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Abstract: In this paper, we formulate the dynamics and philosophy of Quantum-behaved 
Particle Swarm Optimization (QPSO) Algorithm, and suggest a parameter control method 
based on the whole population level. After that we introduce a diversity-guided model 
into the QPSO to make the PSO system an open evolutionary particle swarm and 
therefore propose the Adaptive Quantum-behaved Particle Swarm Optimization 
Algorithm (AQPSO). We compare the performance of APSO algorithm with those of 
SPSO and original QPQSO by test the algorithms on several benchmark functions. The 
experiments results show that APSO algorithm outperforms due to its strong global 
search ability. 
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1. INTRODUCTION 

 
Particle Swarm Optimisation (PSO), motivated by 
the collective behaviours of bird and other social 
organisms, is a novel evolutionary optimisation 
strategy introduced by J. Kennedy and R. Eberhart in 
1995 (Kennedy, et al, 1995). It has already shown to 
be comparable in performance with traditional 
optimization algorithms such as simulated annealing 
(SA) and the genetic algorithm (GA) (Angeline, 
1998; Eberhart, 1998; Krink, 2001; Vesterstrom 
2001).  
 
Since its origin in 1995, many revised versions of 
PSO have been proposed to improve its performance. 
In 1998, Shi and Eberhart introduced inertia weight 
w into evolution equation to accelerate the 
convergence speed (Shi and Eberhart, 1998) and 
therefore proposed the so-called Standard PSO 
(SPSO). In 1999, Clerc employed Constriction 
Factor K to guarantee convergence of the algorithm 
and release the limitation of velocity (Clerc, 1999). 
Ozcan in 1999 and Clerc in 2002 did trajectory 
analysis of PSO respectively (Ozcan et al, 1999; 
Clerc et al, 2002), and their works provide the golden 
rule of parameter selection. Other achievements in 
the field include Neighbourhood Topology Structure 

(Kennedy, 1999), Selection Operator in PSO 
(Angeline, 1998), Binary Version of PSO (Kennedy 
et al, 1997) and so forth. 
 
In 2004, Jun Sun et al. introduce quantum theory into 
PSO and propose a Quantum-behaved PSO based on 
Delta potential well (QDPSO) algorithm (Sun et al, 
2004). The experiment results indicate that the 
QDPSO works better than standard PSO on several 
benchmark functions and it is a promising algorithm 
due to its characteristic of global convergence. 
 
In this paper, we suggest an Adaptive Quantum-
Behaved Particle Swarm Optimisation algorithm 
based on Diversity-Guided Model, the parameter 
control of which is adaptive on global level and are 
able to overcome the problem of premature 
convergence efficiently. 
 

The rest part of the paper is arranged as follows. In 
Section 2 and Section 3, we formulate the philosophy 
and the parameter control of QPSO. The Diversity-
Guided model of QPSO is proposed in Section 4. The 
experiment results are shown in Section 5. And some 
conclusion remark is made in Section 6. 
 
 

2. PHILOSOPHY OF QPSO 
     



 
2.1 Dynamics of Standard PSO 
 
In the Standard PSO model, each individual is 
treated as a volume-less particle in the D-
dimensional space, with the position vector and 
velocity vector of particle i represented as 

and vv . 
The particles move according to the following 
equation: 
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where 
1
 and ϕ  are random numbers whose upper 

limits are parameters of the algorithm. Parameter w is 
the inertia weight introduced to accelerate the 
convergence speed of the PSO. Vector 

 is the best previous 
position (the position giving the best fitness value) of 
particle i called pbest, and vector 

 is the position of the best 
particle among all the particles in the population and 
called gbest. 
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In essence, the traditional model of PSO system is of 
linear system, under the circumstance that pbest and 
gbest are fixed as well as all random numbers are 
considered constant. Trajectory analyses (Clerc et al, 
2002) show that, whatever model is employed in the 
PSO algorithm, each particle in the PSO system 
converges to its local point p ),,( D21 ppp L

v = , one 
and only local attractor of each particle, of which the 
coordinates are  
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so that the pbests of all particles will converges to an 
exclusive gbest with ∞→t . 
 
