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Abstract:
Design of sampled-data control systems is considered, where the closed-loop poles
of the discretized system are shifted in a successive manner, in order to achieve a
desired overall pole allocation. Modal extraction and the linear quadratic optimal
regulator for sampled-data systems are employed in each step of the pole shifting
operation, using both continuous-time and discrete-time representation of the
controlled plant and the performance index to be minimized. Unfortunately, the
optimality of the overall closed-loop system cannot be guaranteed, due to repeated
conversion between continuous-time and discrete-time systems in the iterative
method. However, the performance index in each step can be utilized as a guide
for choosing reasonable location of the closed-loop poles from practical point of
view. Copyright c© 2005 IFAC
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1. INTRODUCTION

The linear quadratic (LQ) regulator is widely
used in the design of control systems. The basic
theory has been well established, and the stabil-
ity of the closed-loop system is guaranteed for
arbitrary weighting matrices of the performance
index, provided the assumptions regarding posi-
tive definiteness, controllability and observability
are satisfied. Thus, the optimal solution can be
readily calculated if a specific performance index
to be minimized is given as a design parameter.
This is not always the case, however, and it
often happens in a practical situation that the
weighting matrices of the performance index need
to be adjusted as the tuning parameters. The
performance index alone may not be sufficient
for describing the design objective, and the
weighting matrices may be adjusted according
to the response of the closed-loop systems, for
instance. The location of the closed-loop poles

may be regarded as a guide in the selection of
the weighting matrices. However, the relationship
between the weighting matrices and the closed-
loop poles is not straightforward except for special
cases (Harvey and Stein, 1978). Moreover, the
specification of the closed-loop alone is not always
sufficient for achieving desired response. This
often leads to trial and error in the choice of
weighting matrices.

There has been some work which employs modal
decomposition and successive shifting of a real
pole or a pair of complex conjugate poles (Sol-
heim, 1972; Amin, 1984; Medanic et al., 1988;
Saif, 1989; Tharp, 1992; Fujinaka and Shibata,
1996) for continuous-time systems and discrete-
time systems. These methods restrict the choice
of the weighting matrices to some extent, but it
may be effective in eliminating too much freedom
in the design parameters.



This paper is concerned with the design of
sampled-data system by the successive pole shift-
ing method using sampled-data LQ regulators.
The sampled-data LQ regulator considers the
inter-sample behavior of the controlled plant,
whereas the discrete-time LQ regulators applied
to sampled-data systems only treat the behav-
ior at the sampling instants. Thus, the use
of sampled-data LQ regulators may have some
advantage when the inter-sample behavior of the
controlled plant is crucial in the design of the
control system.

Basically, the sampled-data LQ regulator prob-
lem can be solved by converting the original
problem into an equivalent discrete-time LQ
regulator problem. Thus, the controlled plant
and the performance index are given in terms
of continuous-time representation, for which the
optimal solution is given in terms of discrete-
time feedback law. This leads to a difficulty
when successive pole shifting is considered, since
the intermediate system results in a sampled-
data control system which cannot be described
as a pure continuous-time or discrete-time system
treated in the standard LQ regulator theory. In
order to consider the inter-sample behavior of
the controlled system in the intermediate stage,
the discrete-time representation of the sampled-
data control system is temporarily converted to
an equivalent continuous-time system. Then the
weighting matrices for the continuous-time perfor-
mance index are converted to those of an equiv-
alent discrete-time representation, using the coef-
ficient matrices of the temporary continuous-time
system. The intended pole shifting is achieved
with the optimal feedback gain obtained for the
converted discrete-time LQ regulator problem.
This procedure may be repeated as many times
as desired, and the feedback gain in each stage is
accumulated to obtain the final result.

2. SAMPLED-DATA LQ REGULATOR

Basic results regarding the LQ regulator theory
are briefly reviewed in this section. Consider
a continuous-time linear time-invariant system
described by the state equation

ẋc(t) = Acxc(t) + Bcuc(t) (1)

where xc ∈ Rn is the state, uc ∈ Rm is the input,
and Ac ∈ Rn×n and Bc ∈ Rn×m are the coefficient
matrices. It is assumed that the pair (Ac, Bc)
is stabilizable and that the state variable x(t)
is directly available for observation. Thus, state
feedback control is considered throughout this
paper, and the output of the system is irrelevant
for the design purpose.

