
ON HYBRID STOCHASTIC SINGULAR
CONTROL

Jose-Luis Menaldi ∗ Maurice Robin ∗∗

∗Wayne State University, Detroit, Michigan 48202, USA
∗∗ Ecole Polytechnique, 91128 Palaiseau, France

Abstract: We consider stochastic hybrid systems controlled by a bounded variation
process leading to a singular control. A typical example is considered (i.e.,
characterization and properties of the value function) and a more general class
is discussed in a paper to appear. Copyright c©2005 IFAC.

Keywords: stochastic optimal control, hybrid-singular control, HJB equation

1. INTRODUCTION

Let us consider the following production/inven-
tory system with only one product

dx(t) = −bdt + y(t)dt +
√

2dw(t), (1)

where x(t) is the inventory level, b > 0 is the aver-
age demand rate, y(t) is the production rate and
w = w(t) is a given Wiener process used as the
random disturbance as the time t ≥ 0 evolves. The
production system is subject to failures, and when
there is not failure the rate can be controlled,
i.e., if y(0) = y and the rate is changed to y′

there is a cost proportional to the change, namely,
c|y′− y|, for a constant c > 0. Failures can occurs
at times exponentially distributed with parameter
λ, and then repair takes a random time which is
also exponentially distributed with parameter µ.
Times between failures and repairs are mutually
independent, and also independent of the driving
process w. We denote by i(t) the variable indi-
cating the failure/repair state, i.e., i(t) = 1 if the
production is working (so, if a failure has occurs,
it has been repaired) and i = 0 if the production
fails (and therefore the system enter in a repair
mode). Then, when i(t) = 1

{
y(t) = y + v(t) as long as i(t) = 1,
y(t) = 0 if i(t) = 0,

(2)

i.e., in general

y(t) = i(t)
(
y + v(t)

)
,

with v(t) a process of bounded variation (by
coordinates), the control of the production rate,
and y in Rd2 .

In the case of an infinite horizon discounted prob-
lem, one could consider minimizing the total cost





Jxyi(v) = Exyi

{ ∫ ∞

0

e−αtf(x(t))dt +

+
∫ ∞

0

e−αtci(t)d|v(t)|
}

,
(3)

where d|v(t)| denotes the variation of v(·) on [0, t],
and more precise assumptions will be given later.
The additive control in the equation for y and J
above allows to see the previous problem as a so-
called singular control in the sense of (Chow et
al., 1985) and references therein.

A formal dynamic programming argument can
be used to obtain the following Hamilton-Jacobi-
Bellman (HJB) equation for the optimal value
function u(x, y, i) denoted by u0(x, y) = u(x, y, 0)
and u1(x, y) = u(x, y, 1) below

{
Ly

1u1 + λ(u1 − u0) ≤ f, |∂yu1| ≤ c,(
Ly

1u1 + λ(u1 − u0)− f
)(|∂yu1| − c

)
= 0,

(4)



with L0u0 + µ(u0 − u1(·, 0)) = f, and for every
(x, y) in R× [0, Y ], some given Y > 0, and where
L0 and Ly

1 are the following differential operators
in the variable x,





L0ϕ(x) = −∂2
xϕ(x) + b∂xϕ(x) + αϕ(x),

Ly
1ϕ(x) = −∂2

xϕ(x) +
+(b− y)∂xϕ(x) + αϕ(x),

(5)

and assuming that after a repair, the machine
restart with a rate y = 0, and therefore, u0 does
not depend on y in [0, Y ], for some constant Y
previously selected.

Comparing (4) with the HJB equations obtained
in (Chow et al., 1985) (among others), one can see
that we are in the optimal corrections case, with
a state (x, y) for which the second component is
degenerate. Note that one could also consider the
case where the repair is controlled, i.e., a second
control variable would act on i(t).

This control problem is a simple particular case
of hybrid system with singular control. Hybrid
control refer to systems where there are both
continuous and discrete dynamics, as well as con-
tinuous and discrete controls. Since more than ten
years, many works have been devoted to hybrid
control systems. One can refer to (Antsaklis et al.,
1993), (Bensoussan and Menaldi, 1997; Bensous-
san and Menaldi, 2000), (Branicky et al., 1998),
(Menaldi, 2001) among others. On the other hand,
the singular control of stochastic systems relates
to situation where the effect of the control can
lead to discontinuous variations of the state, the
purely impulsive control being a particular case,
for instance, we refer to (Fleming and Soner, 1992)
and (Menaldi and Robin, 1983; Menaldi and
Robin, 1984) for details on singular control.

