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Abstract: This paper develops a supervisory level power flow suboptimal controller for a 
hybrid electric vehicle.  The power flow model has two modes of operation determined 
by whether or not the electric motor is motoring or generating.  The solution to the hybrid 
optimal control problem uses the recently developed embedding technique which places 
the original problem into a parameterized family of problems.  The parameterized family 
of problems, amenable to the application of classical optimal control theory, is then 
solved.  Because of the usual numerical difficulty in solving the state and adjoint 
equations simultaneously combined with nonlinearities in the model, a suboptimal 
piecewise solution is obtained for tracking a trapezoidal driving profile.  Results are 
reasonable and encouraging.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
This paper, building on a companion paper which 
developed a power flow control model for a HEV, 
investigates the supervisory level power flow control 
problem for a parallel configured HEV having an 
internal combustion engine ICE (diesel) with an 
electric-motor-battery-pack to propel the vehicle.  
The model of the companion paper uses a 4-cylinders 
1.9 L diesel engine and a continuously variable 
transmission (CVT) to potentially enhance the 
operating efficiency of the ICE.  A 57 kW electric 
motor (EM) is used in conjunction with a battery 
pack of twenty-seven of 13 Ah 12 V lead acid 
batteries connected in series.  
 
Given a trapezoidal driving profile, the supervisory 
control must decide how best to utilize the battery-
EM and ICE to achieve optimal performance, for 
example, tracking a driving profile with minimum 
fuel consumption while maintaining state of charge 
constraints (SOC) on the battery which entails the 

timing and extent of time that the electric-motor-
generator EM/GEN is in the generating mode and 
how best to recover breaking energy.  This is termed 
a Power Management Control Problem. Figure 1 
shows a block diagram of the subsystems where 
arrows indicate potential power flows.   
 

 
 
Fig 1. Schematic of HEV power flows. 

 
Once deciding on power flows, the supervisory 
control then instructs local controllers to implement 
its computed optimal power flow profiles for each 
subsystem through a coordinator level.  Fig. 2 shows 
the supervisory level, the coordination level, and the 
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local subsystem controllers. Details of the 
coordinated decentralized control problem and its 
solution are the subject of a future paper.  
 
The control of an HEV to achieve optimal 
performance (minimum emissions, maximum fuel 
economy, satisfaction of drivability constraints in the 
presence of known/unknown road conditions and 
driver demands) includes the classical 
continuous/discrete variables in concert with logical 
or decision variables that determine the mode of 
operation.  A unified mathematical tractable 
formulation for the optimal control of such problems 
has only recently been developed (Bengea and 
DeCarlo, 2005).     
 

 
 
Fig. 2.  Supervisory power flow control strategy.  
 
The idea of a supervisory level power flow control 
problem has occurred earlier in Brahma, et al., (2000) 
and C.C. Lin, et al., (2003) who adopt a two-level 
(supervisory and local) hierarchical approach to 
solving the HEV control problem; their approach 
uses instantaneous power flow levels, the 
corresponding efficiencies and/or losses of each 
subsystem, and the battery SOC in dynamic 
programming. The conceptual approach taken in this 
work has elements from both.  Yet, in contrast to C.C. 
Lin, et al., (2003), and whose work used dynamic 
programming to optimize the fuel economy and 
emission reduction at the supervisory level, this 
study strictly solves “power management problem” 
for the optimal power flow at the supervisory level 
using vehicle velocity dependent efficiencies.  
Further, in contrast to Brahma, et al. (2000), the 
power flow model is fully dynamic containing diff. 
eqs. in engine power, in vehicle velocity, and in SOC, 
along with velocity dependent efficiencies which add 
another level of difficulty to the problem. For other 
related work on HEV modeling and control strategies, 
see Powell, et al. (1998); Paganelli, et al., (2001), 
Phillips, et al.(2000); Saeks, et al. (2002).  
 
According to C.C. Lin, et al., (2003), there are five 
possible modes of operation for the HEV: motor only, 
engine only, motor assisted engine, engine charging 
the battery, and regenerative braking.  From the 

power management perspective of this study, 
however, there are only two modes of operation:  
EM/GEN motoring ( v = 0 ) and EM/GEN generating 
( v = 1 ).  Situations in which the ICE is off or the EM 
is off are viewed as 0-valued controls rather than 
modes of operation.  Notice that the vehicle can be 
motoring while in the GEN mode also.   
 

