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Abstract: In this paper, a new type of output feedback control, called a receding
horizon finite memory control (RHFMC), is proposed for stochastic discrete-time
state space systems. Constraints such as linearity and finite memory structure
with respect to an input and an output, and unbiasedness from the optimal state
feedback control are required in advance. The proposed RHFMC is chosen to
minimize an optimal criterion with these constraints. The RHFMC is obtained in
an explicit closed form using the output and input information on the recent time
interval. It is shown that the RHFMC consists of a receding horizon control and
an FIR filter. The stability of the RHFMC is investigated for stochastic systems.
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1. INTRODUCTION

For mathematical analysis, plants or processes
are often represented as infinite impulse response
(IIR) types, which can also be described over
state space. Controls are often represented in the
form of state feedback controls when all states are
available, or output feedback controls when only
partial states, known as outputs, are available. In
case of output feedback controls, filters are often
introduced to obtain the state information from
inputs and measured outputs. These filters are
also conventionally of IIR types. A typical output
feedback control for stochastic linear systems is
the LQG control where the Kalman filter of the
IIR type is used to estimate all the states and the
LQ control in the form of state feedback controls
is calculated from the estimated state.

1 This work was supported by the SNU BK21-IT Program.

However, in fields of discrete-time signal process-
ing, the finite impulse response (FIR) type is much
preferable to the IIR type despite of heavy cal-
culation of FIR filters. The guaranteed stability,
the robustness to numerical error and temporary
uncertainties, and perfect signal reconstruction
such as a linear phase properties are well known
good properties of the FIR structure. When sig-
nal models are represented as general state space
models with systems and measurement noises,
the FIR filters were proposed for estimation of
the states. The recursive limited memory filter
(Bruckstein and Kailath, 1985) and the optimal
FIR filter (Kwon and Kwon, 1987) were given
with some limitations. Recently the unbiased FIR
filter (Kwon et al., 2002) were obtained by di-
rectly minimizing performance index of minimum
variance subject to the unbiasedness constraint.
Good properties such as deadbeatness for systems
without noises have been obtained for these filters.



So it will be meaningful to investigate whether we
can adopt the FIR structure even in the output
feedback control for state space system models.

Output feedback controls (uk) at a current time k
with finite memory structure can be represented
using measurements (yi) and inputs (ui) during a
finite time, i.e., a horizon [k −Nf k], as

uk =
k−1∑

i=k−Nf

Hk−iyi +
k−1∑

i=k−Nf

Lk−iui (1)

for some gains Hi and Li. Note that even though
the control (1) uses the finite measurements and
inputs on the recent time interval as FIR filters,
this is not of the FIR form. So this kind of
the control will be called finite memory controls
(FMC) rather than FIR controls.

In this paper, the output feedback control uk at
a current time k with the finite memory structure
will be obtained from a usual receding horizon
linear quadratic gaussian (LQG) criterion

E
[Nc−1∑

j=0

[
xT

k+j|kQcxk+j|k + uT
k+j|kRcuk+j|k

]

+ xT
k+Nc|kFxk+Nc|k

]
. (2)

where k in the right side of vertical bar means the
current time.

These output feedback controls with the finite
memory structure for the cost criterion (2) can
be called receding horizon finite memory controls
(RHFMC). To the best of authors’ knowledge,
for discrete-time state space models, there is no
general result for output feedback controls with
the finite memory like the FIR filter using finite
measurements and inputs. The discrete-time sys-
tem is more useful to apply to digital computers.

The receding horizon control has several advan-
tages and thus widely applied to industrial prob-
lems. (Nicolao and Strada, 1997; Rawlings and
Muske, 1993; Magni and Sepulchre, 1997). We will
require a constraint that the proposed RHFMC
should be unbiased from the optimal state feed-
back control that is obtained when full informa-
tion with respect to the state is available. This un-
biasedness constraint has a physical meaning that
it allows the proposed RHFMC to track the opti-
mal state feedback control on average. Since any
output feedback control can not be better in view
of performance than the optimal state feedback
control, it is desirable that RHFMC should be
unbiased from the optimal state feedback control.
It will be shown in this paper that, surprisingly,
even with this requirement the optimal solution

exists. The stability will be checked for the pro-
posed RHFMC.

