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Abstract: We present a haptic interface-based excavator training system. This
system is based on the full nonlinear excavator dynamic model which mimics
an industrial excavator, and six degrees of freedom haptic interface. The inter-
face is characterized of been conformed by two controlled prismatic joints that
compensate the gravitational effects leaving the full power of the actuators to
kinesthetic sensations transmission. The control of gravity compensation is based
in the gravitational force vector of the dynamic model. On the other hand the
excavator control is carry out through a robust, model free second order sliding
mode force-position controller. We present and discuss simulation results of the
whole excavator training system. Copyright @ 2005 IFAC
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1. INTRODUCTION

Excavators are heavy duty hydraulic machines
used in agricultural, mining and construction in-
dustry whose main functions are digging, ground
leveling and material transport operations. These
machines are driven by qualified operators who
move joysticks and pedals in an organized manner
to reach a desired performance. The sequences of
movements are very complex and the fact that
these joysticks and pedals are not an intuitive
man-machine interface, MMI, expose the human
operator to fatigue, reducing the ability to maneu-
ver properly the excavator, provoking mechanical
stress in the machine and increasing the risk of an
accident. These problems are more evident in the
training process. Thus, topics as simplification of
the digging task and the reduction of the harm
risks during the training period, are interesting
for researchers however, until now, their attention
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has been focused on automating different aspects
of the excavator process, as for example (Tafazoli,
1999), (Simon P. DiMaio, 1998), (Stentz, 1998)
which focused mainly on simplified modeling and
control schemes, while (Koivo A.J, 1996) pre-
sented the full nonlinear model (neglecting the
inertia of the heavy actuators). Instead of this,
we are concerned not only in the control aspect of
the excavator but in creating a new MMI, more
intuitive and easy to use, based on a Mechatronics
approach, that could be able to recreate the real
dynamics of the system in a virtual environment
furnishing the operator with more sensorial infor-
mation.

We conjecture that one way to improve the ex-
cavation process is through a haptic interface,
which makes possible to improve significantly the
interaction between the user and a system through
kinesthetic coupling in bidirectional way, there-
fore we focus on the full modeling and advanced
control schemes of a novel haptic excavator, com-
posed of a haptic interface as MMI, and an exca-



vator to achieve kinesthetic coupling under trans-
parency.

In this paper we present the advances in the
construction of a haptic interface-based excavator
training system. We present the dynamical model
of the excavator calculated considering the me-
chanical effects of the hydraulic actuators. This
model will be employed to reproduce with high
fidelity the free and constraint motion of the
excavator in a virtual environment. To control
the virtual digging task we present and modeling
a six degree of freedom haptic interface, where
two degrees of freedom are used to compensate
the gravitational effects. The coupling between
the virtual excavator and the haptic interface is
accomplish through a non linear PID controllers.
We present and discuss simulation results.

2. EXCAVATOR MODEL

2.1 Cinematical Model

We employed the Denavit-Hartemberg procedure
to calculate the direct cinematic of the links and to
understand and the complexity and dependence of
the movement of the actuators on the movement
of the links. We used the excavator model showed
in figure(1), due we are interested in digging
operation. In this particular case, the excavator
parameters are showed in the table 1, where the
θi are the rotational join angles and di, ai are
constant lengths.

i 1 2 3 4

α 0 π
2

0 0

θ θ1 θ2 θ3 θ4

a 0 a2 a3 a4

d d1 0 0 0

Table 1. Link parameters of the excava-
tor.

The cinematical model, also is used to calculate
linear an angular velocities of the excavator. These
velocities will be used to obtain the dynamical
model based in the Euler-Lagrange formulation.
(Stai, 1963).

