ON HYBRID STOCHASTIC SINGULAR CONTROL

Jose-Luis Menaldi * Maurice Robin **
* Wayne State University, Detroit, Michigan 48202, USA
** Ecole Polytechnique, 91128 Palaiseau, France

Abstract

We consider stochastic hybrid systems controlled by a bounded variation process leading to a singular control. A typical example is considered (i.e., characterization and properties of the value function) and a more general class is discussed in a paper to appear. Copyright ${ }^{\text {© }} 2005$ IFAC.

Keywords: stochastic optimal control, hybrid-singular control, HJB equation

1. INTRODUCTION

Let us consider the following production/inventory system with only one product

$$
\begin{equation*}
\mathrm{d} x(t)=-b \mathrm{~d} t+y(t) \mathrm{d} t+\sqrt{2} \mathrm{~d} w(t) \tag{1}
\end{equation*}
$$

where $x(t)$ is the inventory level, $b>0$ is the average demand rate, $y(t)$ is the production rate and $w=w(t)$ is a given Wiener process used as the random disturbance as the time $t \geq 0$ evolves. The production system is subject to failures, and when there is not failure the rate can be controlled, i.e., if $y(0)=y$ and the rate is changed to y^{\prime} there is a cost proportional to the change, namely, $c\left|y^{\prime}-y\right|$, for a constant $c>0$. Failures can occurs at times exponentially distributed with parameter λ, and then repair takes a random time which is also exponentially distributed with parameter μ. Times between failures and repairs are mutually independent, and also independent of the driving process w. We denote by $i(t)$ the variable indicating the failure/repair state, i.e., $i(t)=1$ if the production is working (so, if a failure has occurs, it has been repaired) and $i=0$ if the production fails (and therefore the system enter in a repair mode). Then, when $i(t)=1$

$$
\begin{cases}y(t)=y+v(t) & \text { as long as } i(t)=1, \tag{2}\\ y(t)=0 & \text { if } i(t)=0\end{cases}
$$

i.e., in general

$$
y(t)=i(t)(y+v(t)),
$$

with $v(t)$ a process of bounded variation (by coordinates), the control of the production rate, and y in $\mathbb{R}^{d_{2}}$.
In the case of an infinite horizon discounted problem, one could consider minimizing the total cost

$$
\left\{\begin{align*}
J_{x y i}(v)=\mathbb{E}_{x y i} & \left\{\int_{0}^{\infty} e^{-\alpha t} f(x(t)) \mathrm{d} t+\right. \tag{3}\\
& \left.+\int_{0}^{\infty} e^{-\alpha t} c i(t) \mathrm{d}|v(t)|\right\}
\end{align*}\right.
$$

where $\mathrm{d}|v(t)|$ denotes the variation of $v(\cdot)$ on $[0, t]$, and more precise assumptions will be given later. The additive control in the equation for y and J above allows to see the previous problem as a socalled singular control in the sense of (Chow et al., 1985) and references therein.

A formal dynamic programming argument can be used to obtain the following Hamilton-JacobiBellman (HJB) equation for the optimal value function $u(x, y, i)$ denoted by $u_{0}(x, y)=u(x, y, 0)$ and $u_{1}(x, y)=u(x, y, 1)$ below

$$
\left\{\begin{array}{l}
L_{1}^{y} u_{1}+\lambda\left(u_{1}-u_{0}\right) \leq f, \quad\left|\partial_{y} u_{1}\right| \leq c \tag{4}\\
\left(L_{1}^{y} u_{1}+\lambda\left(u_{1}-u_{0}\right)-f\right)\left(\left|\partial_{y} u_{1}\right|-c\right)=0
\end{array}\right.
$$

with $L_{0} u_{0}+\mu\left(u_{0}-u_{1}(\cdot, 0)\right)=f$, and for every (x, y) in $\mathbb{R} \times[0, Y]$, some given $Y>0$, and where L_{0} and L_{1}^{y} are the following differential operators in the variable x,

$$
\left\{\begin{align*}
& L_{0} \varphi(x)=-\partial_{x}^{2} \varphi(x)+b \partial_{x} \varphi(x)+\alpha \varphi(x) \tag{5}\\
& L_{1}^{y} \varphi(x)=-\partial_{x}^{2} \varphi(x)+ \\
& \quad(b-y) \partial_{x} \varphi(x)+\alpha \varphi(x)
\end{align*}\right.
$$

and assuming that after a repair, the machine restart with a rate $y=0$, and therefore, u_{0} does not depend on y in $[0, Y]$, for some constant Y previously selected.
Comparing (4) with the HJB equations obtained in (Chow et al., 1985) (among others), one can see that we are in the optimal corrections case, with a state (x, y) for which the second component is degenerate. Note that one could also consider the case where the repair is controlled, i.e., a second control variable would act on $i(t)$.