2. HEV MODEL 

From the companion modeling paper (Uthaichana et 
al. 2005), the modeling equations are: 
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with, 

  
d1,0 = −0.2856 , 

  
d2,0 = 1.4734 , 

  
d3,0 =  

 7.569 ⋅10−3 , 
  
d4,0 = 0.6834 , 

  
d1,1 = −0.2384 , 

  
d2,1  

 = 1.4852 , 
  
d3,1 = 6.872 ⋅10−3 , 

  
d4,1 = 0.6635 , and 

 

  
( ) ( )

( )

21
2

1000
( )

1000
           ( )

v
v b

c c V

d c
F

c V

k
V V k sgn P t

m m V

P t
m V

V
ε

ε ε
ε

= − + −
+

+
+

� �
	 

� �

�

(2c) 

 
(Note: the first term in equation 2c is aerodynamic 
drag and rolling resistance losses.)  When motoring 

v(t) = 0 , PF (t) = PC (t) , Pb (t) = Pbrake
max (t) ⋅ubrake(t) , 

[ ]T0 ( ), ( ), ( ), ( )ICE bat brakeu u t eng t u t u t= , ,Pbat nom = ; 

17 kW, when generating v(t) = 1 , 
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where (i) PICE  is ICE power in kW with PICE
max  

being the maximum; while  (ii) Wbat is the 

normalized battery energy or SOC while Wbat
max is the 



 

maximum battery energy, (iii) V is the vehicle 
velocity, (iv) uICE (t)  is the normalized ICE power 

control input (v) eng(t) ∈ 0,1{ }  denotes off-on 
operation of the ICE, (vi) ubat (t) is the normalized 
battery power control input, (vii) ubrake (t)  is the 

normalized control while Pbrake
max (V ) is the maximum 

mechanical braking power, (viii) split(t) is the 
normalized fraction of ICE power diverted to the 
generator, (ix) r(t) is the normalized fraction of the 
maximum regenerative braking power, (x) τ ICE  is 
the nominal ICE delay; (xi) PF (t )  is the propelling 
power, (xii) Pb (t ) is the total braking power, (xiii) 
εd is differential efficiency, (xiv) εV is a 
regularization term. 

 

3. POWER MANGEMENT CONTROL OF HEV 

 
In this section we address the power management 
control problem at the supervisory level.  The goal is 
to compute the desired power level command 
profiles for the main subsystems of the HEV that 
achieve a balance between power consumption and 
reasonable velocity tracking of an a priori given 
desired velocity profile—dashed trapezoidal curve in 
fig. 5 specified over the time interval [0, 12] s having 
the analytical expression, 

V des = 14
6

t ⋅1+ (t) − 14
6

t − 6( )⋅1+ (t − 6)

− 14
3

t − 9( )⋅1+ (t − 9) + 14
3

t −12( )⋅1+ (t −12)
  (3) 

where 1+ (t)  denotes the step function.  The control 
objective is achieved by a performance measure 
chosen so that both power consumptions and vehicle 
velocity tracking error are penalized. The following 
subsection formulates rigorously the optimal control 
problem. 
 
3.1 Optimal Control Problem Formulation 
 
In the motoring mode the important controls goals 
considered here are: 

(i) Minimize [V (t) − V des (t)]2  to achieve tracking 

of V des , equation 3; 
(ii) Minimize ICE power usage so as to minimize 

fuel consumption; 
(iii) Operate ICE in regions of high torque-speed 

efficiency, i.e., to operate the ICE at velocities 
for which the ICE efficiency ηICE is large; 

(iv) Maintain the (normalized) energy of the battery 
(SOC) within a prescribed range, [0.4, 0.8]; 
hence, we penalize the deviations of SOC from 
the nominal value of 0.6; 

(v) Minimize battery power usage. 
 

These goals suggest the following cost function for 
the motoring (v(t)=0) and generating (v(t)=1) modes:  
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average loss due to battery charging via the 
generating power) are normalized coefficients for the 
cost function. The normalized coefficients are chosen 
to ease the analysis and interpretation of each term in 
the cost function; moreover, adjusting the importance 
of each term in the cost function can be done more 
intelligently on the normalized scale where relative 
weighting is important.  
 
Hence the hybrid optimal control objective in the 
embedded framework, v(t) ∈ 0,1[ ] , of Bengea and 
DeCarlo (2005) is:  
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subject to the set of dynamical equations (1) and (2) 
and that the control inputs are contained in the unit 
interval. 
 