2.2 Dynamical Model

We obtained the dynamic model of the excavator
to create a virtual simulator trying to reproduce
with fidelity the behaviour of the excavator. For
this reason we consider the dynamic of the links
and the contribution of the forces of the mechanic
parts of the telescopic actuators. To obtain this
model, we employ the Euler-Lagrange formulation
considering the angles of the links as the general-
ized coordinates of the system. Due the energy

Fig. 1. Model of the proposed excavator.

present the additive property, the lagrangian of
the excavator can be separated in two elements

L = Le + Lp. (1)

where Le is the Lagrangian of the links and Lp is
the Lagrangian of the actuators. Even more, using
the linearity property of the derivative operator,
the equation (1) can be wrote

[
d

dt

(
∂Le

∂q̇

)
+

∂Le

∂q

]
+ Dp = Q (2)

[
d

dt

(
∂Lp

∂q̇

)
+

∂Lp

∂q

]
= Dp (3)

therefore the dynamic model of the system can be
calculated by parts. The first part (the dynamic
model of links) was computed using the procedure
exposed in (Stai, 1963). On the other hand, to
obtain the dynamic model of the actuators, was
necessary to obtain the value of the angle β
between the axial axis of the piston and the
normal vector that links the joint of the link i
and the link i + 1 figure(2). To obtain β we need
to calculate the vector 0Vpi figure(1), which is
function of the lengths xi+1, yi+1, xi, yi figure(2)
and the transformation matices 0Ai+1,

0 Ai

Fig. 2. Parameters of the links.

0Vpi =0 Ai+1
i+1V2i −0 Ai

iV1i (4)

where the vectors i+1V2i, i+1V2i are defined as



i+1V2i =




xi+1

yi+1

0
1


 ,i V1i =




xi

yi

0
1


 , (5)

Using a coordinate change it can be obtained the
vector 0Vp with reference to frame i

iVp =




Vpxi

Vpyi

Vpzi


 =i R0

0Vp =i R0




Vpx

Vpy

Vpz


 . (6)

The value of β is

β = atan(
Vpyi

Vpxi
). (7)

Where atan is the tangent arc function, and Vpxi

and Vpyi are the position coordinates (x, y) of the
distal element of the actuator (the sliding element
of the actuator), referenced to frame i.

Employing a new reference coordinate frame, lo-
cated in the proximal extreme of the actuator
joint, is possible to establish a similar procedure to
Denavit-Hartenberg, in which the transformation
matrix iApi relates the position of the reference
frame of the link i and the reference frame of the
actuator i, which is defined

iAip = T (X, xi)T (Y, yi)T (Z, β). (8)

where T (X,xi) is a displacement matrix along the
X axis of the link i, T (Y, yi) is a displacement
matrix along the Y axis of the same link, and the
matrix T (Z, β) represents a rotation in direction
of the Z axis a β value. Using this transformation
matrix the center of mass position iPcpi of the
actuator referenced to inertial frame is

0Pcpi =0 Ai
iA

i
piPcpi. (9)

Once we obtain the equation that describes the
movement of the center of mass of the actuator,
the actuators jacobian matrices can be calculated
using the same methodology used to compute the
dynamic model of the links (Stai, 1963).

In this way, the Euler-Lagrange equation of the
excavator can be wrote as

n∑

j=1

(λ)q̈ + β + α = Q (10)

α =
n∑

j=1

n∑

k=1

[
∂(λ)
∂qk

− 1
2

∂(λ)
∂qi

]
q̈k q̈j (11)

β =
n∑

j=1

mejg
T J i

vj + mpjg
T J i

pvj (12)

where Meij , Mpij are the inertia matrix of the
links and inertia matrix of the actuators respec-
tively, and Q has the form

Q = Wfa + Beq̇. (13)

and W is the relation matrix between the force
of the actuators fa and the control torques, Be is
a diagonal matrix representing the links viscous
damping.

In this paper we consider as first approximation
of digging process the soil as a rigid surface, under
this consideration a constrained model, arises as
follows.

Meq̈ + Ceq̇ + Ge + Beq̇ = τe + JT
ϕ λ (14)

ϕ(q) = 0. (15)

where ϕ(q) define the rigid surface and JT
ϕ is the

orthogonal unit vector to this surface and λ is the
magnitude of the contact force.

The same procedure presented to obtain the dy-
namic model of the excavator in free motion, was
employed to obtain the dynamic model of the hap-
tic interface, which also was calculated employing
the Euler-Lagrange formulation.