However, a social organism is a system far more 
complex than that formulated by equation (1), and 
even the thinking mode of an individual of the social 
organism is so intricate that a linear evolvement 
equation is not sufficient to depict it at all. In practice, 
the evolution of man’s thinking is uncertain to a 
great extent somewhat like a particle having quantum 
behaviour.  
 
2.2   Quantum Model of PSO 
 
In the quantum model of a PSO, the state of a 
particle is depicted by wavefunction ),( txvΨ , instead 
of  and xv vr . The dynamic behaviour of the particle 
is widely divergent from that of the particle i  
traditional PSO systems in that the exact values of 

n
xv  

and cannot be determined simultaneously. We can 
only learn the pro ability of the particle’s appearing 
in position x from probability density 
function

vr
bv

2)t,x(rψ , the form of which depends on the 
potential field the particle lies in.  
In (Jun Sun et al, 2004), employed Delta potential 
well with the centre on point ),,( D21 pppp L

v = to 

constrain the quantum particles in PSO in order that 
the particle can converge to their local p

r
 without 

explosion. The wavefunction of the particle in Delta 
potential well is as follows 
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And the probability density function is 
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The parameter L depending on energy intension of 
the potential well specifies the search scope of a 
particle and is called “Creativity” or “Imagination” 
of the particle in this paper. 
 
In quantum-behaved PSO, search space and solution 
space of the problem are two spaces of different 
quality. Wavefunction or probability function of 
position depicts the state of the particle in quantized 
search space, not informing us of any certain 
information about the position of a particle that is 
vital to evaluate the fitness of a particle. Therefore, 
state transformation between two spaces is absolutely 
necessary. In terms of quantum mechanics, the 
transformation from quantum state to classical state 
is called collapse, which in nature is the 
measurement of a particle’s position. 
 
Monte Carlo Method, a stochastic simulation, can 
realize the process of measurement on computers. 
And the position can be given by 
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In (Sun et al, 2004), the parameter L is evaluated by  

 )(**)( txp21tL −α=+                      (6) 

Thus the iterative equation of Quantum PSO is 
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which replaces Equation (1) in QDPSO algorithm. 
 
2.3 Quantized Knowledge Seeking Model of Particles 
 
In quantum PSO, at every iteration, each particle 
records its pbest and compares its pbest with those of 
all other particles in its neighbourhood or population 
to get the gbest. Then its Learning Inclination Point p 
can be given by Equation (2) after random numbers 

1ϕ  and 2ϕ  is generated. And a Delta potential well 
is established at point p to simulate the 
tendentiousness of the particle. To execute the next 
knowledge-seeking step, parameter L must be 
evaluated. We call parameter L “Creativity” or 
“Imagination”, for it characterize the knowledge-
seeking scope of the particle, and the larger the value 
of L, the more likely the particle find out new 

     



knowledge. In QDPSO, the Creativity of the particle 
is evaluated by the gap between the particle’s current 
position and its LIP, as shown in equation (6). At last, 
by state transformation from search space to solution 
space, the new position can be got by Equation (7). If 
the new position is better knowledge than pbest, 
pbest will be replaced by the new knowledge. 
 
 

3.  AN APPROACH GLOBAL PARAMTER 
CONTROL 

 
As mentioned above, parameter L, “Creativity” or 
“Imagination” of a particle, is the only parameter in 
QPSO algorithm. The control method of L is vital to 
convergence rate and performance of the algorithm. 
In (Sun et al, 2004a), L is evaluated by the gap 
between the particles current position and LIP. 
However, this control method has two drawbacks: (1) 
evaluating the “Creativity” of individual by the   
individual’s LIP is illogical. (2) The parameter 
control method is based on local and individual level, 
for LIP is a volatile local point. It results in unstable 
and uneven convergence speed of an individual 
particle, and therefore probable premature of the 
algorithm when population size is small. 
 
In this section, we propose a novel method of 
parameter control based on global level.  
 
Although various thoughts exist in human society, 
there must be a mainstream thought accepted by 
majority. The mainstream thought can be used to 
assess individual’s creativity. If the deviation of 
individual’s thought from the mainstream thought is 
great, the individual is generally more creative and 
imaginative, and therefore capable of discovering 
new knowledge; On the contrary, if the deviation is 
small, the individual is lack of its own judgment and 
apt to drift with mainstream thought tide. Such an 
individual has a narrow knowledge-seeking scope 
and poor creativity. 