The standard continuous-time LQ regulator prob-
lem is to find a control law which minimizes the
performance index

Jc =

∞∫

0

{xc(t)T Qcxc(t) + uc(t)T Rcuc(t)}dt (2)

where Qc ∈ Rn×n is a positive semidefinite
weighting matrix for the state xc(t), and Rc ∈
Rm×m is a positive definite weighting matrix for
the input uc(t). The pair (Q1/2, A) is assumed
to be detectable, which guarantees the stability
of the corresponding closed-loop system. The
optimal solution for the continuous-time system
is given by the state feedback law

uc(t) = Fcxc(t) (3)

Here, the matrix Fc ∈ Rm×n is the optimal
feedback gain, given by

Fc = −Rc
−1Bc

T Pc (4)

and the matrix Pc ∈ Rn×n is the stabilizing
solution of the algebraic Riccati equation

PcAc + Ac
T Pc − PcBcRc

−1Bc
T Pc + Qc = 0 (5)

The numerical solution of the algebraic Riccati
equation can be readily obtained by using an
existing software package.

Now, the sampled-data LQ regulator problem is
considered for the same system and the same
performance index stated above. With the intro-
duction of the standard zero-order hold used in
digital control systems, the manipulating input
uc(t) is restricted to be constant during each
sampling interval. Thus,

uc(t) = uk, kh ≤ t < (k + 1)h (6)

where h > 0 denotes the sampling period.
The sampled-data LQ regulator problem is to
minimize the continuous-time performance index
Jc with the additional constraint (6). It can be
solved by converting the given problem to an
equivalent discrete-time LQ regulator problem.
The standard discrete-time LQ regulator problem
is summarized in the following.

The standard discrete-time LQ regulator problem
is to consider a discrete-time system described by

xk+1 = Axk + Buk (7)

where xk ∈ Rn is the state, uk ∈ Rm is the input,
A ∈ Rn×n and B ∈ Rn×m are the coefficient
matrices, and find a control law which minimizes
the discrete-time performance index

J =
∞∑

k=0

(
xk

T Qxk + 2xk
T Suk + uk

T Ruk

)
(8)



where Q ∈ Rn×n, S ∈ Rn×m and R ∈ Rm×m

are weighting matrices. Note that a cross-term
xk

T Suk is introduced in the performance index,
since it is mandatory for the sampled-data LQ
regulator problem.

The optimal solution for the discrete-time system
is given by the state feedback law

uk = Fxk (9)

Here, the matrix F ∈ Rm×n is the optimal
feedback gain, given by

F = −(R + BT PB)−1(ST + BT PA) (10)

and the matrix P ∈ Rn×n is the stabilizing
solution of the discrete version of algebraic Riccati
equation

P = AT PA− (ST + BT PA)T

×(R + BT PB)−1(ST + BT PA) + Q (11)

Again, a numerical solution of the discrete alge-
braic Riccati equation can be calculated with an
existing software package.

In the sampled-data LQ regulator problem, the
parameters and variables of the original problem
are converted to an equivalent discrete-time LQ
regulator problem in the following manner. The
discrete-time state equation (7) is obtained by
a standard discretization with zero-order hold.
Thus,

xk = xc(kh) (12)

uk = uc(kh) (13)

A = exp(Ach) (14)

B =

h∫

0

exp(Acτ)Bcdτ (15)

The weighting matrices are converted with the
following relationship.

Ãc :=
[

Ac Bc

0 0

]
(16)

Q̃c :=
[

Qc 0
0 Rc

]
(17)

Q̃ =

h∫

0

exp(Ãcτ)T Q̃c exp(Ãcτ)dτ (18)

Q̃ :=
[

Q S
ST R

]
(19)

The numerical computation of the above conver-
sion can be performed by an existing software
package. The optimal solution to the sampled-
data LQ regulator problem is given by

uc(t) = Fxc(kh), kh ≤ t < (k + 1)h (20)

where the optimal feedback gain F is given by
(10). Thus the optimal feedback gain F can be
obtained for a specific choice of the weighting
matrices Qc and Rc. The present paper deals
with a case where the weighting matrices are
regarded as the tuning parameters during the
control system design procedure.