3. HAPTIC INTERFACE MODEL

Fig. 3. Model of the proposed haptic interface.

To carry out a good mechanic design to the
haptic interface, we obtain the dynamic model
due we design supported on simulation results
considering the behaviour of the system in a
recursive form.

Similarly to the excavator, the haptic interface has
four degrees of freedom, to be able to map 1 : 1
generalized coordinates. However, because we are
including two sliding masses to compensate more
effectively for gravitational torques, we proposed
a six degrees of freedom mechanical device fully
actuated by electric motors, see Figure (3). The
Denavit-Hartemberg links parameters values are



showed in the table 2,where di,li,xmi are constant
lengths.

i 1 2 3 4 m1 m2

α π/2 0 0 0 0 0
θ θ1 θ2 θ3 θ4 0 0
a 0 l2 l3 l4 xm1 xm2
d −d1 −d2 d3 −d4 0 0

Table 2. Link parameters of the haptic
interface.

Using the same procedure used to calculate the
excavator dynamic model, to calculate the haptic
interface dynamic model is necessary solve de
differential equation

d

dt
(
∂Lih

∂q̇ih
) +

∂Lih

∂qih
= τ. (16)

where Lih is the haptic interface Lagrangian and
qih is the generalized variables vector, which in
this case is formed by the variables θi, and τ is
the external force vector (Stai, 1963). In this case,
the dynamic model the haptic interface model is

d

dt
(
∂(δ)
∂q̇ih

) +
∂(δ)
∂qih

= τ. (17)

δ = Ll + Lm + Let (18)

where Ll is the links Lagrangian, Lm is the masses
Lagrangian and Let is the transmission elements
Lagrangian. The general dynamic model is

Mhq̇ + Chq̇ + Gh + Bhq̇ = τh + τo (19)

where τo stands for the operator input torque,
since the operator is always grasping the handle
of the haptic interface to control the system.

4. THE CONTROL SYSTEM

In this section we present the control algorithms
for the excavator and haptic interface, which do
not depend of the dynamic of the systems, due
the complexity of the models. We consider second
order sliding mode schemes for free (Parra, 2002),
and constrained motion (Parra, 1996), (V. Parra-
Vega and Akella, 2003), to guarantee local expo-
nential tracking without using the model. These
approaches are suitable for this tasks since they
provide fast simultaneous trajectory tracking of
position and force trajectories, even in the case of
uncertainty on the dynamic model and its param-
eters.

4.1 Excavator Control System

4.1.1. free motion: In free motion, τr = Wfa is
a position control, where the desired trajectories
of the excavator qdr are

qdr = Ωpqh (20)

where Ωp is a linear map between the haptic inter-
face coordinates and the excavator coordinates.

Let consider

τe =−Kd

[{
(∆q̇e + σ∆qe)− Se

pd

}
+

η1

t∫

t0

sgn
{
(∆q̇e + σ∆qe)− Se

pd

}

 (21)

for σ > 0, Kd = KT
+ ∈ Rn×n, and Se

pd = (∆q̇e +
σ∆qe)(t0)e−αe(t−t0), for ∆qe = qe − qde. This
smooth controller guarantees local exponential
tracking, without using the model (V. Parra-Vega
and Akella, 2003).

4.1.2. constrained motion: In constrained mo-
tion, a force position controlled is necessary where
the desired coordinates are

qdr = Ωpqh, λdr = Ωfλh (22)

where Ωf is a linear map between the haptic
interface force coordinates and the excavator force
coordinates.

Let consider

τe =−KdQ
[{

(∆q̇e + σ∆qe)− Se
pd

}
+

η1

t∫

t0

sgn
{
(∆q̇e + σ∆qe)− Se

pd

}

−

βKdJ
T
ϕ+ [−λdh + ηh∆Fe]− γ2eKdJ

T
ϕ+ ∗[

tanh(µSe) + ηh

∫
sgn(Se)

]
(23)

where ∆Fe =
∫ t

t0
(λe − λde), µe > 0, ηe > 0, γ2e >

0, and Se = ∆Fe−∆Fe(t0)e−ηe(t−t0). Notice that
JT

ϕ+ is the normalized gradient of ϕe(qe), and Q
its orthogonal complement.