This control problem is a simple particular case of hybrid system with singular control. Hybrid control refer to systems where there are both continuous and discrete dynamics, as well as continuous and discrete controls. Since more than ten years, many works have been devoted to hybrid control systems. One can refer to (Antsaklis et al., 1993), (Bensoussan and Menaldi, 1997; Bensoussan and Menaldi, 2000), (Branicky et al., 1998), (Menaldi, 2001) among others. On the other hand, the singular control of stochastic systems relates to situation where the effect of the control can lead to discontinuous variations of the state, the purely impulsive control being a particular case, for instance, we refer to (Fleming and Soner, 1992) and (Menaldi and Robin, 1983; Menaldi and Robin, 1984) for details on singular control.

2. A CLASS OF HYBRID-SINGULAR PROBLEMS

Taking into account the preliminary example, one could treat a class of hybrid monotone follower (to simplify the presentation) namely:

$$
\left\{\begin{array}{l}
\mathrm{d} x(t)=g_{1}(x(t), y(t)) \mathrm{d} t+ \tag{6}\\
\quad+\sigma_{1}(x(t), y(t)) \mathrm{d} w_{1}(t), \\
x(0)=x,
\end{array}\right.
$$

where x belongs to $\mathbb{R}^{d_{1}}$, and a Markov chain $i(t)$ with values in $\{0,1\}$. If $i(0)=1$ then the sequence of switching of i is denoted by $\tau_{1}, \tau_{1}^{\prime}, \tau_{2}, \tau_{2}^{\prime}, \ldots$, with $\tau_{0}^{\prime}=0$ and τ_{1} the first transition from 1 to 0 and so on, but if $i(0)=0$ then the sequence of switching of θ is denoted by $\tau_{1}^{\prime}, \tau_{2}, \tau_{2}^{\prime}, \ldots$, with $\tau_{1}=0$ and τ_{1}^{\prime} the first transition from 0 to 1 and so on. Thus,

$$
\left\{\begin{array}{l}
\mathrm{d} y(t)=\mathrm{d} \nu(t)+g_{2}(x(t), y(t)) \mathrm{d} s+ \\
\quad+\sigma_{2}(x(t), y(t)) \mathrm{d} w_{2}(t), \quad t \in\left(\tau_{j}^{\prime}, \tau_{j+1}\right)(7) \\
y\left(\tau_{0}^{\prime}\right)=y, \quad y(t)=0, \quad t \in\left[\tau_{j}, \tau_{j}^{\prime}\right], \quad j \geq 1
\end{array}\right.
$$

and minimize

$$
\begin{equation*}
J_{x y i}(\nu)=\mathbb{E}_{x y i}\left\{\int_{0}^{\infty} e^{-\alpha t} f(x(t), y(t)) \mathrm{d} t\right\} . \tag{8}
\end{equation*}
$$

Note that $y\left(\tau_{0}^{\prime}\right)=y$ is only defined when $i(0)=1$.
Let us consider the uncontrolled process

$$
z(t)=(x(t), y(t), i(t)) \in \mathbb{R}^{d_{1}} \times \mathbb{R}_{+} \times\{0,1\}
$$

and the corresponding semigroup

$$
\Phi(t) \varphi(x, y, i)=\mathbb{E}\{\varphi(x(t), y(t), i(t))\}
$$

Also assume that f is uniformly continuous with polynomial growth of degree p with respect to x and y, i.e, for each $\varepsilon>0$ there exists δ such that $\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right|<\delta$ implies $f(x, y, i)-$ $f\left(x^{\prime}, y^{\prime}, i\right) \mid \leq \varepsilon(1+|x|+|y|)^{p}$ for every $x, x^{\prime}, y, y^{\prime}$, and i. Denote by B_{p} the space of Borel measurable functions with polynomial growth of degree $p \geq 0$. If

$$
u(x, y, i)=\inf _{\nu}\left\{J_{x y i}(\nu)\right\}
$$

then the following result is obtained: the optimal cost u is the maximum solution of the set of relations

$$
\begin{aligned}
& w \leq e^{-\alpha t} \Phi(t)+\int_{0}^{t} e^{-\alpha s} \Phi(s) \mathrm{d} s, \quad \forall t \geq 0 \\
& w(x, y, i) \leq w(x, y+\xi, 1), \quad \forall \xi \geq 0 \\
& L_{0} w(x, 0,0)+\mu(w(x, 0,0)-w(x, 0,1))= \\
& =f(x, 0), \quad \forall x,
\end{aligned}
$$

where L_{0} is the generator corresponding to (5) with $y=0$ as in (6).