2. A CLASS OF HYBRID-SINGULAR
PROBLEMS

Taking into account the preliminary example, one
could treat a class of hybrid monotone follower (to
simplify the presentation) namely:





dx(t) = g1(x(t), y(t))dt +
+σ1(x(t), y(t))dw1(t),

x(0) = x,

(6)

where x belongs to Rd1 , and a Markov chain i(t)
with values in {0, 1}. If i(0) = 1 then the sequence
of switching of i is denoted by τ1, τ ′1, τ2, τ ′2, . . . ,
with τ ′0 = 0 and τ1 the first transition from 1 to
0 and so on, but if i(0) = 0 then the sequence of
switching of θ is denoted by τ ′1, τ2, τ ′2, . . . , with
τ1 = 0 and τ ′1 the first transition from 0 to 1 and
so on. Thus,





dy(t) = dν(t) + g2(x(t), y(t))ds +
+σ2(x(t), y(t))dw2(t), t ∈ (τ ′j , τj+1)

y(τ ′0) = y, y(t) = 0, t ∈ [τj , τ
′
j ], j ≥ 1,

(7)

and minimize

Jxyi(ν) = Exyi

{ ∫ ∞

0

e−αtf(x(t), y(t))dt
}

. (8)

Note that y(τ ′0) = y is only defined when i(0) = 1.

Let us consider the uncontrolled process

z(t) =
(
x(t), y(t), i(t)

) ∈ Rd1 × R+ × {0, 1}

and the corresponding semigroup

Φ(t)ϕ(x, y, i) = E
{
ϕ
(
x(t), y(t), i(t)

)}
.

Also assume that f is uniformly continuous with
polynomial growth of degree p with respect to
x and y, i.e, for each ε > 0 there exists δ such
that |x − x′| + |y − y′| < δ implies f(x, y, i) −
f(x′, y′, i)| ≤ ε(1+ |x|+ |y|)p for every x, x′, y, y′,
and i. Denote by Bp the space of Borel measurable
functions with polynomial growth of degree p ≥ 0.
If

u(x, y, i) = inf
ν

{
Jxyi(ν)

}

then the following result is obtained: the optimal
cost u is the maximum solution of the set of
relations

w ≤ e−αtΦ(t) +
∫ t

0

e−αsΦ(s)ds, ∀t ≥ 0,

w(x, y, i) ≤ w(x, y + ξ, 1), ∀ξ ≥ 0,

L0w(x, 0, 0) + µ
(
w(x, 0, 0)− w(x, 0, 1)

)
=

= f(x, 0), ∀x,

where L0 is the generator corresponding to (5)
with y = 0 as in (6).

In order to establish this result, we can approxi-
mate the initial problem by an impulsive control
problem like in (Menaldi and Robin, 1983), i.e.,

uε(x, y, i) = inf
{
Jxyi(ν) : ν impulse

}

Jε
xyi(ν) = Exyi

{ ∫ ∞

0

e−αtf(x(t), y(t))dt +

+ε
∑

k

e−ατk

}
.

Certainly, besides the above semigroup formu-
lation one may use the viscosity approach, and
depending on the assumptions, one may have to
revise the comparison arguments for viscosity so-
lutions to be applied to this situation.



3. RESULTS

Let us continue with the study of the example
in Section 1, with f(x) = x2. The optimal cost
function (u1, u0) is the maximum solution of the
HJB conditions:

Ly
1u1(x, y) + λ(u1(x, y)− u0(x)) ≤ x2,

∂yu1(x, y) ≤ Mu1(x, y),
L0u0(x) + µ(u0(x)− u1(x, 0)) = x2,

for every (x, y) in R× [0, Y ], Y > 0, and where L0

and Ly
1 are differential operators in the variable x

as in (4), and

Mϕ(y) = inf
{
c|y′ − y|+ ϕ(y′) :

: y′ ∈ [0, Y ], y′ 6= y
}
.

Clearly, u1(x, y) = u(x, y, 1) and u0(x) = u(x, y, 0),
which results independent of the variable y. We
obtain the following regularity: u1 is strictly con-
vex in x, and u0 and u1 have locally bounded sec-
ond derivatives in x, locally bounded first deriva-
tives in y, with ui(x, y)(1 + x2)−1, ∂xui(x, y)(1 +
|x|)−1, ∂yui(x, y)(1+ |x|)−1, i=1,2, and ∂2

xu1(x, y)
are bounded in R×[0, Y ]. Moreover, |∂xu1(x, y)| →
∞ as |x| → ∞.

About the optimal policy, we have

Theorem 1. There exist R > 0 sufficiently large
such that for every y in [0, Y ] we have ∂yu1(x, y) =
c if x ≥ R and ∂yu1(x, y) = −c if x ≤ −R.
Thus for x > R (or x < −R) it is optimal to
jump immediately from y to 0 (or M). Moreover,
the continuation set {(x, y) : |∂yu1(x, y)| < c} is
nonempty.

Proof. For a given R > 0 to be chosen later, define
(w1, w0) as follows

w1(x, y) = u1(x, 0) + cy, ∀x ≥ R, ∀y ∈ [0, Y ],
w1(x, y) = u1(x, Y ) + c(Y − y),

∀x ≤ −R, ∀y ∈ [0, Y ],
w0(x) = u0(x), ∀x ∈ (−∞,−R] ∪ [R, +∞),
Ly

1w1(x, y) + λ(w1(x, y)− u0(x)) ≤ x2,
∀x ∈ [−R, R],

|∂yw1(x, y)| ≤ c, ∀x ∈ [−R,R]
L0w0(x) + µ(w0(x)− u1(x, 0)) = x2,

∀x ∈ (−R,R).