In our revised QPSO, we employ a mainstream 
thought point to evaluate parameter L, the creativity 
of a particle. The Mainstream Thought Point or 
Mean Best Position (mbest) is defined as the center-
of –gravity gbest position of the particle swarm. That 
is 
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where M is the population size and p  is the gbest 
position of particle i. The value of L is given by 

i
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where β  is called Creativity Coefficient. Thus 
Equation (10) is rewritten as  
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4. DIVERSITY-GUIDED MODEL OF QPSO 

 
As we know, a major problem with PSO and other 
evolutionary algorithms in multi-modal optimization 
is premature convergence, which results in great 
performance loss and sub-optimal solutions. In a 
PSO system, with the fast information flow between 
particles due to its collectiveness, diversity of the 
particle swarms declines rapidly, leaving the PSO 
algorithm with great difficulties of escaping local 
optima. Therefore, the collectiveness of particles 
leads to low diversity with fitness stagnation as an 
overall result. In QPSO, although the search space of 
an individual particle at each iteration is the whole 
feasible solution space of the problem, diversity loss 
of the whole population is also inevitable due to the 
collectiveness.  
 
Recently, R. Ursem has proposed a model called 
Diversity-Guided Evolutionary Algorithm (DGEA) 
(Ursem, 2001), which applies diversity-decreasing 
operators (selection, recombination) and diversity-
increasing operators (mutation) to alternate between 
two modes based on a distance-to-average-point 
measure.  The performance of the DGEA clearly 
shows its potential in multi-modal optimisation. 
 
In 2002, Riget et al (Riget et al, 2002) adopt the idea 
from Usrem into the basic PSO model with the 
decreasing and increasing diversity operators used to 
control the population. This modified model of PSO 
uses a diversity measure to have the algorithm 
alternate between exploring and exploiting behaviour. 
They introduce two phases: attraction and repulsion. 
The swarm alternate between these phases according 
to its diversity and the improved PSO algorithm is 
called Attraction and Repulsion PSO (ARPSO) 
algorithm. 
 
Inspired by works undertaken by Ursem and Riget et 
al, we introduce the Diversity-Guided model in 
Quantum-behaved PSO. As Riget did, we also define 
two phases of particle swarm: attraction and 
repulsion. It can be demonstrated that when the 
Creativity parameter satisfies β , the particles will 
be bound to converge to its local LIP p, and some 
particles will depart from p when β>1; the larger the 
β, the more particles will explode. Consequently, the 
two phases is distinguished by the parameter β and 
defined as 

1≤

 
Attraction Phase:  β=βa, where β ; 1a ≤

Repulsion Phase:  β=βr, where . 1r >β

 
In attraction phase (β=βa) the swarm is contracting, 
and consequently the diversity decreases. When the 
diversity drops below a lower bound, dlow, we switch 
to the repulsion phase (β=βr), in which the swarm 
expands. Finally, when the diversity reaches a higher 
bound, we switch back to the attraction phase. The 
result of this is a QPSO algorithm that alternates 
between phases of exploiting and exploring-
attraction and repulsion-low diversity and high 
diversity, according to the diversity of the swarm 
measured by  
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where S is the swarm, M=S is the population size, 

L  is the length of longest the diagonal in the search 
space, D is the dimensionality of the problem, p  is 
the j’th value of the i’th particle (pbest) and 

ij

jp is the 

j’th value of the average point p (mbest). 
 
The Quantum-behaved PSO algorithm with 
attraction and repulsion phases is called Adaptive 
Quantum-Behaved Particle Swarm Optimisation 
(APSO) algorithm, which is described as following. 
 
