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1. INTRODUCTION

The feedback stabilization of time-delay systems
remains is one of most interest problems in control
theory because many industrial processes mod-
elled by delay differential equations. It is well-
known that they can dramatically limit the perfor-
mance and sometimes destabilize the closed loop
system. This problem has been extensively studied
and several controllers and stability criteria based
on optimal control method (see Zavarei (1987),
Shen (1991), Feron (1992)), including H∞ and
LMI approaches (Lee (1994), Lehman (1997), Li
(1996), Li (1997)), or averaging theory (Leyman
(1992)), have been proposed. The common feature
of the referred papers is that their derivations
are based on analysis of full order system. To
decompose the design procedure and introduce a
robustness property the sliding mode technique
have been applied (Gouaisbaut, Dambrine and
Richard (2002), Gouasbaut (1999), Fridman,
Strygin and Polyakov (2004)).

In this paper, to stabilize linear time invariant
systems with delayed state and input, we use

the block control principle which is fruitful and
relatively simple, especially when dealing with
multivariable systems because the control prob-
lem is decomposed into a number of simpler
sub-problems of lower dimensions. In order to
achieve this, a special state representation must
be used which will be referred to as the Block
Controllable form (or BC-form), consisting of a
set of controlled blocks. This approach has suc-
cessfully been employed to stabilize linear systems
(Dodds (1997)) including time delayed systems
(Loukianov (2003)). Here, the possibility of ap-
plying the same method to design a predictor
based sliding mode control, is investigated. Note
that a continuos feedback controller using Smith
compensator was investigated, for example, by
Palmor (1980) and Furutani and Araki (1998), a
sliding mode predictor controller was designed by
Roh and Oh (1999) for linear systems with delay
in the control input only. We consider a linear
system with delay in both the state and control
variables.

The paper consists of the following parts. In
Section 2 the Block Controllable form for time-



delay systems is introduced, and the existence
conditions, and the transformation of the original
system to the BC-form are derived. In Section 3
the block deadtime compensation control strategy
is designed, and stability conditions of the closed-
loop system are given. In Section 4 an example of
the application of proposed decomposition strat-
egy is illustrated.

2. BLOCK CONTROLLABLE FORM FOR

SYSTEMS WITH DELAY

Consider a linear time-delay system described by
the following state equation

ẋ(t) = Ax(t) + Cx(t− τ) +Bu(t− τ) (1)

where x ∈ Rn, u ∈ Rm and A,C,B and D are
matrices of appropriate dimensions, and x(t) =
ϕ(t), ∀t ∈ [t0 − τ , t0], t0 ≥ 0, ϕ(t) is a continuous
vector-valued initial function.

The essential feature of the proposed method is
the conversation of the system (1) to the following
introduced BC-form consisting of r blocks

ẋr(t) =Arrxr(t) +Brxr−1(t− τ)

ẋi(t) =
rX
j=i

Aijxj(t) +Bixi−1(t− τ), (2)

i= 2, ...r − 1

ẋ1(t) =
rX

j=1

Aijxj(t) +B1u(t− τ)

where x̄(t) = [x1 (t) , ..., xr (t)]
T and rankBi =

dim(xi) = ni, i = 1, ..., r and
Pr

i=1 ni = n.
In this paper we consider the case ni = m, i =
1, ..., r , or n = r ×m.

The initial system is brought to the form (2)
though the iterative transformation procedure
that consists of (r − 1) steps.
Step 1. We introduce the following assumption
which will be carried for each step of the proce-
dure:

A11. rankB = n1 = m.

Using this assumption, vector x(t) and matrix B
can be partitioned as

x(t) =

·
x12(t)
x1(t)

¸
, B =

·
B12
B1

¸
where rankB1 = n1. Performing the nonsingular
orthogonal transformation x00(t) =M1x(t),

M1 =

·
In−n1 −B12B−11
0 In1

¸
, M1

·
B12
B1

¸
=

·
0
B1

¸
(3)

we assume that

A12. The system (1) has a structure such that

M1AM
−1
1 =

·
A022 0
A12 A11

¸
,

M1CM
−1
1 =

·
C022 B0

2

0 0

¸
.

Then the initial system (1) is represented as

ẋ02(t) =A022x
0
2(t) + C 022x

0
2(t− τ) (4)

+B0
2x1(t− τ)

ẋ1(t) =A12x
0
2(t) +A11x1(t) +B1u(t− τ) (5)

where x00(t) = [x1 (t) , x
0
2 (t)]

T
, x02(t) ∈ Rn−n1 ,

x1(t) ∈ Rn1 .

