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Abstract: In this paper, a framework to generalize the OGY control to continuous-
time systems is proposed. The framework is based on Floquet theory of linear
periodic differential equations and provides a practical method to stabilize unstable
periodic orbits (UPOs) and a stability analysis of the closed loop systems. An
example of controlling the circular restricted three-body system known as halo
orbits is illustrated. It is also reported that stabilization of UPOs can be effective
by using the maximum principle to select a nominal orbit. Copyright c©2005 IFAC
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1. INTRODUCTION

In recent years, much attention has been paid
to controlling chaotic systems. Control of chaos
refers to a design process of small perturbations
in the system in order to realize a desirable
behavior. Ott, Grebogi and Yorke (OGY) were
the first to present a successful approach for
controlling chaos(Ott et al., 1990). Their key
idea is as follows. A chaotic attractor densely
contains an infinite number of unstable periodic
orbits (UPOs). So by making small perturbations
around an UPO when states are close to the UPO,
the state can be shifted to a stable manifold if
it exists around the UPO. An alternative way
to control of chaos is delayed feedback(Pyragas,
1992). The delayed feedback scheme uses a time-
delay element in the control loop and is useful
since it does not require much knowledge on
system dynamics. However, the understanding of
mechanism in delayed feedback control is still
limited(Just et al., 1997; Nakajima, 1997).

A large amount of research has been devoted to
improve the OGY scheme (see, for example Boc-
caletti et al. (2000) and Andrievskii and Fradkov
(2003)). However, the OGY scheme is for discrete-

time systems and to apply it to continuous-time
systems, a discretization process is needed. The
most common discretization for the OGY method
is taking the Poincaré section. And then, a ma-
trix that describes the behavior around the fixed
point is numerically calculated to design an OGY
controller. It would be easy to imagine that the
number of sample points and the calculation task
increase exponentially according to the system
dimension. Also, there is no rigorous stability
relations in controlled systems between discrete
behavior on the Poincaré section and original con-
tinuous behavior around UPOs.

In this paper, we propose a method of designing
an OGY controller for continuous-time systems
without taking the Poincaré section and of en-
suring the stability of the continuous-time con-
trolled systems. The method is based on Floquet
theory of linear periodic differential equations.
The discretization process is carried out by using
the Monodromy matrix. In this framework, sta-
bility analysis for the continuous-time system con-
trolled by the OGY method becomes less involved.
Also, this framework does not require exact closed
UPOs, which are very difficult to obtain in gen-
eral. Instead, the proposed stabilization method



allows almost periodic orbits (APOs), which are
the orbits that return closely to initial states after
the period T . The performance of OGY controllers
greatly depends on how accurate APOs can be
found. For this problem, we propose a method
using the maximum principle in control theory.
That is, we modify an APO by giving a feedfor-
ward input obtained from the maximum principle
so that the modified orbit is closer to a closed one
while maintaining minimum control effort.

Given a target UPO (an APO in practice), the
proposed method gives a sufficient condition for
stabilization and an error estimate of a controlled
orbit since it is based on the OGY-scheme while
it is difficult to get sufficient conditions from the
delayed feedback scheme. The control result of the
circular restricted three-body problem (halo orbit
stabilization) is illustrated, which is an example
of higher dimensional systems and of practical
interest from space observation programs.

2. PROBLEM FORMULATION

To apply the OGY control to continuous time
systems, one has to find a periodic orbit that
corresponds to a fixed point in the standard OGY
scheme that employs the Poincaré section. It is,
however, very difficult to find a closed orbit in
general nonlinear systems. Also, it requires many
sample points to get matrices describing linear
dynamics on the Poincaré section with accuracy,
especially for higher dimensional systems. More-
over, there is no rigorous relation between the
closed loop stability of a discrete-time system on
the Poincaré section and that of the corresponding
orbit of the original continuous-time system. With
these difficulties in mind we formulate the prob-
lem to be solved to generalize the OGY control
scheme for continuous-time systems.

Let us consider the following nonlinear system

ẋ(t) = f(x(t))+G(x)u(t), x(t) ∈ Rn, u(t) ∈ Rm.
(1)

Definition 1. (Almost periodic orbits). We say
that (1) with no control (u = 0) has an almost
periodic orbit (APO) with period T and accuracy
α if there exists an initial state x0 and a time T
such that for the orbit x(t)

|x(T )− x0|
max[0,T ] |x(t)− x0| = α.