This paper is organized as follows. In Section 2,
the RHFMC for discrete-time state space systems
is proposed in a form of (1). In Section 3, the
separation principle of the RHFMC is discussed
and the stability condition is investigated. Finally,
conclusions are stated in Section 4.

2. RECEDING HORIZON FINITE MEMORY
CONTROLS

Consider a linear discrete-time state space
model:

xk+1 = Axk + Buk + Gwk, (3)

yk = Cxk + vk (4)

where xk ∈ <n is the state, uk ∈ <l and yk ∈ <q

are the input and measurement, respectively. At
the initial time k0 of the system, the state xk0

is a random variable with a mean x̄k0 and a
covariance Pk0 . The system noise wk ∈ <p and
the measurement noise vk ∈ <q are zero-mean
white Gaussian and mutually uncorrelated. The
covariances of wk and vk are denoted by Qf and
Rf , respectively, which are assumed to be positive
definite matrices. These noises are uncorrelated
with the initial state xk0 .

The system (3)-(4) will be represented in a batch
form on the time interval [k+ j−Nf k+ j] called
the horizon. On the horizon [k + j − Nf k + j],
measurements are expressed in terms of the state
xk+j at the time k + j and inputs as follows:

Yk+j−1 = C̄Nf
xk+j + B̄Nf

Uk+j−1 + ḠNf
Wk+j−1

+ Vk+j−1 (5)

where

Yk+j−1
4
= [yT

k+j−Nf
yT

k+j−Nf+1 · · · yT
k+j−1]

T , (6)

Uk+j−1
4
= [uT

k+j−Nf
uT

j−Nf+1 · · ·uT
k+j−1]

T , (7)

Wk+j−1
4
= [wT

k+j−Nf
wT

k+j−Nf+1 · · · wT
k+j−1]

T ,

Vk+j−1
4
= [vT

k+j−Nf
vT

k+j−Nf+1 · · · vT
k+j−1]

T

and C̄Nf
, B̄Nf

, ḠNf
are obtained from

C̄i
4
=




CA−i

CA−i+1

CA−i+2

...
CA−1




=
[

C̄i−1

C

]
A−1, (8)



B̄i
4
=−




CA−1B CA−2B · · · CA−iB
0 CA−1B · · · CA−i+1B
0 0 · · · CA−i+2B
...

...
...

...
0 0 · · · CA−1B




=
[

B̄i−1 −C̄i−1A
−1B

0 −CA−1B

]
, (9)

Ḡi
4
=−




CA−1G CA−2G · · · CA−iG
0 CA−1G · · · CA−i+1G
0 0 · · · CA−i+2G
...

...
...

...
0 0 · · · CA−1G




=
[

Ḡi−1 −C̄i−1A
−1G

0 −CA−1G

]
, (10)

1 ≤ i ≤ Nf .

Note that definitions of (8)-(10) will be used
through this paper. It is assumed that A is non-
singular. When continuous-time systems ẋ(t) =
Ãx(t) + B̃u(t) are discretized with the sampling
time T , we obtain sampled-data systems, xj+1 =
Axj + Buj where A = eÃT . So the assumption
of the nonsingularity of A is not too restrictive to
apply in practical view.

The control at the time k + j on the horizon
[k + j − Nf k + j] will be denoted as uk+j|k
where 0 ≤ j ≤ Nc − 1. An FMC at the time k + j
can be expressed as a linear function of the finite
measurements Yk+j−1 (6) and inputs Uk+j−1 (7)
on the horizon [k + j −Nf , k + j] as follows:

uk+j|k
4
= HjYk+j−1 + LjUk+j−1 (11)

where Hj and Lj are gain matrices of a linear
control. If compared with the form (1), Hj and
Lj are denoted by

Hj =
[
HNf ,j HNf−1,j · · · H1,j

]
(12)

Lj =
[
LNf ,j LNf−1,j · · · L1,j

]
. (13)

It is noted that the control defined in (11) uses
the finite measurements and inputs.