3. SUCCESSIVE POLE SHIFTING

An iterative design method using the LQ regulator
theory is treated in this section. In the following,
the coefficient matrix Ac of the controlled plant is
assumed to have distinct eigenvalues, for simplic-
ity.

First, a specific mode in Ac is chosen for pole
shifting, and either a real pole or a pair of complex
conjugate poles corresponding to the specified
mode is extracted by applying a similarity trans-
form. Namely, a nonsingular matrix T ∈ Rn×n

with the first one or two columns corresponding
to the eigenspace of the specified mode can be
chosen such that

T−1AcT =
[

A11 0
0 A22

]
(21)

T−1Bc =
[

B1

B2

]
(22)

where either A11 ∈ R1×1 or A11 ∈ R2×2 represents
the specified mode.

It should be noted that the weighting matrix Qc of
the quadratic performance index Jc is transformed
as well. Let Q11 be a positive semidefinite matrix
with the same size as A11, and let the whole
weighting matrix Qc be chosen as

Qc = (T−1)T

[
Q11 0
0 0

]
T−1 (23)

Then the eigenvalue of A11 can be shifted without
altering any other eigenvalues of Ac (Solheim,
1972). The choice of Q11 is assumed to satisfy the
observability of the pair (Q11

1/2, A11) in addition
to being positive semidefinite. Thus, a particular
selection of Q11 = 0 is excluded.

Now, a new matrix V defined by

V := BcRc
−1Bc

T (24)

is introduced. Applying the above transformation
matrix T to V yields T−1V (T−1)T , which is
partitioned as

T−1V (T−1)T =
[

V11 V12

V12
T V22

]
(25)

where V11 has the same size as A11 and Q11.



Thus, a pole shifting for the specified mode is
accomplished by considering the LQ regulator
problem for the first or second order system rep-
resented by the matrices A11, Q11, and V11, and
calculating the corresponding optimal feedback
gain F11. Then, the optimal solution is converted
to that for the original system.

Next, another mode in the original system is con-
sidered for pole shifting, and the similarity trans-
formation for extracting the mode is performed.
The similarity transformation matrix needs to be
calculated again, since the coefficient matrix Ac

has been altered by the application of the state
feedback. After the second mode is extracted, the
same procedure is applied to the smaller system
for desired pole shifting. This is repeated until
all the modes have been treated. Furthermore,
successive pole shifting can be accumulated in a
way such that the optimality of the overall closed-
loop system is guaranteed. The design procedure
is summarized in the following.

Step 1 Choose a transformation matrix T to
extract the partitioned matrices A11 and V11

which represent a real pole or a pair of complex
conjugate poles to be shifted.

Step 2 Find a weighting matrix Q11 with which
a desired pole positioning is accomplished.

Step 3 Calculate the weighting matrix Qc and
the corresponding optimal feedback gain Fc

for the whole system, then form a closed-loop
system with Fc.

Step 4 Go back to Step 1, while there are
remaining poles to be shifted.

Step 5 Accumulate the matrices Qc and Fc in
each step to obtain the overall weighting matrix
and optimal feedback gain which achieve the
desired pole positioning.

The above method for continuous-time systems is
valid for discrete-time systems as well. However,
the optimality of the overall system is not guaran-
teed as it is, and a modification of the weighting
matrix R is required in each step (Amin, 1984).

For sampled-data LQ regulators, the above pro-
cedure cannot be directly applied, since the
conversion between continuous-time and discrete-
time representation of the state equation as well
as the performance index is required for each
mode to be extracted. The present paper shows a
method for achieving successive pole shifting using
a first or second order system, at the cost of losing
the optimality of the overall system.