APSO ALGORITHM 
Initialise population: random xi 
Do 
    find out mbest using equation (8) 

Measure the diversity of the swarm by equation (11) 
If (diversity<dlow) beta=betaa; 
If (diversity>dhigh) beta=betar; 
for i=1 to population size M 

If f(xi)<f(pi) then pi=xi 
pg=min(pi) 

  for d=1 to dimension D 
fi1=rand(0,1), fi2=rand(0,1) 
p=(fi1*pid+fi2*pgd)/(fi1+fi2) 
u=rand(0,1) 
if rand(0,1)>0.5 

          xid=p-beta*abs(mbestd-xid)*(ln(1/u) 
else 

          xid=p+beta*abs(mbestd-xid)*(ln(1/u) 
Until termination criterion is met 
 

5. EXPERIMENT RESULTS 
To test the performance of AQPSO, seven 
benchmark functions are used here for comparison 
with SPSO in QPSO. The first function is Sphere 
function described by 
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The second function is the Rosenbrock function 
described by 
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The third function is the generalized Rastrigrin 
function described by 
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The fourth function is generalized Griewank function 
described by 
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The fifth function is De Jong’s function (no noise) 
described by 

∑
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 The sixth function is Rosenbrock variant function 
described by 
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The seventh function is Shaffer’s function described 
by 
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These functions are all minimization problems with 
minimum value zero. 
In all experiments, the initial range of the population 
listed in table 1 is asymmetry as used in (Sun et at, 
2004). The fitness value is set as function value and 
the neighbourhood of a particle is the whole 
population. We had 50 trial runs for every instance 
and recorded mean best fitness. In order to 
investigate the scalability of the algorithm, different 
population sizes M are used for each function with 
different dimensions. The population sizes are 20, 40 
and 80. Generation is set as 1000, 1500 and 2000 
generations corresponding to the dimensions 10, 20 
and 30 for first five functions, respectively, and the 
dimension of the last two functions is 2.  
We also test performance of the QPSO1, in which the 
creative coefficient beta decreases from 1.0 to 0.5 
linearly when the algorithm is running. In the 
experiments to test APSO, we set βa to be 0.7, βr to 
be 2.0, dlow to be 5 , and d6100. −× high to be 0.25. 
The best fitness values for 50 runs of each function in 
table 1 to table 7. The value in column of SPSO and 
QDPSO in from Table 2 to Table 8 is taken from 
(Sun et al, 2004; Shi, 1998). 
 
 

Table 1 
Function Asymmetric Initialization Range 

1f       (50, 100) 

2f       (15, 30) 

3f       (2.56, 5.12) 

4f       (300, 600) 

5f       (30, 100) 

6f       (30, 100) 

7f       (30, 100) 

 
 

Table 2. THE MEAN FITNESS VALUE FOR 
SPHERE FUNCTION 

M D Gmax SPSO QDPSO QPSO1 AQPSO 

10 1000 1e-20 1e-25 1e-31 1e-38 

20 1500 1e-11 1e-15 1e-20 1e-21 20 
30 2000 1e-06 1e-08 1e-11 1e-14 

10 1000 1e-23 1e-41 1e-62 1e-64  
40 20 1500 1e-14 1e-23 1e-32 1e-35 

     



 30 2000 1e-10 1e-14 1e-23 1e-28 

10 1000 1e-28 1e-61 1e-82 1e-88 

20 1500 1e-17 1e-32 1e-50 1e-58 

 
80 

30 2000 1e-12 1e-19 1e-38 1e-38 

 
Table 3. THE MEAN FITNESS VALUE FOR 

ROSENBROCK FUNCTION 
M D Gmax SPSO QDPSO QPSO1 AQPSO

10 1000 96.1715 14.2221 13.8377 10.2356 

20 1500 214.6764 175.3186 116.0543 91.5467 

 
20 

30 2000 316.4468 242.3770 187.1783 121.3245

10 1000 70.2139 15.8623 12.9653 10.3456 

20 1500 180.9671 112.4612 87.9421 79.2357 

 
40 

30 2000 299.7061 76.4273 75.6933 67.4569 

10 1000 36.2954 36.3405 11.8327 9.5639 

20 1500 87.2802 23.5443 19.7310 17.7201 

 
80 

30 2000 205.5596 71.9221 58.5165 51.6923 

 
Table 4. THE MEAN FITNESS VALUE FOR 

RASTRIGRIN FUNCTION 
M D Gmax SPSO QDPSO RQPSO1 RQPSO2

10 1000 5.5572 4.9698 4.5712 4.5178 

20 1500 22.8892 17.0789 16.0244 14.7239 

 
20 

30 2000 47.2941 48.6199 35.2052 31.6284 

10 1000 3.5623 2.0328 2.0489 2.0138 

20 1500 16.3504 10.9453 10.2717 9.1689 

 
40 

30 2000 38.5250 21.3712 23.4756 20.3481 

10 1000 2.5379 0.9232 0.8871 0.7165 

20 1500 13.4263 6.9554 7.2781 6.2659 

 
80 

30 2000 29.3063 18.130 19.9324 17.3468 

 
 

