and navigation with probabilistic con-
nectivity. In both simulations, there are five obstacles
located at(−6,0), (−5,5.6), (−2,−3.5), (5,5) and
(5,−5) with radius2.2, 1.3, 1.6, 4 and4. The initial
positions of 15 robots are randomly generated but for
comparison they are copied and used in both simu-
lations. The strength of the uniform flow isU = 16,
sensor range for every robot is18. The added profile
for the obstacles areAσ = (380,380,380,2980,2980),
cσ is just the center of obstacles andlσ equals 1.5
times the radius of every obstacle.

7. CONCLUSIONS

In this paper, we extend the stream function based nav-
igation method to a framework for coordinated motion
control of autonomous swarms. The stagnation point
problem associated with stream functions is identified
and a hydrodynamics based analytical solution is pro-
vided. For swarm navigation, novel concepts such as
navigation with connectivity testing and probabilistic
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Fig. 9.Adding Repellent Profile for Obstacles
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Fig. 10.Swarm Navigation with Connectivity Testing
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Fig. 11.Swarm Navigation with Probabilistic Connec-
tivity

connectivity are introduced. Extensive simulation re-
sults illustrate the effectiveness of the proposed frame-
work. Research is underway for further in-depth anal-
ysis of the proposed framework.
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