In order to establish this result, we can approximate the initial problem by an impulsive control problem like in (Menaldi and Robin, 1983), i.e.,

$$
\begin{aligned}
& u_{\varepsilon}(x, y, i)=\inf \left\{J_{x y i}(\nu): \nu \text { impulse }\right\} \\
& J_{x y i}^{\varepsilon}(\nu)=\mathbb{E}_{x y i}\left\{\int_{0}^{\infty} e^{-\alpha t} f(x(t), y(t)) \mathrm{d} t+\right. \\
& \left.+\varepsilon \sum_{k} e^{-\alpha \tau_{k}}\right\} .
\end{aligned}
$$

Certainly, besides the above semigroup formulation one may use the viscosity approach, and depending on the assumptions, one may have to revise the comparison arguments for viscosity solutions to be applied to this situation.

3. RESULTS

Let us continue with the study of the example in Section 1, with $f(x)=x^{2}$. The optimal cost function $\left(u_{1}, u_{0}\right)$ is the maximum solution of the HJB conditions:

$$
\begin{aligned}
& L_{1}^{y} u_{1}(x, y)+\lambda\left(u_{1}(x, y)-u_{0}(x)\right) \leq x^{2} \\
& \partial_{y} u_{1}(x, y) \leq M u_{1}(x, y) \\
& L_{0} u_{0}(x)+\mu\left(u_{0}(x)-u_{1}(x, 0)\right)=x^{2}
\end{aligned}
$$

for every (x, y) in $\mathbb{R} \times[0, Y], Y>0$, and where L_{0} and L_{1}^{y} are differential operators in the variable x as in (4), and

$$
\begin{aligned}
M \varphi(y)= & \inf \left\{c\left|y^{\prime}-y\right|+\varphi\left(y^{\prime}\right):\right. \\
& \left.: y^{\prime} \in[0, Y], y^{\prime} \neq y\right\} .
\end{aligned}
$$

Clearly, $u_{1}(x, y)=u(x, y, 1)$ and $u_{0}(x)=u(x, y, 0)$, which results independent of the variable y. We obtain the following regularity: u_{1} is strictly convex in x, and u_{0} and u_{1} have locally bounded second derivatives in x, locally bounded first derivatives in y, with $u_{i}(x, y)\left(1+x^{2}\right)^{-1}, \partial_{x} u_{i}(x, y)(1+$ $|x|)^{-1}, \partial_{y} u_{i}(x, y)(1+|x|)^{-1}, \mathrm{i}=1,2$, and $\partial_{x}^{2} u_{1}(x, y)$ are bounded in $\mathbb{R} \times[0, Y]$. Moreover, $\left|\partial_{x} u_{1}(x, y)\right| \rightarrow$ ∞ as $|x| \rightarrow \infty$.

About the optimal policy, we have
Theorem 1. There exist $R>0$ sufficiently large such that for every y in $[0, Y]$ we have $\partial_{y} u_{1}(x, y)=$ c if $x \geq R$ and $\partial_{y} u_{1}(x, y)=-c$ if $x \leq-R$. Thus for $x>R$ (or $x<-R$) it is optimal to jump immediately from y to 0 (or M). Moreover, the continuation set $\left\{(x, y):\left|\partial_{y} u_{1}(x, y)\right|<c\right\}$ is nonempty.

Proof. For a given $R>0$ to be chosen later, define $\left(w_{1}, w_{0}\right)$ as follows

$$
\begin{aligned}
& w_{1}(x, y)=u_{1}(x, 0)+c y, \quad \forall x \geq R, \forall y \in[0, Y], \\
& w_{1}(x, y)=u_{1}(x, Y)+c(Y-y), \\
& \forall x \leq-R, \forall y \in[0, Y], \\
& w_{0}(x)=u_{0}(x), \quad \forall x \in(-\infty,-R] \cup[R,+\infty), \\
& L_{1}^{y} w_{1}(x, y)+\lambda\left(w_{1}(x, y)-u_{0}(x)\right) \leq x^{2}, \\
& \bar{\forall} x \in[-R, R], \\
& \left|\partial_{y} w_{1}(x, y)\right| \leq c, \quad \forall x \in[-R, R] \\
& L_{0} w_{0}(x)+\mu\left(w_{0}(x)-u_{1}(x, 0)\right)=x^{2} \text {, } \\
& \forall x \in(-R, R) .
\end{aligned}
$$