3.2 Optimal Control Input Construction 
 
The optimal control algorithm, solved at the 
supervisory level, is based on the theoretical 
procedure developed in Bengea and DeCarlo (2005) 
for switching systems.  The proposed algorithm 
computes the optimal control inputs as well as the 
operating mode by minimizing the objective function 
(5) subject to the state dynamical constrained (1) and 



 

(2).  The state constraints are enforced by the use of 

the Lagrange multiplier [ ]1 2 3, , Tλ λ λ λ= . In the 

absence of a final terminal state constraint, we take, 
as usual, without loss of generality, the Lagrange 
multiplier of the performance index, λ0 = −1 . The 
procedure for determining the suboptimal control 
inputs consists of the following steps at each time t: 
 
Step 1: Compute the Hamiltonians for each mode of 
operation 

Step 1a: Define the Hamiltonian H0 associated 
with the motoring mode as: 

[ ]0
0 0 0 1 2 3 0 + , ,H f fλ λ λ λ= ⋅ ⋅   (6)  

Step 1b: Define the Hamiltonian H1 associated 
with the generating mode as: 

[ ]0
1 0 1 1 2 3 1+ , ,H f fλ λ λ λ= ⋅ ⋅   (7) 

 
Step 2: Compute the control inputs for each mode of 
operation as the arguments that maximize the 
Hamiltonians; determine the optimal mode of 
operation 

Step 2a: Compute  
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such that H0  is maximized i.e., 
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maximized i.e., 
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Step 2c: { }0 1arg max ,
v

v H H= with the 

Hamiltonians evaluated at the control inputs 
from steps 2a and 2b, respectively. 
 

Step 3: Determine the derivatives of the state and the 
adjoint state 

Step 3a: If v = 0 then
�
�x(t) = f0 (x(t),u0 (t))  and 
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where the partial derivatives are evaluated at the 
state x(t) , the adjoint state, λ(t) , and the 
control input, u0 (t) . 
Step 3b: If v = 1 then 
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where the partial derivatives are evaluated at the 
state x(t) , the adjoint state λ(t)  and the control 
input u1(t) . 

 
Although the above equations represent necessary 
conditions for optimality, the proposed control 
cannot be immediately derived due to the unknown 

value for the initial adjoint state 

[ ]1 2 3(0) (0), (0), (0) Tλ λ λ λ= . Moreover, the adjoint 

state must satisfy the boundary constraint 

λ(t f ) = 0T , a consequence of unconstrained terminal 

state . Further with the difficulties given by the HEV 
nonlinear equations and by the switching behavior, 
there results challenging numerical problems.   
 
3.3 Suboptimal Control Input Construction 
 
To overcome the difficulties mentioned in the 
previous section, we divide the optimization interval 
into three subintervals and solve three separate 
optimization problems: 

min fv(t )
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for [ ] [ ] [ ]{ }0 , 0,6 , 6,9 , 9,12i i
ft t� � =

� �
, i = 1,2,3, subject 

to a continuous state over the entire interval, i.e., for 
a feasible suboptimal solution, we require 

( ) ( )1
0

i i
fx t x t += .  For an overall optimal solution, 

( )3 12 0T
ftλ = = .  Hence we solve for the suboptimal 

solution forward and backward in time as follows: 
First, we minimize the cost function (equ 10) over 

the interval 9,12[ ] s subject to ( )3 0T
ftλ =  and a 

desired ( )3 6[0, 0.6, 0] [2.45 10 , 0.6, 0.04]T T
fx t −= ≅ ⋅ .  

This approximate terminal condition is chosen for 
numerical reasons.  The obtained cost, and control 
input are optimal over [9, 12] s with the initial 

condition x(t0
3)  that results from the backward 

simulation. Second, we consider the interval [0,6] s 
for which we have a known initial condition 

x(t0
1 ) = x(0) = [0, 0.6, 0]T .  We then guess or search 

for the proper adjoint state initial condition, λ(0)  to 

produce a state x(t f
1 )  within an acceptable range of 

performance: PICE (t = 6) ∈ 40, 73[ ] kW, Wbat (t = 6)  
∈[0.55,0.6]  where from simulation studies the lower 
bound is sufficient for the EM to operate at its full 
capacity for the first six seconds, and 
V (t = 6) ∈[12.5,15] m/s.  Then we search within a 
small ball about the nominal value of λ(0)  that 

produced an acceptable x(t f
1 )  to produce a locally 

minimal cost function. We then set x(t0
2 ) = x(t f

1 )  

and  x(t f
2 ) = x(t0

3)  and minimize the cost function 

(equ. 10) by finding consistent values of the adjoint 
variable terminal conditions over [6,9] s.  The 
simulation results both forward and backward in time 
are obtained via the usage of ode15s function solver 
in MATLAB with the options of error tolerance of 
10-4 for a scalar, and error tolerance of 10-8for each 



 

component of a vector.  The discussion and 
presentation on the numerical results are given in the 
next sections. 
 