Step k. Consider the system obtained at (k−1)th
step (k < r − 1)

ẋ0k(t) =A0kx
0
k(t) + C 0kkx

0
k(t− τ) (6)

+B0
kxk−1(t− τ)

ẋi(t) =
kX
j=i

Aijxj(t) +Bixi−1(t− τ), (7)

i= 2, ...k − 1

ẋ1(t) =
kX

j=1

Aijxj(t) +B1u(t− τ) (8)

where rank Bi = ni = m, i = 1, ..., k − 1. For this
step, we generalize assumptions A11 and A12 as
follows:

Ak1. rankB0
k = nk = m.

Based on this assumption the subsystem (6) is
partitioned as

x0k(t) =
·
xk,2(t)
xk(t)

¸
, B0

k =

·
Bk,2

Bk

¸
where rank Bk = nk, , and xk(t) and xk,2(t)

are nk × 1 and (n −
Pk−1

j=1 nj − nk) × 1 vectors,
respectively.

Proceeding as in the first step, under the previous
assumption, we use transformation for subsystem
(6) similar to (3)

x00k(t) =Mkx
0
k(t),

Mk =

·
In−n1−···−nk −Bk,2B

−1
k

0 Ink

¸
, (9)

Mk

·
Bk,2

Bk

¸
=

·
0
Bk

¸
.

Ak2. The subsystem (6) has a structure such that

MkA
0
kM
−1
k =

·
A0k+1,k+1 0
Ak,k+1 Ak,k

¸
,



MkC
0
kM
−1
k =

·
C0k+1,k+1 B0

k+1

0 0

¸
.

Then the system (6) - (8) is represented as

ẋ0k+1(t) =A0k+1,k+1x
0
k+1(t) + C 0k+1,k+1x

0
k+1(t− τ)

+B0
k+1xk(t− τ)

ẋk(t) =Ak,k+1x
0
k+1(t) +Ak,kxk(t)

+Bkxk−1(t− τ)

ẋi(t) =
kX
j=i

Aijxj(t) +Bixi−1(t− τ)

ẋ1(t) =
kX

j=1

Aijxj(t) +B1u(t− τ), i = 2, ..k − 1

with x00k(t) = [xk(t), x
0
k+1(t)]

T , and rank Bi = ni,
i = 1, ..., k.

Step (r-1). At this last step the system (1) is
presented similar to (6) - (8) with k = r−1. Then
we assume that

A(r-1)1. rankB0
r−1 = nr = m.

A(r-1)2. The subsystem (6) with k = r − 1 has
a structure such that

Mr−1A0r−1M
−1
r−1 =

·
Ar,r 0
Ar−1,r Ar−1,r

¸
and

Mr−1Cr−1M−1r−1 =
·
0 Br

0 0

¸
Then the system (1) is presented in the BC-form
(2).

From the previous algorithm, we may state the
following result:

Theorem 1. Assume that the system (1) with the
structure n = r × m is controllable and at each
step of the BC-form algorithm assumptions Ak1
and Ak2 hold. Then, there exists an integer r ≤ n
such that the system (1) takes the form (2).

Remark. The assumption Ak1 is not necessary
since this condition implies that the system (1)
has the structure

S1: m = n1 = n2 = · · · = nr or n = r×m

If at some kth step of the BC-form algorithm we
have rankB0

k = nk < m, then the system (1) has
the structure

S2: m ≥ n1 ≥ n2 ≥ · · · ≥ nr

In the last case the inverse matrix B−1k in the
transformation (9) can be replaced by the pseu-
doinverse matrix B+

k , B
+
k = BT

k (BkB
T
k )
−1.

3. BLOCK CONTROL DESIGN

In this section, a state feedback control law is de-
veloped for transformed system (2) with structure
S1. It is more conveniently to renumber the state
variables of (2) as

ẋ1(t) =A11x1(t) +B1x2(t− τ) (10)

ẋ2(t) =A21x1(t) +A22x2(t) +B2x3(t− τ)(11)

ẋi(t) =
iX

j=1

Aijxj(t) +Bixi+1(t− τ), (12)

ẋr(t) =
rX

j=1

Aijxj(t) +Bru(t− τ), (13)

i= 3, ..., r − 1

A control strategy for (10)-(13) can be developed
considering xi+1 as a fictitious control vector in
the ith block and designing a predictor. This
procedure is outlined in the following.