If the orbit is stationary, that is, x(t) ≡ x0, we
define α = 0.

We note that the condition is only for time du-
ration [0, T ] and a periodic orbit is an almost
periodic with accuracy 0. It is convenient for anal-
ysis of UPOs to be able to handle APOs since, in

practice, UPOs are numerically searched for and
closed UPOs cannot be expected.

Assumption 2. There exists an almost periodic
orbit with period T and sufficient accuracy α ¿ 1
in the system (1) with u = 0 for an initial state
x0 satisfying f(x0) 6= 0. —

The problem we wish to solve is the following.

Problem. (Stabilization of an APO). When the
system (1) with u = 0 has an APO with accuracy
α ¿ 1 and period T for an initial state x0, design
a control law u such that the following holds;
the controlled system satisfies x(iT ) ∈ U (for all
i ∈ N) for a bounded neighborhood U of x0 and
the control makes mini∈N αi as small as possible,
where,

αi :=
|x(iT )− x0|

max[iT,(i+1)T ] |x(t)− x0| for i ∈ N.

We also require that if the APO is actually a
periodic orbit, then u must stabilize it in the usual
sense, that is, the neighborhood U can be taken
arbitrarily small. In addition, when a control law
is designed, obtain an estimate of the smallest
radius of possible U . —

We note that the stability of our problem is not
in the usual sense of the standard stability theory,
because an APO is not necessarily a closed orbit
and we cannot expect the standard stability of the
orbit.

The purpose of this paper is to design an OGY-
type controller for the above problem.

Definition 3. (OGY-type control). We call a con-
troller for continuous-time systems OGY-type
when it is zero-order held, that is, during the
interval [iT, (i+1)T ] input is constant u(iT ). The
control scheme that has this structure will be
called continuous-time OGY control.

3. STABILIZATION OF APOS USING
FLOQUET THEORY

We design an OGY-type stabilizing control in two
steps. First, we construct a nominal periodic orbit
around which linear stabilization is carried out
using Floquet theory of linear periodic systems.
Next, we analyze the stability of the controlled
APO, in other words, an estimate of the error
between the nominal and controlled orbits will be
obtained based on the Lyapunov stability theory.



3.1 Construction of a nominal orbit and linear
stabilization

By Assumption 2, let x(t) (0 6 t 6 T ) be an APO
of (1). We extend the domain of the orbit to [0,∞)
by repeating the value of x(t) in [0, T ] over t > T
and name it x∗ to get a nominal periodic orbit
that is defined for all t > 0. That is,

x∗(t) =





x(t) (0 6 t < T )
x(t− T ) (T 6 t < 2T )
· · · · · ·
x(t− nT ) (nT 6 t < (n + 1)T )
· · · · · ·

(2)

Note that x∗(t) is not necessarily continuous.

We next linearize (1) around x∗(t). Let y(t) ∈ Rn

be an error from the nominal orbit; x(t) = x∗(t)+
y(t). Then, the first order equation for y is

ẏ(t) =A(t)y(t) + B(t)u(t), (3)

A(t) =
∂f

∂x
(x∗(t)) ∈ Rn×n,

B(t) = G(x∗(t)) ∈ Rn×m

Equation (3) is a linear periodic equation that is
not necessarily continuous in t. For stabilization
of (1), it is necessary to stabilize (3), and therefore
we design an OGY controller for (3).

The homogeneous equation of (3)

ẏ(t) = A(t)y(t)

has a fundamental matrix Φ(t), Φ(0) = I. Using
Φ(T ), which is called the Monodromy matrix, we
can construct a discrete-time equation of (3)

yk+1 = Φ(T )yk + B(T )uk, (4)

where yk and uk are the state and control at
time kT , respectively. Equation (4) corresponds
to a linearized system in the OGY scheme, the
main difference is that the system in the OGY
is derived from a discrete-time system but (4)
is from a continuous-time system. Therefore, our
pole placement feedback must be the one that
guarantees the stability of (3). To this end, Flo-
quet theory will be employed(Coddington and
Levinson, 1955; Kabamba, 1986). It should be
also noted that unlike existing techniques that use
the Poincaré section for discretization, we have
discretized the system with period T . A similar
approach was taken to get a linearized equation
in Epureanu and Dowell (2000) without stability
argument.

Proposition 4. The necessary and sufficient con-
dition for (3) to be stabilized by continuous-time
OGY state feedback is that the pair(

Φ(T ),
∫ T

0

Φ(T )Φ−1(τ)B(τ)dτ

)

is a stabilizable pair.