If we assume that the full information of the state
is available, it is well known that the optimal state
feedback control for the optimal criterion (2) can
be written

u∗k+j|k =−[Rc + BT KNc−j−1B]−1BT KNc−j−1

×Axk+j (14)

where Ki satisfies

Ki+1 = AT Ki[I + BR−1
c BT Ki]−1A + Qc (15)

with the boundary condition

K0 = F. (16)

As the control (14), the optimal control is repre-
sented in a form of state feedback. It is desirable
that the intermediate output feedback FMC con-
trol (11) can track the optimal state feedback con-
trol (14) on average. Thus, we require a constraint
that the expectation of the control (11) must be
unbiased from the optimal state feedback control
(14) as

E[uk+j|k] = E[u∗k+j|k] for all states. (17)

The left and the right sides of (17) can be given
as

E[uk+j|k] = HjC̄Nf
E

[
xk+j

]
+

[
HjB̄Nf

+ Lj

]
Uk+j−1

and

E[u∗k+j|k]

= E
[− [Rc + BT KNc−j−1B]−1BT KNc−j−1Axk+j

]

=−[Rc + BT KNc−j−1B]−1BT KNc−j−1AE
[
xk+j

]
.

Since the unbiasedness condition (17) should be
applied to all states and all controls, the following
relations can be obtained:

HjC̄Nf
=−[Rc + BT KNc−j−1B]−1BT KNc−j−1A

(18)

HjB̄Nf
=−Lj (19)

which will be called the unbiasedness constraint.
It is noted that the constraint must hold regard-
less of the state and the input. This constraint
may be too strict, but surprisingly, we were able
to obtain the solution. The objective now is to
obtain the best gain matrix HB,j , subject to the
unbiasedness constraints (18)-(19).



HB,j

= min
HB,j

E

[Nc−1∑
j=0

[
xT

k+j|kQcxk+j|k + uT
k+j|kRcuk+j|k

]

+ xT
k+Nc|kFxk+Nc|k

]

= min
HB,j

E

[Nc−1∑
j=0

{
[Rc + BT KNc−j−1B]−1BT KNc−j−1Axk+j|k + uk+j|k

}T

[Rc + BT KNc−j−1B]

{
[Rc + BT KNc−j−1B]−1BT KNc−j−1Axk+j|k + uk+j|k

}

+ tr
[ Nc−1∑

j=0

KjGQGT
]]

+E
[
xT

k KNcxk

]
. (20)

Since

uk+j|k + [Rc + BT KNc−j−1B]−1BT KNc−j−1Axk+j|k

= HjḠNf
Wk+j−1 + HjVk+j−1, (21)

the following relation for the first term in (20) is
obtained

E

[{
[Rc + BT KNc−j−1B]−1BT KNc−j−1Axk+j|k

+ uk+j|k
}T

[Rc + BT KNc−j−1B]

{
[Rc + BT KNc−j−1B]−1BT KNc−j−1Axk+j|k

+ uk+j|k
}]

= tr(
√

Rc + BT KNc−j−1BHjΞNf
HT

j

√
Rc + BT KNc−j−1B)

with ΞNf
given by

Ξi
4
= Ḡi

[
diag(

i︷ ︸︸ ︷
Qf Qf · · · Qf )

]
ḠT

i +
[
diag(

i︷ ︸︸ ︷
Rf Rf · · · Rf )

]

=

[
Ξi−1 0

0 Rf

]

+

[
C̄i−1

C

]
A−1GQf GT A−T

[
C̄i−1

C

]T

. (22)

The last two terms in (20) are constant for a
control gain HB,j . All that remains is to minimize
the first term in (20) in order to obtain the solu-
tion. The objective now is to obtain the optimal
gain matrix HB,j , subject to the unbiasedness
constraint (18)-(19), in such a way that the cost
function has minimum variance as follows:

HB,j

= arg min
HB,j

tr
[√

Rc + BT KNc−j−1BHjΞNf
HT

j

√
Rc + BT KNc−j−1B

]

= arg min
H

n∑
l=1

hT
l,jΞNf

hl,j . (23)

For convenience, partition the matrix Hj in (11)
as

HT
j

√
Rc + BT KNc−j−1B

=
[
h1,j h2,j · · · hn,j

]
.

