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Abstract: In this paper, we analyze two recently proposed closed-loop subspace
identification methods, referred to as innovation estimation method and whitening
filter approach respectively. The similarity and difference between them are
investigated in detail. It turns out that all closed-loop subspace identification
methods can be classified as one-step, two-step, or multi-stage projection methods.
A SISO closed-loop simulation shows that to identify a consistent model the
whitening filter approach might require longer future and past horizons than the
innovation estimation method. Copyright c© 2005 IFAC
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1. INTRODUCTION

Subspace identification methods (SIMs) are at-
tractive not only because of their numerical sim-
plicity and stability, but also for their state space
form that is very convenient for optimal esti-
mation and control. However, it is well known
that most traditional SIMs (e.g., N4SID, MOESP,
CCA) are not applicable to systems operat-
ing under closed-loop conditions without special
treatments. As pointed out by many researchers
(Ljung, 1999), the fundamental problem with
closed-loop data is the correlation between the
process noise and the input.

Aimed at identifying a state space model with
feedback, a couple of closed-loop SIMs have been
proposed in the last decade (Verhaegen, 1993;
Ljung and McKelvey, 1996; Overschee and Moor,
1997). More recent work is presented in (Qin and
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Ljung, 2003; Jansson, 2003), which has been re-
garded as a significant advance in subspace iden-
tification of feedback systems (Chiuso and Picci,
2005). The consistency of the algorithms has been
investigated in (Chiuso and Picci, 2005; Lin et
al., 2004a). The main purpose of this work is to
investigate the similarity and difference of these
two approaches, and compare the performance
based on a well known closed-loop example.

The rest of the paper is organized as follows. In
Section 2, we state the problem. The similarity
and difference of two recently proposed closed-
loop SIMs is presented in detail in Section 3. In
Section 4, a closed-loop SISO simulation is given
to show the performance of different algorithms.
Section 5 concludes the paper.

2. PROBLEM FORMULATION

In the paper, the system to be identified can be
written in an innovation form as follows,



xk+1 = Axk + Buk + Kek (1a)

yk = Cxk + Duk + ek (1b)

where yk ∈Rny , xk ∈Rn, uk ∈Rnu , and ek ∈Rny

are the system output, state, input, and inno-
vation, respectively. A, B, C and D are system
matrices with appropriate dimensions. K is the
Kalman filter gain. The system described by equa-
tion 1 can also be represented as

xk+1 = AKxk + BKuk + Kyk (2a)

yk = Cxk + Duk + ek (2b)

where AK =A−KC, and BK =B−KD. We con-
sider the input uk is determined through feedback
which makes uk correlated with past innovation
ek. We refer to equation 2 as the predictor form.

The system represented by equation 1 and the
represented by equation 2 are equivalent, but
system (1) uses the original process A matrix
while system (2) uses the predictor AK ma-
trix. If the process to be identified is unsta-
ble, the predictor Ak matrix can still be stable.
The closed-loop identification problem is: given a
set of input/output and reference measurements
under closed-loop, estimate the system matrices
(A,B,C, D) and Kalman filter gain K up to a
similarity transformation.

3. CLOSED-LOOP SUBSPACE
IDENTIFICATION METHODS

3.1 Notation and Overview

Based on state space description in equation 1, an
extended state space model can be formulated as

Yf = ΓfXk + HfUf + GfEf (3)

where the subscripts f and p denote future and
past horizons, respectively. The extended observ-
ability matrix is

Γf =




C
CA
...

CAf−1


 (4)

and Hf and Gf are Toeplitz matrices:

Hf =




D 0 · · · 0
CB D · · · 0
...

...
. . .

...
CAf−2B CAf−3B · · · D


 (5a)

Gf =




I 0 · · · 0
CK I · · · 0

...
...

. . .
...

CAf−2K CAf−3K · · · I


 (5b)

The input and output data are arranged in the
following Hankel form:

Uf =




uk uk+1 · · · uk+N−1

uk+1 uk+2 · · · uk+N

...
...

. . .
...

uk+f−1 uk+f · · · uk+f+N−2


 (6)

Similar formulations are made for Yf and Ef .
Subspace identification consists of estimating the
extended observability matrix first and then the
model parameters.