Proof. (Outline) The closed loop system of (3)
with state feedback of the OGY-form

u(t) = Ky(iT ), K ∈ Rm×n (i = 0, 1, 2, · · · )
is

ẏ(t) = A(t)y(t) + B(t)Ky(iT ). (5)

It can be shown that the Monodromy matrix of
(5) is

Θ(T ) =
∫ T

0

Φ(T )Φ−1(τ)B(τ)dτK + Φ(T ).

Therefore, from Floquet theory, stability of (5) is
equivalent to the fact that the eigenvalues of Θ(T )
lie inside the unit circle. This completes the proof.
2

3.2 Stability analysis — estimation of the error
bound

In this subsection, we show that the stabilizing
control for (3) in Proposition 4 is a solution to
the problem in §2, that is, we show that under
state feedback in Proposition 4, the orbit of the
nonlinear system (1) stays close to the nominal
orbit in the previous subsection. To achieve this
end, we shall clarify the following.

The nominal orbit used in the design of the state
feedback is periodic but not necessarily continuous
and it does not satisfy (1) for [T,∞). Also the ma-
trix A(t) in (3) is periodic but not necessarily con-
tinuous. The effect of these discontinuities need
to be examined in order not to cause problems
during control process. Moreover, in the previous
subsection, higher order terms of the system (1)
are neglected. Since the controlled system is not
a standard nonlinear system due to the above
reason, a careful analysis should be given to see
the behavior of controlled orbit.

We first show the following.

Proposition 5. Let x∗(t) (t > 0) be the nominal
orbit (2) with the discrepancy ∆ := x(T )−x0. Let
xu(t) denote a solution of (1) under an arbitrary
input u with initial state xu(0). Then, the error
y = xu − x∗ satisfies

ẏ = A(t)y + B(t)u + g′(t, u, y) + ∆
∞∑

i=1

δ(t− iT )

(6a)
g′(t, u, y) = G(x∗ + y)u−G(x∗)u + O(|y|2),

(6b)

where A(t) and B(t) are defined in (3) and δ
is the Dirac’s delta function. If, moreover, the
state feedback u(t, y) that is piecewise continuous



in t and smooth in y satisfying u(t, 0) = 0 are
assumed, then y satisfies

ẏ = A(t)y + B(t)u + g(t, y) + ∆
∞∑

i=1

δ(t− iT )

(7a)

g(t, y) = O(|y|2). (7b)

Lemma 6. If the condition in Proposition 4 is
satisfied, there exists a Lyapunov function V (t, y)
for the closed loop system (5) such that for suit-
able positive constants a1, a2, a3, the following
inequalities hold.

a1|x|2 6 V (t, x) 6 a2|x|2 (8)
∂V

∂t
+

∂V

∂x
f(t, x) 6 −|x|2 (9)

∣∣∣∣
∂V

∂t

∣∣∣∣ 6 a3|x| (10)

Theorem 7. Let Dr = {y ∈ Rn | |y| < r}.
Assume that the condition of Proposition 4 holds
true. Assume also that g(t, y) in (7b) satisfies

|g(t, y)| 6 d on [0,∞)×Dr (11)

for a positive constant d. If a constant µ satisfies

a3d +
a2a3

a1

∆
T

< µ <

√
a1

a2
r (12)

for the positive constants a1, a2 and a3 in Lemma
6, then, under the OGY-state feedback in Propo-
sition 4 with initial state |y(0)| 6

√
a1/a2r, there

exists a t1 > 0 such that

|y(t)| 6 |y(0)|
√

a2

a1

× exp
{
−1

2

(
1
a2
− a3

µa2
− a3

µa1

∆
T

)
t

}

for t1 > t > 0,

|y(t)| 6
√

a2

a1
µ for t > t1.

Proof. We calculate the derivative of V (t, y) in
Lemma 6 along the closed loop system (7a) with
the OGY-state feedback u = Ky(iT ). Using (9),

V̇ = −|y|2 +
∂V

∂y
g(t, y) + ∆

∂V

∂y

∞∑

i=1

δ(t− iT )

6 −|y|2 + a3|y||g(t, y)|+ a3∆|y|
∞∑

i=1

δ(t− iT ),

where we have used (10). Limiting y in Dr ∩
{y ∈ Rn | |y| > µ} and using (11), we have

V̇ 6 −
(

1− a3d

µ

)
|y|2 +

a3∆
µ

∞∑

i=1

δ(t− iT ).