Step 1. Define z1(t) = x1(t+ τ). A predictor for
the block (10) with fictitious control x2 can be
designed as

z1(t) = eA11τx1(t)+

0Z
−τ

e−A11θB1x2(t+θ)dθ. (14)

Taking the derivative of z1(t) (14),

ż1(t) = eA11τ ẋ1(t) +A11

0Z
−τ

e−A11θB1x2(t+ θ)dθ

+B1x2(t)− eA11τB1x2(t− τ)

and using (10) yields

ż1(t) = A11z1(t) +B1x2(t). (15)

The fictitious control x2(t) in (15) is chosen as

x2(t) = xc2(t) +B−11 [K1z1(t) + z2(t)] (16)

where z2(t) is a new variables vector, K1 is a
design matrix, and xc2(t) is calculated from the
equation ż1(t) = 0 as

xc2(t) = −B−11 A11z1(t) (17)

The transformed 1st block (15) with input (16)
and (17) has the desired form without delay

ż1(t) = K1z1(t) + z2(t). (18)

The algorithm (16) and (17) defines the transfor-
mation for z2(t)

z2(t) =B1x2(t) + xc2(t) +K1z1(t) (19)

: = B1x2(t) +R21z1(t),

R21 = [A11 −K1].



Step 2. Taking the derivative of (19) with respect
to time gives

ż2(t) = Ā121z1(t)+Ā22z2(t)+D21x1(t)+B̄2x3(t−τ)
where Ā21 = [K1R21 − B1A22B

−1
1 R21], Ā22 =

[R21 + B1A22B
−1
1 ], D21 = B1A21, B̄2 = B1B2.

Then defining ϕ3(t − τ) = Ā21z1 + D21x1(t) +
B̄2x3(t− τ) yields

ż2(t) = Ā22z2(t) + ϕ3(t− τ). (20)

As on the first step, the predictor for z̄2(t) = z2(t+
τ) can be designed similar to (14) as

z̄2(t) = eĀ22τz2(t) +

0Z
−τ

e−Ā22θϕ3(t+ θ)dθ.

with ϕ3(t− τ) = ż2(t)− Ā22z2(t). Then
·
z̄2(t) = Ā22z̄2(t) + ϕ3(t). (21)

Now the fictitious input vector ϕ3(t) in (21) is
chosen similar to (16) and (17):

ϕ3(t) = ϕc3(t) +K2z̄2(t) + z3(t) (22)

where z3(t) is a new variables vector, K2 is a
design matrix, and again ϕc3(t) is found from the

equation
·
z̄2(t) = 0 as

ϕc3(t) = −Ā22z̄2(t). (23)

Thus, equation (21) with (22) and (23) takes the
same form of equation (18), namely

·
z̄2(t) = K2z̄2(t) + z3(t).

This procedure may be performed iteratively ob-
taining on the ith step i = 3, ..., r

ϕi+1(t− τ) = żi(t)− Āiizi(t)

z̄i(t) = eĀiiτzi(t) +

0Z
−τ

e−Ãiiθϕi+1(t+ θ)dθ

ϕi+1(t) =ϕci+1(t) +Kizi(t) + zi+1(t) (24)

ϕci+1(t) =−Āiiz̄i(t)

where Ki is a design matrix. The variables, ob-
tained from this procedure form a transformation
given by

z1(t) = x1(t+ τ)

z2(t) =B1x2(t) + xc2(t) +K1z1(t)

ϕ3(t− τ) = ż2(t)− Ā22z2(t)

z̄2(t) = eĀ22τz2(t) +

0Z
−τ

e−Ā22θϕ3(t+ θ)dθ.

zi(t) = B̄i−1xi(t) + xci (t) +Ki−1zi−1(t)(25)

z̄i(t) = eĀiiτzi(t) +

0Z
−τ

e−Āiiθϕi+1(t+ θ)dθ

z̄i(t) = zi(t+ τ), i = 2, ..., r,

where xci (t) is calculated from
·
z̄i(t) = 0. On the

last step, the system (10)-(13) can be presented
in the new variables z1, z̄2, ..., z̄r, of the form

ż1(t) =K1z1(t) + z2(t)
·
z̄i(t) =Kiz̄i(t) + zi+1(t), i = 2, ..., r − 1
·
z̄r(t) = Ār,rzr(t) +

i=r−2X
i=0

A1r,iz1(t+ iτ) +

i=r−2X
i=0

A2r,iz2(t+ iτ) +
i=r−3X
i=0

A3r,iz3(t+ iτ)

+ · · ·+
i=1X
i=0

Ar−1
r,i zr−1(t+ iτ) (26)

+Dr,r+1x1(t) +Bru(t).

To generate a sliding mode in system (26), a
natural choice for a switching function σ(t) is
taking

σ(t) = z̄r(t)

z̄r(t) = eĀr,rτzr(t) +

0Z
−τ

e−Ār,rθϕr+1(t+ θ)dθ.

Then the following combined control law is pro-
posed

u = uc − krB
−1
r sign(σ(t)), kr > 0 (27)

where the control component uc coincides with
the equivalent control calculated as the solution
of equation σ̇(t) = 0 of the form

ueq =−B−1r [Ār,rzr(t) +
i=r−2X
i=0

A1r,iz1(t+ iτ) +

i=r−2X
i=0

A2r,iz2(t+ iτ) +
i=r−3X
i=0

A3r,iz3(t+ iτ)

+ · · ·+
i=1X
i=0

Ar−1
r,i zr−1(t+ iτ) (28)

+Dr,r+1x1(t)].