Solving xk by iterating equation 2, it is straight-
forward to derive the following relation,

Xk = LzZp + Ap
KXk−p (7)

where

Xk =
[
xk xk+1 · · · xk+N−1

]
(8a)

Lz
∆=

[
∆p(AK ,K) ∆p(AK , BK)

]
(8b)

∆p(A,B) ∆=
[
Ap−1B · · · AB B

]
(8c)

Zp
∆=

[
Y T

p UT
p

]T
(8d)

Substituting equation 7 into equation 3, we obtain

Yf = ΓfAp
KXk−p + ΓfLzZp + HfUf + GfEf(9)

If the past horizon p is large enough, the first
term on the RHS tends to zero for stable AK .
The last two terms of the RHS of equation 9
are correlated for closed-loop systems. Therefore,
most of the closed-loop SIMs try to decouple these
two terms. The SIMPCA methods proposed in
(Wang and Qin, 2002) and a later modification
in (Huang et al., 2005) move HfUf to the LHS
and use principal component analysis on the joint
input/output data simultaneously. We refer to
these approaches as one-step approaches since no
pre-estimation is needed. Another approach that
falls in the one-step approach category is the
observer/Kalman filter ID (OKID) by (Phan and
Longman, 1992) .

Since equation 9 is actually composed of f block
rows in each term and the first block row gives
an estimate of the innovation, Qin and Ljung
(Qin and Ljung, 2003) propose an innovation
estimation method (IEM) that partition equation
9 in to f block rows and use the estimated
innovation from previous block rows to further
estimate model parameters of the next block row
sequentially. An alternative method known as
IEM1 (Lin et al., 2004b) estimates the innovation
from the first block row and then treats êk as
known to estimate other model parameters. The
SSARX approach proposed in (Jansson, 2003)
uses the predictor form (equation 2) and pre-
estimate a high order ARX model parameter to



decouple the correlation between Uf and Ef .The
well known CVA algorithm proposed by Larimore
(Larimore, 1990) actually pre-estimate Hf using
a high order ARX and the move ĤfUf to the
LHS of equation 9. Shi and MacGragor (Shi and
MacGregor, 2001) also use this technique.

These approaches are referred to as two-step ap-
proaches in which a pre-estimation step is needed
to decouple the noise and control input. The pre-
estimation step is usually done by a high-order
ARX; only different information is used to carry
out the main step.

Inspired from the SSARX approach, Chiuso and
Picci (Chiuso and Picci, 2005) give a variation
known as the whitening filter approach (WFA)
that uses the predictor model form and carry
out multi-stage projections row by row. In each
block row projection causality is strictly enforced,
similar to (Qin et al., 2005). No pre-estimation
is involved but the projections have to be done
block-row wise to decouple noise from control
input. We refer to these approaches as multi-stage
projection approaches.

3.2 Innovation Estimation Method

Neglecting the first term in RHS of equation 9
and partitioning the resulting equation row-wise,
we obtain

Yfi = ΓfiLzZp + HfiUi + G−fiEi−1 + Efi (10)

where

Γfi = CAi−1 (11a)

Hfi
∆=

[
CAi−2B · · · CB D

]
(11b)

G−fi
∆=

[
CAi−2K · · · CK

]
(11c)

Yf =




Yf1

Yf2

...
Yff


 ; Yi

∆=




Yf1

Yf2

...
Yfi


 ; i = 1, 2, . . . , f

(12)
Ufi, Ui, Efi, and Ei are defined in a similar way.
For example, the first block row of equation 12 is

Yf1 = CLzZp + DU1 + Ef1 (13)

which is a high-order ARX model.

The innovation estimation method proposed in
(Qin and Ljung, 2003; Lin et al., 2004b) involves
estimating innovation sequence row-wise and es-
timating Γf through a weighted singular value
decomposition (SVD). A, B, C, D and K can also
be obtained as illustrated in (Qin et al., 2005).

3.3 Whitening Filter Approach

Based on state space description in equation 2,
an alternative extended state space model can be
formulated as

Yf = Γ̄fXk + H̄fUf + ḠfYf + Ef (14)

The modified extended observability matrix is

Γ̄f =




C
CAK

...
CAf−1

K


 (15)

and H̄f and Ḡf are:

H̄f =




D 0 · · · 0
CBK D · · · 0

...
...

. . .
...

CAf−2
K BK CAf−3

K BK · · · D


 (16a)

Ḡf =




0 0 · · · 0
CK 0 · · · 0

...
...

. . .
...

CAf−2
K K CAf−3

K K · · · 0


(16b)

Similar to the innovation estimation method, one
can substitute equation 7 into equation 14, and
partition the resulting equation row-wise as

Yfi = Γ̄fiLzZp + Γ̄fiA
p
KXk−p

+ H̄fiUi + ḠfiYi + Efi (17)

where

Γ̄fi = CAi−1
K (18a)

H̄fi
∆=

[
CAi−2

K BK · · · CBK D
]

(18b)

Ḡfi
∆=

[
CAi−2

K K · · · CK 0
]

(18c)

Therefore, through a multi-stage least squares
similar to the innovation estimation method, one
can estimate Γ̄fLz, H̄f and Ḡf . Γ̄f can be esti-
mated through a weighted SVD. It is well known
that AK , C, D, BK , and K can be obtained
through the estimates of Γ̄f , H̄f and Ḡf . After
that A and B can be backed out through the
definition of AK and BK .