Since 1− a3d
µ > 0 by assumption (12), we use (8)

to get

V̇ 6 −
(

1
a2
− a3d

a2µ
− a3∆

a1µ

∞∑

i=1

δ(t− iT )

)
V (t, y).

By integrating the above inequality over [0, t],
t = t′ + iT (0 6 t < T ), we get

V (t, y(t))

6 V (0, y(0)) exp
{
−

(
1
a2
− a3d

a2µ
− a3∆

a1µ
i

)}

6 V (0, y(0)) exp
{
−

(
1
a2
− a3d

a2µ
− a3

a1µ

∆
T

)
t

}
,

which is valid as long as |y(t)| > µ. Since the ex-
ponential function on the right side is decreasing
by assumption (12), if |y(t)| > µ for all t > 0, we
have a contradiction. Thus, there exists a t1 > 0
such that |y(t1)| = µ, for which the first estimate
of the theorem follows. Since V̇ (t1, y(t1)) 6 0,
V (t, y(t)) 6 a2µ

2 for all t > t1 from (8). There-
fore, we get |y(t)| 6

√
a2/a1µ for t > t1 from

(8).2

4. NOMINAL ORBIT SELECTION WITH
THE MAXIMUM PRINCIPLE

In general, it is very difficult to find UPOs in non-
linear systems as closed orbits. Therefore, we have
proposed a stabilization method around APOs
with accuracy α ¿ 1 by the OGY method. Since
our purpose is the stabilization of an UPO, it may
be possible to find better APOs for feedback de-
sign by modifying them with small control inputs.
That is, the stabilization around an APO thus
obtained may require less control effort.

From Assumption 2, the solution of (1) with initial
state x0 returns closely to x0 after time T . This
implies that it may be possible to get an orbit x(t)
of (1) with smaller ∆ = |x(T ) − x0| under small
control inputs. The standard method to do this
is the maximum principle by Pontryagin. Let us
consider the following cost functional

J = (x(T )−x0)T Q(x(T )−x0)+
∫ T

0

u(t)T Ru(t)dt,

with positive definite matrices Q and R > 0.
The optimal trajectory x minimizing J is given
by a solution of the following two-point boundary
condition problem

ẋ = f(x) + G(x)u∗(x, p) (13)

ṗ = −∂T f

∂x
(x(t))p− ∂T G(x)u

∂x
p

∣∣∣∣
u=u∗(x,p)

x(0) = x0, p(T ) = 2Q(x(T )− x0),

and the optimal input is given by

u∗(x, p) = −1
2
R−1GT (x)p.

If the initial state x0 gives an APO with α ¿ 1,
then, choosing Q À R, the optimal control prob-
lem will give a small control input that renders ∆



smaller and the optimal trajectory, the solution of
(13), can be used as a nominal orbit x∗(t) in the
OGY stabilization design in §3.1. When a nominal
orbit is obtained using the optimal input u∗, we
change g′(t, u, y) and g(t, y) in (6b) and (7b) to

g̃′(t, u, y) =G(x∗ + y)u−G(x∗)u−G(x∗)u∗

+ O(|y|2)
g̃(t, y) = −G(x∗)u∗ + O(|y|2),

respectively. In the following section, we will show
a case in which a modified nominal orbit with
the maximal principle gives the OGY-stabilization
with smaller control inputs than the nominal
orbit that naturally exists in the given nonlinear
dynamics ẋ = f(x) (see, Fig. 3). Theorem 7 shows
that it can happen when the input u∗ is relatively
small compared to the reduction of ∆ by u∗.

The control input u∗ by the maximum principle
is also efficient as a feedforward control although
stability cannot be guaranteed and robustness for
noise and parameter variations is poor.

5. AN APPLICATION RESULT

To verify the effectiveness of the proposed method
of stabilization and selection of a nominal orbit,
we show an application result for the three-body
problem known as halo orbit.

Halo orbits are particular solutions of the circu-
lar restricted three-body problem and of great
interest for space mission programs. For exam-
ple, a halo orbit about Sun-Earth L1 point was
selected in the Genesis mission as the platform
for collecting solar wind samples. However, since
halo orbits are unstable, stationkeeping control is
required. A number of research papers have been
published on stationkeeping control including ap-
proximation methods of halo orbits(Dunham and
Roberts, 2001; Richardson, 1980; Wiesel and Shel-
ton, 1983).