4. SUCCESSIVE POLE SHIFTING FOR
SAMPLED-DATA LQ REGULATOR

Suppose that a specific mode of the controlled
plant has been extracted as in the previous

section. Then the block diagonal structure of
T−1AcT in (21) is retained in the corresponding
coefficient matrix T−1AT of the discretized sys-
tem (7), since the relationship in (14) implies

exp
(
T−1AchT

)
= T−1AT (26)

and the matrices Ac and A share the same
eigenvectors in general. Moreover, the matrix Ãc

in (16) is given by

Ãc =
[

T 0
0 I

] 


A11 0 B1

0 A22 B2

0 0 0




[
T−1 0
0 I

]
(27)

and

exp(Ãcτ) =
[

T 0
0 I

]

× exp







A11 0 B1

0 A22 B2

0 0 0


 τ




×
[

T−1 0
0 I

]
(28)

Furthermore, the selection of the weighting matrix
Qc as given in (23) leads to the similar structure
in the weighting matrices of the discretized
performance index (8), since the relationship in
(18) implies

Q̃c =
[

T−1 0
0 I

]T



Q11 0 0
0 0 0
0 0 Rc




[
T−1 0
0 I

]
(29)

and

Q̃ =
[

T−1 0
0 I

]T

×
h∫

0

exp







A11 0 B1

0 A22 B2

0 0 0


 τ




T

×



Q11 0 0
0 0 0
0 0 Rc




× exp







A11 0 B1

0 A22 B2

0 0 0


 τ


 dτ

×
[

T−1 0
0 I

]
(30)

It should be noted that the block diagonal struc-
ture of the weighting matrix Q̃c is not retained
in the discretized version of the weighting matrix
Q̃, thus requiring the weighting matrix S in Q̃ for
the cross term between xk and uk. However, the
expansion of (30) reveals that the elements of Q̃
take the following form:



Q =
[

Q1 0
0 0

]
(31)

S =
[

S1

0

]
(32)

Thus, the similarity transformation matrix T is
valid for extracting the specific mode of the
plant in both continuous-time representation and
discrete-time representation. Finally, it can be
concluded that the choice of the continuous-time
weighting matrix Qc in the form of (23) guaran-
tees the manipulation of the specific mode in the
discrete-time representation without altering any
other ones.

Now that the shifting of a single real pole or
a pair of complex conjugate poles is achieved,
the iterative procedure is considered. There is a
substantial difficulty in handling the successive
pole shifting method of the sampled-data LQ reg-
ulators, compared to similar methods for purely
continuous-time or discrete-time LQ regulators.
This is due to the fact that the controlled plant in
the intermediate stage of successive pole shifting
is already a sampled-data control system, whereas
it is a purely continuous-time plant in the initial
stage. Although the behavior of the sampled-data
control system at the sampling instants can be
described as a purely discrete-time system, it is
not sufficient when the weighting matrix of the
continuous-time performance index is considered
as a tuning parameter for pole shifting. In order to
alleviate this difficulty, the discrete-time system

xk+1 = (A + BF )xk + Buk (33)

in the intermediate stage of successive pole
shifting is converted to an equivalent continuous-
time system

ẋc(t) = Ācxc(t) + B̄cu(t) (34)

where

A + BF = exp(Āch) (35)

B =

h∫

0

exp(Ācτ)B̄cdτ (36)

and the corresponding continuous-time perfor-
mance index

J̄c =

∞∫

0

{xc(t)T Q̄cxc(t) + uc(t)T R̄cuc(t)}dt (37)

is considered.

Then the modal decomposition is applied to the
coefficient matrix Āc, using a new transformation
matrix T̄ for extracting a next mode as in (21).
After choosing the weighting matrix Q̄c and R̄c

with the structure of Q̄c similar to that of Qc

in (23), the weighting matrix of the equivalent
discrete-time system is calculated by applying the
conversion as in (18).

The optimal feedback gain for the discrete-time
LQ regulator is capable of shifting the speci-
fied mode without altering other ones, and the
weighting matrices of the performance index is
indeed derived from a sampled-data LQ regulator
problem. This procedure can be repeated as
many times as desired, and the successive pole
shifting using the sampled-data LQ regulators
is accomplished. It should be noted, however,
that the final result may not correspond to the
solution of a sampled-data LQ regulator problem
which shifts all the specified modes in a single
step. Thus, the overall optimality cannot be
guaranteed.

5. CONCLUSIONS

A design of sampled-data system by successive
pole shifting is considered, and a tuning method
using the sampled-data LQ regulator is presented.
A single real pole or a pair of complex con-
jugate poles can be shifted at a time, without
altering other modes, using the sampled-data LQ
regulators. The design method is more involved
than a similar method based on the discrete-
time LQ regulators, and it may be of interest
to compare the capabilities of both methods,
especially in terms of the region of the closed-loop
poles accomplished.
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