Substitution (27) and (28) into (26) yields

σ̇(t) = −krsign(σ(t)).

The state vector reaches the manifold σ(t) = 0
in a finite time, and then the sliding mode motion
on this manifold is described by the reduced order
system

ż1(t) =K1z1(t) + z̄2(t− τ)
·
z̄i(t) =Kiz̄i(t) + z̄i+1(t− τ), (29)

i= 2, ..., r − 2 (30)
·
z̄r−1(t) =Kr−1z̄r−1(t).



Theorem 2. If the matrices Ki, i = 1, ..., r − 1,
are Hurwitz then the sliding mode equation (1) is
asymptotically stable.

4. AN APPLICATION EXAMPLE

In this section, the proposed control method is
applied to control a high-speed clossed-air wind
tunnel. The the main objective of the control is
to provide a fast response so to reduce the cost of
liquid nitrogen losses during the transient regimes.
A linearized model of the wind tunnel is given by
(Manitius and Tran (1986), Manitius (1984))

ẋ1(t) =−ax1(t) + akx2(t− τ)

ẋ2(t) = x3(t)

ẋ3(t) =−ω2x2(t)− 2ζωx3(t) + ω2u(t)

where the state variable x1, x2 and x3 present the
Mach number, actuator position guide vane angle
in a driving fan and actuator rate, respectively,
a = 1

1.964 ; k = −0.117; ω = 6; ζ = 8; τ = 0.33s.
The delay τ represents the time of the transport
between the fan and the test section.

Rename the system as

ẋ1(t) = a11x1(t) + b1x2(t− τ)

ẋ2(t) = x3(t)

ẋ3(t) = a31x2(t) + a32x3(t) + b3u(t) (31)

for a11 = −a, b1 = ak, a31 = −ω2, a32 = −2ζω,
b3 = ω2.

The predictor is designed similar to (14) as

z1(t) = ea11τx1(t) +

0Z
−τ

e−a11θb1x2(t+ θ)dθ.

Then

ż1(t) = ea11τ ẋ1(t) + a11

0Z
−τ

e−a11θb1x2(t+ θ)dθ

+b1x2(t)− ea11τb1x2(t− τ)

or
ż1(t) = a11z1(t) + b1x2(t).

Introducing the desired dynamics as −k1z1, k1 >
0, the transformation (19) is now defined of the
form

z2 = ā21z1(t) + b1x2(t)

where ā21 = (a1 + k1).

Then the first block of (31) is represented in the
new variables z1 and z2 as

ż1(t) = −k1z1(t) + z2(t).

Fig. 1. The response of the state variables x1, x2
and x3.

At the second step, taking the derivative of z2,

ż2(t) = ā21(a11z1(t) + b1x2(t)) + b1x3(t)

and choosing the fictitious control x3(t) similar to
(16) yields

ż2(t) = −k2z2(t) + z3(t).

Then the transformation for z3 is of the form

z3(t) = ã31z1(t) + ã32z2(t) + b1x3(t)

where ã31 = −ā21k1 and ã32 = (a21 + k2).

The original system (31) is now represented in the
new variables z1, z2 and z3 of the form

ż1(t) =−k1z1(t) + z2(t)

ż2(t) =−k2z2(t) + z3(t)

ż3(t) = ā31z1(t) + ā32z2(t) + ā33z3(t) +

bru(t) (32)

with ā31 = (a31(ā21 − 1) − ã31k1), ā32 = (ã31 −
ã32k2 − a31 + a32(ā21 + k2)), ā33 = ã32 − a32
and br = b1b3.

To generate a sliding mode in the system (32), we
choose a switching function σ(t) as

σ(t) = z3(t) = ã31z1(t) + ã32z2(t) + b1x3(t).

The control law is selected of the form

u(t) = ueq − krsign(σ), kr > 0

where the equivalent control ueq is calculated from
σ̇ = 0 as

ueq = −(br)−1(ā31z1(t) + ā32z2(t) + ā33z3(t)).

For the simulation, the values of the control pa-
rameters k1, k2 and kr are adjusted to 0.75, 1
and 0.5, respectively. The responses of the original
state and control variables are shown in the fig.1
and fig.2 respectively.



Fig. 2. The response of control input variable u.

5. CONCLUSIONS

The decomposition block deadtime compensation
sliding mode control method has been formu-
lated for control of linear time-delay systems
which can be transformed into BC-form. The pro-
posed transformation and control design proce-
dures have step-by step character that simplifies
the solution of the problem. This method enables
to solve one of the classical problem design of pole
placement state feedback for linear systems with
delayed state and control input.
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