In this section, we illustrate that it is possible
to design an autonomous stabilization control for
stationkeeping in halo orbits.

The equation of the circular restricted three-body
problem with control inputs is





ẍ− 2ẏ − x = −∂U

∂x
+ ux

ÿ + 2ẋ− y = −∂U

∂y
+ uy

z̈ = −∂U

∂z
+ uz,

U(x, y, x) =− 1− µ√
(x + µ)2 + y2 + z2

− µ√
(x− 1 + µ)2 + y2 + z2

.

The initial values below give rise to a halo orbit
with period T = 3.0597(Simó et al., 1987) and

µ = 3.040357143× 10−6 y(0) = ẋ(0) = ż(0) = 0,


x(0)
z(0)
ẏ(0)


 =




0.988836754421
0.000783384715
0.008932446653


 .

We chose a nominal orbit using the maximum
principle. For a cost function with Q = 1018I,
R = I, we have obtained a nominal orbit with the
error of the initial and terminal states

x0−x∗(T ) =
(
0, 6.78× 10−21, 0, −2.03× 10−20,

0, 3.38× 10−21
)T

.

The Monodromy matrix is calculated by solving
the following differential equation.

Φ̇(t) = A(t)Φ(t), Φ(0) = I6

where A(t) =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−U11 −U12 −U13 0 2 0
−U21 −U22 −U23 −2 0 0
−U31 −U32 −U33 0 0 0




Uij =
∂2U

∂xi∂xj

∣∣∣∣
x=x∗

, i, j = 1, 2, 3.

The poles of Φ(T ) are ( 1740, 5.76e-004, 0.997±7.475e-
002i, 1.000±2.73e-005i ), indicating the instability
of the nominal orbit. From

∫ T

0

Φ(T )Φ−1(τ)Bdτ =
[
188.9 −63.8 −4.3 433.8 −202.4 −23.8

]T
,

the pair
(
Φ(T ),

∫ T

0
Φ(T )Φ−1(τ)B(τ)dτ

)
in Propo-

sition 4 is stabilizable. We designed K so that
the closed loop poles are placed at (5.76e-004,
0.499±3.74e-002i, 0.500±1.81e-004i, 1.00). In the
case of the halo orbit stabilization, we do not
control the motion of the z direction because it
is known to be stable.

Fig. 1 and Fig. 2 are the uncontrolled motion for
time duration 4T and the closed loop motion for
30T , respectively, showing that the stabilization
is successful. Also, Fig. 3 shows the comparison
result of inputs. The plots of ◦ and ∗ are the values
of inputs designed by the nominal orbits selected
with and without using the maximum principle,
respectively. Both inputs stabilize the nominal
orbits, but the value of input designed with the
maximum principle is smaller (∗ = 1.1211 ×
10−9 and ◦ = 1.8890 × 10−10 at t = 30T ).
This shows that the nominal orbit modified by
the maximum principle is closer to the natural
equilibrium orbit and therefore, the control effort
to shift the unstable poles inside the unit circle is
less.
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6. CONCLUSIONS

In this paper, we have attempted to general-
ize the OGY-scheme of controlling chaotic non-
linear discrete-time systems to continuous-time
systems. Using a linearized equation around an
UPO and its Monodromy matrix, we discretize
the system and construct OGY control. In con-
trast to the existing method to apply the OGY
control to continuous-time systems, we do not use
the Poincaré section for discretization and gave
an analytical proof for stability, in the sense of
continuous-time systems, of the closed loop sys-
tem.

It is difficult, in general, to find exact closed UPOs
and our approach does not require them. Instead,
we proposed a method of stabilizing almost pe-
riodic orbits based on Floquet theory and find-
ing better APOs for control using the maximum
principle in control theory. As a matter of fact,
it is impossible without exact closed orbits to
asymptotically stabilize the system around UPOs.
In section §3.2, we gave an analysis to estimate the

bound of the controlled behavior using Lyapunov
stability theory. Also, the proposed framework
provides a design procedure of stabilizing con-
trol for a given target orbit, whereas the delayed
feedback scheme is not well-developed as a design
technique. The example of halo orbit stabilization
shows the effectiveness of the proposed method,
which is an example of higher dimensional systems
that are numerically difficult to stabilize by the
standard OGY-control using the Poincaré section.
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Simó, C., G. Gómez, J. Llibre, R. Mart́ınez
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