Since the unbiasedness constraint (18)-(19) is sat-
isfied, the sth unbiasedness constraint is

C̄T
Nf

hs,j = −AT KNc−j−1B[Rc + BT KNc−j−1B]−1

√
Rc + BT KNc−j−1Bes,

1 ≤ s ≤ n (24)

where es is the sth unit vector such that es =
[0, · · · , 0, 1, 0, · · · , 0]T with the nonzero element in
the sth position. For each hs,j , the following cost
function is established:

Js,j(hs,j , λs) = hT
s,jΞNf

hs,j + λT
s,j(C̄

T
Nf

hs,j

+ AT KNc−j−1B[Rc + BT KNc−j−1B]−1

√
Rc + BT KNc−j−1Bes) (25)

where λs is the sth vector of Lagrange multi-
pliers, which is associated with the sth unbi-
asedness constraint (24). Therefore, the objec-
tive is now to minimize Js,j(·, ·) (25) with re-
spect to hs,j and λs,j . To minimize Js,j(·, ·),
two necessary conditions ∂Js,j(hs,j , λs,j)/∂hs =
0 and ∂Js,j(hs,j , λs,j)/∂λs,j = 0 give 2hs =
−Ξ−1

Nf
C̄Nf

λs and (24), and thus hs is determined
by

hs,j =−Ξ−1
Nf

C̄Nf
(C̄T

Nf
Ξ−1

Nf
C̄Nf

)−1AT KNc−j−1B

[Rc + BT KNc−j−1B]−1

√
Rc + BT KNc−j−1Bes. (26)

Note that the matrix C̄T
Nf

Ξ−1
Nf

C̄Nf
is nonsingular

if and only if the matrix C̄Nf
is of full rank, since

the matrix ΞNf
is positive definite. The matrix

C̄Nf
is of full rank if {A, C} is observable for

Nf ≥ n. The gain matrix H is reconstructed from
hs (26) as follows:



HT
j =−Ξ−1

Nf
C̄Nf

(C̄T
Nf

Ξ−1
Nf

C̄Nf
)−1AT KNc−j−1B

[Rc + BT KNc−j−1B]−1
[
e1 e2 · · · en

]

= − Ξ−1
Nf

C̄Nf
(C̄T

Nf
Ξ−1

Nf
C̄Nf

)−1AT KNc−j−1B

[Rc + BT KNc−j−1B]−1 (27)

and then becomes HB,j in (23). If j is replaced
by 0, the RHFMC is obtained. Therefore, the
RHFMC uk|k with the optimal gain matrix HB,0,
shortly HB , is proposed in the following theorem.

Theorem 1. When {A,C} is observable and
Nf ≥ n, the RHFMC uk|k on the horizon [k −
Nf , k] is given as follows:

uk|k = HB(Yk−1 − B̄Nf
Uk−1) (28)

with the optimal gain matrix HB determined by

HB =−[Rc + BT KNc−1B]−1BT KNc−1

A(C̄T
Nf

Ξ−1
Nf

C̄Nf
)−1C̄T

Nf
Ξ−1

Nf
(29)

where Yk−1, Uk−1, C̄Nf
, B̄Nf

, and ΞNf
are given

by (6)-(9) and (22), respectively.