4. SIMULATION RESULTS  
 

In this section we present the results of the 
suboptimal control developed as per the description 
in the previous section.  The coefficients in the cost 
function, equ (4), are selected such that 

, ,
v v v v
bat V ICE a ICE bC C C C> > > i.e., the deviation of  

Wbat from Wavg = 0.6 is more heavily weighted than 

the vehicle velocity tracking error, which is 
considered more important than ICE power usage. 
Control inputs were computed for three separate 
intervals, [9,12], [0,6] and [9,6] s, respectively. The 
simulation results for the three intervals are 
combined and plotted in Figs. 3-6. 
 

 
 

Fig 3.  EM/GEN power absorption/delivery with 

superimposed plot of PEM /GEN
max . 

 
At startup, the EM (fig 3) operates at its maximum 
(speed dependent) power level to propel the vehicle. 
There is insufficient available power for perfect 
tracking. At V > 1.877 m/s (around t = 1.1  s), the 
ICE kicks in, while EM continues to deliver 
maximum (speed dependent) power or equivalently 
absorbs maximum allowable power from the battery 
up to t = 2  s. The mechanical powers from both 
sources, at their full or almost full capacities, are 
delivered to the driveshaft, to reduce the tracking 
error over [1.1, 2] s. Note that ICE delivers its power 
during vehicle acceleration at a level slightly below 
its maximum steady-state level due to the delay ICEτ  

in the ICE dynamics as per Fig. 5. 
 
At 2 s when V approximates the desired speed, the 
EM reduces its power to zero by t = 3  s.  Over the 
interval [4,6] s, the ICE operates at its maximum 
allowable power, without assistance by the EM.  
Perfect tracking is not attained because the penalty 
coefficients for battery power usage and/or deviation 
of the SOC from nominal are overriding the penalty 
for imperfect tracking over this interval.   
 

 
Fig. 4. HEV’s Velocity during [0,12] sec on with 

superimposed desired velocity profile. 
 
Nevertheless the EM kicks in at about 6 s and in 
concert with the ICE, drives the vehicle to track the 
desired profile.  
 

 
Fig. 5. ICE Power usage during [0,12] sec 

 with superimposed PICE
max . 

 

 
Fig 6. Battery energy profile during [0,12] sec. 
 
However, as the vehicle approaches perfect tracking, 
eliminating further acceleration, the ICE kicks out 
while the EM maintains the velocity tracking over 
[7,9] s.  Here, the power required to sustain the 
vehicle speed is less than 20 kW.  Hence, only the 
EM needs to provide power.  
  
Finally, during the last 3 seconds, regenerative 
braking is engaged to recover a portion of vehicle 



 

kinetic energy to replenish battery power and 
increase its SOC back its starting level of 0.6 

 
5. CONCLUSION 

 
A supervisory level power flow suboptimal 
controller for a hybrid electric vehicle is developed 
and applied to the HEV dynamical model developed 
in Uthaichana, et al. (2005).  The controller 
development is based on a solution to the hybrid 
optimal control problem (Bengea and DeCarlo, 2005) 
which uses an embedding technique to place the 
existing problem into a parameterized family of 
problems.  The parameterized family of problems is 
amenable to the application of classical optimal 
control theory.  The resulting state-adjoint equations 
arising from the associated Hamiltonian are 
numerically sensitive and stiff.  Hence, they are 
solved over three separate intervals to achieve a 
suboptimal solution for which the state vector is 
continuous.  Further work on numerical solution of 
the equations is needed, but this of course is an age 
old problem.   
 
Based on the supervisory level power flow model, 
this paper sets forth a suboptimal solution to this 
problem that demonstrates reasonable drivability and 
power usage.  Local subsystem controllers must now 
be developed to track these profiles.  Hence, the 
HEV control problem is framed as a Hierarchical 
problem so as to separate the power flow problem 
from the development of local controllers to achieve 
these profiles.  Coordination of such decentralized 
subsystem controllers is a topic of future research.  In 
addition, experimentation with different cost function 
weights will lead to different performance.  It is 
expected that future work will look at allowing a 
larger deviation in battery state of charge to permit 
better vehicle tracking.  Further it would be 
interesting to evaluate the control strategy for more 
complicated driving profiles.   
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