Thus $w_{1}(x, y)$ is Lipschitz in y across $y=0$ and $y=Y$, and $w_{0}(x)$ is Lipschitz across $x=-R$ and $x=R$, and for any y in $[0, Y]$ we have

$$
\begin{aligned}
L_{1}^{y} w_{1}(x, y)= & L_{1}^{0} u_{1}(x, 0)-y \partial_{x} u_{1}(x, 0)+\lambda c y, \\
L_{1}^{y} w_{1}(x, y)= & L_{1}^{Y} u_{1}(x, Y)+\quad \\
& +(Y-y) \partial_{x} u_{1}(x, Y)+\lambda c(Y-+\infty), \\
& \forall x \in(-\infty, R],
\end{aligned}
$$

Since $L_{1}^{0} u_{1}(x, 0)+\lambda\left(u_{1}(x, 0)-u_{0}(x)\right) \leq x^{2}$ and $L_{1}^{Y} u_{1}(x, Y)+\lambda\left(u_{1}(x, Y)-u_{0}(x)\right) \leq x^{2}$ we will have $L_{1}^{y} w_{1}(x, y)+\lambda\left(w_{1}(x, y)-w_{0}(x)\right) \leq x^{2}$ for $|x|>R$ and $0 \leq y \leq Y$ if $-y \partial_{x} u_{1}(x, 0)+\lambda c y \leq 0$ for $x>R$ and $(Y-y) \partial_{x} u_{1}(x, Y)+\lambda c(Y-y) \leq 0$ for $x<-R$. Because

$$
\begin{aligned}
& \partial_{x} u_{1}(x, 0) \rightarrow+\infty \text { as } x \rightarrow+\infty \\
& \partial_{x} u_{1}(x, Y) \rightarrow-\infty \text { as } x \rightarrow-\infty
\end{aligned}
$$

we can choose R so large that $\partial_{x} u_{1}(x, 0) \geq \lambda c$ for any $x>R$ and $\partial_{x} u_{1}(x, Y) \leq \lambda c$ for any $x<-R$. Hence

$$
\begin{aligned}
& L_{1}^{y} w_{1}(x, y)+\lambda\left(w_{1}(x, y)-w_{0}(x)\right) \leq x^{2} \\
& \forall x \in(-\infty,-R] \cup[R,+\infty), \forall y \in[0, Y]
\end{aligned}
$$

which proves that $\left(w_{1}, w_{0}\right)$ is a solution of the HJB equation.

Therefore $w_{i} \leq u_{i}$, for $i=0,1$ because $\left(u_{1}, u_{0}\right)$ is the maximum solution. On the other hand, the condition $\left|\partial_{y} u_{1}\right| \leq c$ yields (by definition) $u_{1}(x, y) \leq u_{1}(x, 0)+c y=w_{1}(x, y)$ for $x>R$ and $u_{1}(x, y) \leq u_{1}(x, 0)+c(Y-y)=w_{1}(x, y)$ for $x<-R$, which proves the desired result.

Now since y belongs to $[0, Y]$, the convexity in y is not sufficient to show that the continuation set $\left\{(x, y):\left|\partial_{y} u_{1}(x, y)\right|<c\right\}$ is nonempty. Indeed we argue as follows.
Let x_{m} be a minimizer of $u_{1}(x, 0)$, i.e., x_{m} in $\operatorname{argmin}\left\{u_{1}(x, 0)\right\}$ and consider the open interval $B_{\eta}=\left\{x:\left|x-x_{m}\right|<\eta\right\}$ for some $\eta>0$ to be chosen later. Define ($u_{1}^{\eta}, u_{0}^{\eta}$) by modifying $\left(u_{1}, u_{0}\right)$ inside the interval B_{η} as follows

$$
\begin{gathered}
L_{1}^{y} u_{1}^{\eta}(x, y)+\lambda\left(u_{1}^{\eta}(x, y)-u_{0}^{\eta}(x)\right)=x^{2} \\
\forall x \in B_{\eta}, \quad \forall y, \\
L_{0} u_{0}^{\eta}(x, y)+\mu\left(u_{0}^{\eta}(x)-u_{1}^{\eta}(x, 0)\right)=x^{2} \\
\forall x \in B_{\eta} \\
\left(u_{1}^{\eta}, u_{0}^{\eta}\right)=\left(u_{1}, u_{0}\right) \text { outside } B_{\eta} .
\end{gathered}
$$