The dimension of ΞNf
in (29) may be large. So

the numerical error during inverting the matrix
can happened. To avoid the handling of the large
matrix, the optimal gain matrix can be obtained
from the following recursive equations (Kwon et
al., 2002) :

HB = −[Rc + BT KNc−1B]−1BT KNc−1AΩ−1
Nf

ηNf
(30)

where

Ωi+1 = [I + A−T (Ωi + CT R−1
f C)

A−1GQfGT ]−1A−T (Ωi + CT R−1
f C)A−1 (31)

ηi+1 = [I + A−T (Ωi + CT R−1
f C)A−1GQfGT ]−1A−T

[
ηi CT R−1

f

]
(32)

with Ω0 = 0 and η0 = 0. Note that recursive
equations can be easily derived from the structure
of the matrix (22). From Theorem 1, it can be
known that the RHFMC uk|k (28) processes the
finite measurements and inputs on the horizon
[k−Nf , k] linearly and has the properties of unbi-
asedness from the optimal state feedback control
by design. Note that the optimal gain matrix HB

(29) requires computation only on the interval
[0, Nf ] once and is time-invariant for all hori-
zons. This means that the proposed RHFMC is
time-invariant. It is a general rule of thumb that,
due to the finite memory structure, the proposed
RHFMC may also be robust against temporary

modeling uncertainties or round-off errors. The
separation principle and the stability for the pro-
posed RHFMC will be investigated in the next
section

3. SEPARATION PRINCIPLE AND
STABILITY

Before we proceed to investigate the stability
of systems without noises, it is shown that the
proposed control can be separated as a receding
control and an FIR filter.

Theorem 2. The RHFMC (28) can be represented
as a receding control and an FIR filter:

uk|k = −[Rc + BT KNc−1B]−1BT KNc−1Ax̂k, (33)

where the FIR filter x̂k is given as follows:

x̂k = (C̄T
Nf

Ξ−1
Nf

C̄Nf
)−1C̄T

Nf
Ξ−1

Nf
[Yk−1

− B̄Nf
Uk−1]. (34)

x̂k in (34) is an actual state estimator.

Theorem 2 can easily be proved so that the proof
is omitted. In (Kwon et al., 2002), it can be
found that x̂k in (34) is an optimal minimum
variance state estimator with the FIR structure.
It is known that the FIR filter (34) is a quasi-
deadbeat filter which has the deadbeat property
for the systems without noises. Before the stability
for stochastic systems is investigated, it is shown
that the stability is guaranteed for deterministic
systems that is obtained from (3)-(4) by removing
noises, i.e, xk+1 = Axk + Buk and yk = Cxk .

Theorem 3. (Kwon and Kim, 2000) If the final
weighting matrix F in the cost function satisfies
the following inequality:

F ≥ Qc + DT RcD + (A−BD)T F (A−BD),(35)

for some D ∈ Rl×n, the system driven by the
proposed RHFMC, is asymptotically stable under
the deterministic systems without noises.

If driven by the proposed RHFMC, the system
can be represented as

xk+1 =
[
A−B[Rc + BT KNc−1B]−1BT KNc−1A

]
xk

−BHḠNf
Wk−1 −BHVk−1 + Gwk. (36)

Theorem 3 implies that A−B[Rc+BT KNc−1B]−1

BT KNc−1A is Hurwitz for the terminal weighting
matrix F satisfying the inequality (35). Therefore,



only if power of noises is finite, the following
bound is guaranteed for stochastic systems:

E[xkxT
k ] < ∞. (37)

4. CONCLUSION

In this paper, a new type of control, RHFMC,
is proposed for discrete-time state space mod-
els using the input and output information. The
proposed RHFMC is obtained by minimizing the
optimal criterion, with additional unbiasedness
constraints which look difficult to solve. It is very
interesting that RHFMC consists of the receding
horizon control and the FIR filter. It is shown that
there exists a closed form solution to gain matri-
ces even under the strong unbiasedness condition
(18)-(19). The RHFMC is unbiased from the op-
timal state feedback control that can be obtained
only if the full state information is available. Due
to the finite memory structure, the RHFMC is
believed to be robust against temporary modeling
uncertainties or numerical errors. It is shown that
the stability is guaranteed under the cost mono-
tonicity condition of the receding horizon control.

The proposed RHFMC is a new type of control
and can be a substitute for the commonly used
output feedback controls such as conventional
LQG.

In addition, the proposed RHFMC will be very
useful for multirate systems, where the FIR struc-
ture is usually essential. It is noted that the con-
cept in this paper may be applied to the other
type of optimal criterion.
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