4.2 Haptic Interface Control System

4.2.1. free motion: In free motion input signal
is the torque of the operator τo and the control
of the sliding masses. This control compensates
the gravitational effects varying the positions of
the sliding masses computing the gradient of the
haptic interface potential energy which is func-
tion of these positions (x2 and x3) ∇U(q) =[

∂U(q)
∂q1

...∂U(q)
∂qn

]
then, the partial derivative with

respect to links 2 and 3 must be zero to null the
gravitational torques

[
∂U(q)
∂q2

,
∂U(q)
∂q3

]
= [0, 0] (24)



finally, solving for x2 and x3, we can obtain the
desired position of the mass 2 and 3 for a posi-
tion PID controller that nullifies the gravitational
torques g(q)) = 0. Notice that this controller
is always turned on and produce a floating free
haptic interface.

4.2.2. constrained motion: In constrained mo-
tion, τh is formed by the sliding masses control
and a new control that must be designed to re-
produce a virtual constraint

ϕh = Ωfhqr = 0 (25)

where Ωfh is a linear map between the haptic
interface force coordinates and the excavator force
coordinates. This control must generate force to
operator

τh = JT
ϕhλo (26)

therefore the dynamic equation is as follow

Mh(q)q̈ + Chq̇ + Gh + Bhq̇ = JT
ϕhλo + τo (27)

ϕ(qh) = 0. (28)

Let consider

τe =−KdQq̇ − βKdJ
T
ϕ+ [−λdh + ηh∆Fh]− (29)

γ2hKdJ
T
ϕ+

[
tanh(µSh

qF ) + ηh

∫
sgn(Sh

qF )
]

where ∆Fh =
∫ t

t0
(λo− λdo), µh > 0, ηh > 0, γ2h >

0, and Sh
qF = ∆Fh−∆Fh(t0)e−(t−t0). Notice that

under this control, the servosystem exerts a force
JT

ϕ+λe to the hand of the human operator, and
there is not any control over the position.

Some simulation results of the excavator and
haptic interface performance under some of the
control algorithms exposed in this section will be
presented and discussed in the next section.

5. SIMULATIONS RESULTS

In this section we present simulation results which
describe the behaviour of the excavator and the
haptic interface separately, in this moment we are
working in the total integration of the system, in
fact we are considering employ a dynamic model
to simulate the response of the human.

The results of simulation of the haptic interface
are presented in the figure(4) and figure(5). We
present two simulation results implementing a
tracking control in free motion. In the first simula-
tion figure(4 we present a result employing a PD
control to maintain a predefined position of the

masses. It can be observed the constant value of
the torque when the haptic interface reach the fi-
nal position. In the second simulation figure (5 we
used the balance control with the sliding masses.
Employing this control the value of the control
torques are reduced due the system is balanced
and when the system reach the final position, the
control torques of links 2 and 3 are reduced to
zero.

In the simulation of the excavator figures(6,7,8,
9,10) was considered the transition of of move-
ment from free motion to constrained motion.
In this simulation results it can be observed the
increment of magnitude of contact force and its
subsequent stabilization and tracking of a sine
function. In the other hand the tracking position
errors are different to zero before the excavator
touch the soil due the holonomic constraint im-
posed by the rigid surface.

Fig. 4. Controllers without active mass control.

Fig. 5. Controllers with active mass control.

6. CONCLUSIONS

A new haptic interface, a complex dynamical
model of an excavator which considers the dy-
namic of the telescopic actuators and an advanced
force-position and force controllers have been pro-
posed. Simulation data suggest that the controlled
motion of sliding masses are critical to achieve
haptic transparency. On the other hand the con-
trol system of the excavator produce a satisfactory
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Fig. 7. Excavator joint position.
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Fig. 8. Excavator joint position error.
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position tracking in free movement and a satisfac-
tory force tracking in a constraint movement.
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