For any $\varepsilon>0$ we can choose $\eta>0$ such that $\left|\partial_{x} u_{1}^{\eta}(x, 0)\right|<\varepsilon$ for any x in B_{η}. If we set $w^{\eta}=$ $\partial_{y} u_{1}^{\eta}(x, y)$ then

$$
\begin{aligned}
& L_{1}^{y} w^{\eta}+\lambda w^{\eta}=\partial_{x} u_{1}^{\eta} \text { in } B_{\eta}, \\
& w^{\eta}=\partial_{y} u_{1}^{\eta} \text { on } \partial B_{\eta}
\end{aligned}
$$

which yields the representation

$$
\begin{aligned}
& w^{\eta}(x, y)=\mathbb{E}_{x y}\left\{\int_{0}^{\tau} e^{-(\alpha+\lambda) s} \partial_{x} u_{1}^{\eta}\left(X_{s}, y\right) \mathrm{d} s+\right. \\
&\left.+e^{-(\alpha+\lambda) s} w^{\eta}\left(X_{\tau}, y\right)\right\} \\
& \tau=\inf \left\{s: X_{s} \notin B^{\eta}\right\}
\end{aligned}
$$

Since $w^{\eta}\left(X_{\tau}, y\right) \mid \leq c$ we have

$$
\begin{aligned}
\left|w^{\eta}(x, y)\right| \leq \frac{\varepsilon}{\alpha+\lambda}(1-\mathbb{E}\{ & \left.\left.e^{-(\alpha+\lambda) \tau}\right\}\right)+ \\
& +c \mathbb{E}\left\{e^{-(\alpha+\lambda) \tau}\right\}
\end{aligned}
$$

Hence, by selection ε sufficiently small so that $\varepsilon<$ $c(\alpha+\lambda)$ we have the strict inequality. This proves that $\left(u_{1}^{\eta}, u_{0}^{\eta}\right)$ satisfies the HJB inequalities, and then $\left(u_{1}^{\eta}, u_{0}^{\eta}\right) \leq\left(u_{1}, u_{0}\right)$, which is the maximum solution. On the other hand, the maximum principle applied on the couple $\left(u_{1}^{\eta}, u_{0}^{\eta}\right)$ and $\left(u_{1}, u_{0}\right)$ in the interval B^{η} yields $\left(u_{1}^{\eta}, u_{0}^{\eta}\right) \geq\left(u_{1}, u_{0}\right)$. Therefore $\left|\partial_{y} u_{1}(x, y)\right|=\left|\partial_{y} u_{1}^{\eta}(x, y)\right|<c$ for any x in B_{η} and any y in $[0, Y]$.

The functions

$$
\begin{aligned}
& \bar{z}(x)=\inf \left\{y: \partial_{y} u_{1}(x, y)=c\right\}, \\
& \underline{z}(x)=\sup \left\{y: \partial_{y} u_{1}(x, y)=-c\right\},
\end{aligned}
$$

are the free boundary of the continuation region $\left.D=\{(x, y): \mid \partial) y u_{1}(x, y) \mid<c\right\}$. We know that for some constant $R>0$ we have $\underline{z}(x)=0$ if $x>R$ and $\bar{z}(x)=Y$ if $x<-R$, and D is bounded in $\mathbb{R} \times[0, Y]$.

REFERENCES

Antsaklis, P., J.A. Stiver and M.D. Lemmon (1993). Hybrid system modeling and autonomous control systems. In: Lecture Notes in Computer Science (R.L. Grossman et al., Ed.). Vol. 736. pp. 366-392. Springer-Verlag. New York.
Bensoussan, A. and J.L. Menaldi (1997). Hybrid control and dynamic programming. Dynamics of Continuous Discrete and Impulsive Systems 3, 395-442.
Bensoussan, A. and J.L. Menaldi (2000). Stochastic hybrid control. J. Math. Anal. Appl. 249, 161-288.
Branicky, M. S., V.S. Borkar and S.K. Mitter (1998). A unified framework for hybrid control: Model and optimal control theory. IEEE Trans. AC-43, 31-45.
Chow, P.L., J.L. Menaldi and M. Robin (1985). Additive control of stochastic linear systems with finite horizon. SIAM J. Control and Optim. 23, 858-899.
Fleming, W.H. and H.M. Soner (1992). Controlled Markov processes and viscosity solutions. Springer-Verlag. New York.
Menaldi, J.L. (2001). Stochastic hybrid optimal control models. Aportaciones Matematicas 16, 205-250.
Menaldi, J.L. and M. Robin (1983). On some cheap control problems for diffusion processes. Trans. Am. Math. Soc. 278, 771-802.
Menaldi, J.L. and M. Robin (1984). On a singular control problems for diffusions with jumps. IEEE Trans. Automatic Control AC29, 991-1004.