[Remark 1] The above analysis clearly illustrates
the similarity between the innovation estimation
method and the whitening filter approach. They
all partition the extended state space row-wise
and utilize multi-stage least square method to
estimate system matrices. The innovation estima-
tion method starts from a state space model in
innovations form, while the whitening filter ap-
proach is based on a state space model in predictor
form.



[Remark 2] There is another implementation
of the whitening filter approach (Jansson, 2003).
One can estimate the Markov parameters through
the high order ARX, and subtracting the effect of
future inputs and outputs.

[Remark 3] As pointed out by Chiuso and Picci
(Chiuso and Picci, 2005), both approaches require
that eigenvalues of AK lie strictly inside the unit
circle. For a finite past horizon, they are biased
due to Ap

KXk−p 6= 0.

[Remark 4] For finite data the predictor model
form is time varying due to a time varying Kalman
filter, even though the system is time-invariant.
This may complicate the rank condition of Γ̄f and
the subsequent extraction of Ak and C from Γ̄f .
From this point the IEM is superior to SSARX or
WFA.

[Remark 5] The innovation estimation method
uses the process A matrix to form the observ-
ability matrix, while the whitening filter approach
uses the predictor matrix AK . For open loop un-
stable systems the whitening filter approach can
be numerically advantageous, as demonstrated in
(Chiuso and Picci, 2005). However, for bounded
systems such as stable or integrating systems, this
advantage disappears. In the next section we com-
pare these methods using the closed-loop example
given in (Overschee and Moor, 1996) which has
one integrating pole and four stable poles. The
simulation results seems to favor the innovation
estimation method.

4. SIMULATION EXAMPLE

The example in (Overschee and Moor, 1996) is
adopted here for comparison. The model of the
plant is given in a state space form:

A =




4.40 1 0 0 0
−8.09 0 1 0 0
7.83 0 0 1 0
−4.00 0 0 0 1
0.86 0 0 0 0




, B =




0.00098
0.01299
0.01859
0.0033
−0.00002




CT =




1
0
0
0
0




,K =




2.3
−6.64
7.515
−4.0146
0.86336




, D = 0

The feedback mechanism is

uk =−F (q)yk + rk

where

F (q) =
(0.61q4 − 2.03q3 + 2.76q2 − 1.83q + 0.49)

q4 − 2.65q3 + 3.11q2 − 1.75q + 0.39
(20)

and rk is a zero-mean white noise sequence with
standard deviation 1. We take the number of
data points j = 1200 and generate 100 data
sets, each one with the same reference input rk

but with different noise sequence ek. We choose
f = p = 20 for innovation estimation methodes,
and f = p = 30 for whitening filter approaches. In
our simulation, we observe that to obtain unbiased
estimation the whitening filter approach needs
larger f and p than the innovation estimation
method.

The pole estimation results for the closed-loop
experiments are shown in Figs. 2, 4, 6, and 8. From
the results we can see that all the methods can
provide consistent estimates, while the whitening
filter approach produce the worst results.

The estimates of the frequency response for the
closed-loop simulations are shown in Figs. 1, 3, 5,
and 7. We can see that the estimated frequency
responses from all the methods match well with
that of the real system at low frequency, but they
all show bias at high frequency.

5. CONCLUSIONS

In this paper, we analyze two recently proposed
closed-loop subspace identification methods, re-
ferred to as innovation estimation method and
whitening filter approach respectively. The sim-
ilarity and difference of them are investigated in
detail. Both approach partition the extended state
space model into block rows and use the infor-
mation estimated from the first block row further
estimate model parameters in the remaining rows.
Through this partition the correlation between
the process input and innovation due to feedback
is decoupled. It turns out that although they are
based on different representations of state space
models all of them can be implemented through
multi-stage least squares. All closed-loop SIMs
can be classified into one-step, two-step and multi-
stage approaches and each of them seems to have
its own advantages.
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Fig. 1. The Bode magnitude plot of PARSIM-E
for SISO closed-loop simulations.
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Fig. 2. The eigenvalues of estimated A matrix: ×
estimated pole, + system pole.
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Fig. 3. The Bode magnitude plot of PARSIM-E1
for SISO closed-loop simulations.
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Fig. 4. The eigenvalues of estimated A matrix: ×
estimated pole, + system pole.
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Fig. 5. The Bode magnitude plot of Jansson’s
approach for SISO closed-loop simulations.
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Closed Loop Pole Estimation from Jansson’ approach

Fig. 6. The eigenvalues of estimated A matrix: ×
estimated pole, + system pole.
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Fig. 7. The Bode magnitude plot of whitening
filter approach for SISO closed-loop simula-
tions.
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Closed Loop Pole Estimation from Whitening Filter approach

Fig. 8. The eigenvalues of estimated A matrix: ×
estimated pole, + system pole.