Table 5. THE MEAN FITNESS VALUE FOR 
GRIEWANK FUNCTION 

M D Gmax SPSO QDPSO QPSO1 AQPSO

10 1000 0.0919 0.1003 0.0078 0.0059 

20 1500 0.0303 0.0086 0.0002 0.0005 

 
20 

30 2000 0.0182 0.0544 0.0011 0.0015 

10 1000 0.0862 0.0484 0.0009 0.0008 

20 1500 0.0286 0.0004 0.0002 0.0008 

 
40 

30 2000 0.0127 0.0009 0.0001 0.0000 

10 1000 0.0760 0.0000 0.0000 0.0000 

20 1500 0.0288 0.0000 0.0000 0.0000 

 
80 

30 2000 0.0128 0.0000 0.0000 0.0000 

Table 6. THE MEAN FITNESS VALUE FOR 
DE JONG’S FUNCTION 

M D Gmax SPSO QDPSO RQPSO1 RQPSO2

10 1000 0.0000 0.0000 0.0000 0.0000 

20 1500 0.0000 0.0000 0.0000 0.0000 

 
20 

30 2000 0.0000 0.0000 0.0000 0.0000 

10 1000 0.0000 0.0000 0.0000 0.0000 

20 1500 0.0000 0.0000 0.0000 0.0000 

 
40 

30 2000 0.0000 0.0000 0.0000 0.0000 

10 1000 0.0000 0.0000 0.0000 0.0000 

20 1500 0.0000 0.0000 0.0000 0.0000 
 

30 2000 0.0000 0.0000 0.0000 0.0000 

 
 

Table 7. THE MEAN FITNESS VALUE FOR 
ROSENBROCK VARIANG FUNCTION 

M D Gmax  SPSO QDPSO RQPSO1 RQPSO2

20 2 2000 0.0000 0.0000 0.0000 0.0000 

40 2 2000 0.0000 0.0000 0.0000 0.0000 

80 2 2000 0.0000 0.0000 0.0000 0.0000 

 
 

Table 8. THE MEAN FITNESS VALUE FOR 
SHAFFER’S FUNCTION 

M D Gmax  SPSO QDPSO RQPSO1 RQPSO2 

20 2 2000 0.0012 0.0051 7.9437-e4 3.8735-e5 

40 2 2000 0.0006 0.0018 1.5385-e5 6.7258-e6 

80 2 2000 0.0002 0.0004 8.5111-e7 3.8259-e7 

 
 
The numerical results show that the revised AQPSO 
works better than QDPSO, SPSO and QPSO. And 
the results of experiment on Shaffer’s function in 
table 8 are exciting. The function has sub-optima 
0.0097. It is shown that particles of SPSO system are 
able to escape trap of the sub-optima more frequently 
than that of QDPSO, for the reason that the particles 
in SPSO search along relatively continuous 
trajectories, while those in QDPSO fly discretely so 
that they may miss the narrow zone where the 
optimal may lies. But the particles of QPSO1 and 
APSO can escape the narrow trap more readily than 
SPSO and QDPSO. It demonstrates, with new 
adaptive approach of parameter control, the AQPSO 
has better global search ability. 
 
 
 

6. CONCLUSION 
 
In this paper, based on the Quantum-behaved PSO, 
we formulate the philosophy of quantum-behaved 
PSO, which is not discussed in detail in (Sun et al, 
2004). And then, we set forth an adaptive approach 
of parameter control and propose AQPSO algorithm. 
The AQPSO outperforms QDPSO and SPSO on all 
benchmark functions employed by this paper, as the 
experiment result shows. In the AQPSO, the 
evaluation of parameter L depends on a global 
position, Mean Best Position (mbest), which is 
relatively stable as the population is evolving, and 
parameter β alternate between two phases (attraction 
and repulsion). In this model, the PSO system is an 
open system instead, and consequently, the global 
search ability of the algorithm is enhanced.  
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