Thus w1(x, y) is Lipschitz in y across y = 0 and
y = Y, and w0(x) is Lipschitz across x = −R and
x = R, and for any y in [0, Y ] we have

Ly
1w1(x, y) = L0

1u1(x, 0)− y∂xu1(x, 0) + λcy,
∀x ∈ [R, +∞),

Ly
1w1(x, y) = LY

1 u1(x, Y ) +
+(Y − y)∂xu1(x, Y ) + λc(Y − y),

∀x ∈ (−∞, R],

Since L0
1u1(x, 0) + λ(u1(x, 0) − u0(x)) ≤ x2 and

LY
1 u1(x, Y ) + λ(u1(x, Y ) − u0(x)) ≤ x2 we will

have Ly
1w1(x, y) + λ(w1(x, y) − w0(x)) ≤ x2 for

|x| > R and 0 ≤ y ≤ Y if −y∂xu1(x, 0) + λcy ≤ 0
for x > R and (Y − y)∂xu1(x, Y ) + λc(Y − y) ≤ 0
for x < −R. Because

∂xu1(x, 0) → +∞ as x → +∞,
∂xu1(x, Y ) → −∞ as x → −∞,

we can choose R so large that ∂xu1(x, 0) ≥ λc for
any x > R and ∂xu1(x, Y ) ≤ λc for any x < −R.
Hence

Ly
1w1(x, y) + λ(w1(x, y)− w0(x)) ≤ x2,

∀x ∈ (−∞,−R] ∪ [R, +∞), ∀y ∈ [0, Y ],

which proves that (w1, w0) is a solution of the HJB
equation.

Therefore wi ≤ ui, for i = 0, 1 because (u1, u0)
is the maximum solution. On the other hand,
the condition |∂yu1| ≤ c yields (by definition)
u1(x, y) ≤ u1(x, 0) + cy = w1(x, y) for x > R
and u1(x, y) ≤ u1(x, 0) + c(Y − y) = w1(x, y) for
x < −R, which proves the desired result.

Now since y belongs to [0, Y ], the convexity in y
is not sufficient to show that the continuation set
{(x, y) : |∂yu1(x, y)| < c} is nonempty. Indeed we
argue as follows.

Let xm be a minimizer of u1(x, 0), i.e., xm in
argmin{u1(x, 0)} and consider the open interval
Bη = {x : |x − xm| < η} for some η > 0 to be
chosen later. Define (uη

1 , uη
0) by modifying (u1, u0)

inside the interval Bη as follows

Ly
1u

η
1(x, y) + λ(uη

1(x, y)− uη
0(x)) = x2

∀x ∈ Bη, ∀y,

L0u
η
0(x, y) + µ(uη

0(x)− uη
1(x, 0)) = x2

∀x ∈ Bη,

(uη
1 , uη

0) = (u1, u0) outside Bη.

For any ε > 0 we can choose η > 0 such that
|∂xuη

1(x, 0)| < ε for any x in Bη. If we set wη =
∂yuη

1(x, y) then

Ly
1w

η + λwη = ∂xuη
1 in Bη,

wη = ∂yuη
1 on ∂Bη,

which yields the representation

wη(x, y) = Exy

{ ∫ τ

0

e−(α+λ)s∂xuη
1(Xs, y)ds +

+e−(α+λ)swη(Xτ , y)
}

,

τ = inf{s : Xs 6∈ Bη}.
Since wη(Xτ , y)| ≤ c we have

|wη(x, y)| ≤ ε

α + λ

(
1− E{e−(α+λ)τ}) +

+cE{e−(α+λ)τ}.



Hence, by selection ε sufficiently small so that ε <
c(α+λ) we have the strict inequality. This proves
that (uη

1 , uη
0) satisfies the HJB inequalities, and

then (uη
1 , uη

0) ≤ (u1, u0), which is the maximum
solution. On the other hand, the maximum prin-
ciple applied on the couple (uη

1 , uη
0) and (u1, u0) in

the interval Bη yields (uη
1 , uη

0) ≥ (u1, u0). There-
fore |∂yu1(x, y)| = |∂yuη

1(x, y)| < c for any x in
Bη and any y in [0, Y ]. 2

The functions

z(x) = inf{y : ∂yu1(x, y) = c},
z(x) = sup{y : ∂yu1(x, y) = −c},

are the free boundary of the continuation region
D = {(x, y) : |∂)yu1(x, y)| < c}. We know that for
some constant R > 0 we have z(x) = 0 if x > R
and z(x) = Y if x < −R, and D is bounded in
R× [0, Y ].
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