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Abstract: In this paper, we develop a linear programming approach to the synthesis
of stabilizing fixed structure controllers for a class of linear time invariant discrete-
time systems. The stabilization of this class of systems requires the determination
of a real controller parameter vector (or simply, a controller), K, so that a family
of real polynomials, affine in the parameters of the controllers, is Schur. An
attractive feature of the paper is the exploitation of the interlacing property
of Schur polynomials (based on the characterization in terms of Tchebyshev
polynomials) to systematically generate an arbitrarily large large number of sets
of linear inequalities in K. The union of the feasible sets of linear inequalities
provides an approximation of the set of all controllers, K, which render P (z, K)
Schur. Illustrative examples are provided to show the applicability of the proposed
methodology. Copyright c©2005 IFAC
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1. INTRODUCTION

There is renewed interest in the synthesis of
fixed-order stabilization of a linear time invari-
ant dynamical system. Surveys by (Syrmos et
al., 1997; Bernstein, 1992) show that this prob-
lem has attracted significant attention over the
last four decades. Application of fixed-order sta-
bilization problem can be found in the work
of (Buckley, 1995; Zhu et al., 1995; Bengtsson
and Lindahl, 1974). This problem may be simply
stated as follows: Given a finite-dimensional LTI
dynamical system, is there a stabilizing proper,
rational controller of a given order (a causal con-
troller of a given state-space dimension)? The set
of all the stabilizing controllers of fixed order is

the basic set in which all design must be carried
out.

Given the widespread use of fixed-order con-
trollers in various applications (see (Goodwin et
al., 2001), Ch. 6), it is important to understand
whether fixed-order controllers that achieve a
specified performance exist and if so, how one
can find them and compute the set of all such
stabilizing controllers that achieve a specified per-
formance. Unfortunately, the standard optimal
design techniques result in controllers of higher
order, and provide no control over the order or
the structure of the controller. Moreover, the set
of all fixed order/structure stabilizing controllers
is non-convex and in general, disconnected in the
space of controller parameters, see (Ackermann,



1993). This is a major source of difficulty in its
computation.

In this paper, we focus on the problem of deter-
mining the set of all real controller parameters,
K = (k1, k2, . . . kl), which render a real polyno-
mial Schur, where each member of the set is of the
form:

P (z,K) = Po(z) +
N∑

l=1

klPl(z).

A good survey of the attempts to solve the fixed
order control problem and the related Static Out-
put Feedback (SOF) problem is given in (Syrmos
et al., 1997; Blondel et al., 1995; Bernstein, 1992).
(Henrion et al., 2003) combine ideas from Strict
Positive Realness(SPRness), positive polynomials
written as sum of squares (SOS) and LMIs to solve
the problem of robust stabilization with fixed or-
der controllers. The LMI approach for synthesiz-
ing a Static Output Feedback (SOF) controller is
also explored in (Ghaoui et al., 1997; Iwasaki and
Skelton, 1995).

(Datta et al., 2000) used the Hermite-Biehler the-
orem for obtaining the set of all stabilizing PID
controllers for SISO plants. Discrete-time PID
controller using Tchebyshev representation and by
using interlacing property of Schur polynomial has
been designed by (Keel et al., 2003). They use
root counting formulas and carry out search for
the separating frequencies by exploiting the struc-
ture of the PID control problem. The interlacing
property of real and complex Hurwitz polynomial
has been used by (Darbha et al., 2004; Malik et
al., Dec. 2004) to generate the set of stabilizing
fixed order controllers that achieve certain speci-
fied criterion.

This paper is organized as follows: In Section 2,
we deal with the Tchebyshev representation of
polynomials and we provide the characterization
for a polynomial, P (z), to be Schur in terms of
its Tchebyshev representation. Section 3, deals
with the generation of outer approximation So and
inner approximation Si of the set of controllers S,
of a given structure, that stabilize a given linear
time invariant discrete-time system. It is seen
that Si ⊂ S ⊂ So. Illustrative examples of how
the set of fixed structure stabilizing controllers
are provided. In section 4, we provide concluding
remarks.

2. TCHEBYSHEV REPRESENTATION AND
CONDITION FOR A SCHUR POLYNOMIAL

Let P (z) = anzn + an−1z
n−1 + · · · + a1z + a0

denote a real polynomial, that is the coefficients,

ai are real numbers. We are interested in deter-
mining the root distribution of P (z) with respect
to the unit circle. The root distribution of P (z)
is necessary in characterizing the set of stabilizing
controllers for a discrete-time control system. In
such systems, P (z) could denote the characteris-
tic polynomial of the given discrete-time control
system. The stability of the system is equivalent
to the condition that all root of P (z) lie in the
interior of the unit circle, i.e. P (z) has to be a
Schur polynomial.

2.1 Tchebyshev representation of polynomials

We need to determine the image of the boundary
of the unit circle under the action of the real
polynomial P (z).

{
P (z) : z = ejθ, 0 ≤ θ ≤ 2π

}

As the coefficients, ai, of the polynomial P (z) are
real, P (ejθ) and P (e−jθ) are conjugate complex
numbers. Hence, it is sufficient to determine the
image of the upper half of the unit circle:

{
P (z) : z = ejθ, 0 ≤ θ ≤ π

}

By using, zk
∣∣
z=ejθ = cos kθ + j sin kθ, we have

P (ejθ) = (an cos nθ + · · ·+ a1 cos θ + a0)+
+ j(an sin nθ + · · ·+ a1 sin θ)

cos kθ and sin kθ/ sin θ can be written as poly-
nomials in cos θ using Tchebyshev polynomials.
Using u = − cos θ, if θ ∈ [0, π] then, u ∈ [−1, 1].
Now,

ejθ = cos θ + j sin θ = −u + j
√

1− u2

Let cos kθ = ck(u) and sin kθ/ sin θ = sk(u),
where ck(u) and sk(u) are real polynomials in u
and are known as the Tchebyshev polynomials of
the first and second kind, respectively. It is easy
to show that,

sk(u) = −1
k

dck(u)
du

, k = 1, 2, · · · (1)

and that the Tchebyshev polynomials satisfy the
recursive relation,

ck+1(u) = −uck(u)− (1− u2)sk(u), k = 1, 2, · · ·
(2)

Using (1) and (2), we can determine ck(u) and
sk(u) for all k.

From the above development, we see that

P (ejθ)
∣∣
u=− cos θ

= R(u)+j
√

1− u2T (u) =: Pc(u)

We refer to Pc(u) as the Tchebyshev representa-
tion of P (z). R(u) and T (u) are real polynomials
of degree n and n − 1 respectively, with leading
coefficients of opposite sign and equal magnitude.
More explicitly,



R(u) = ancn(u) + · · ·+ a1c1(u) + a0

T (u) = ansn(u) + an−1sn−1(u) + · · ·+ a1s1(u)

The complex plane image of P (z) as z traverses
the upper half of the unit circle can be obtained
by evaluating Pc(u) as u runs from -1 to +1.

2.2 Root distribution

Let φP (θ) := arg[P (ejθ)] denote the phase of P (z)
evaluated at z = ejθ and let ∆θ2

θ1
[φP (θ)] denote the

net change in phase of P (ejθ) as θ increases from
θ1 to θ2. Similarly, let φPc

(θ) := arg[Pc(u)] denote
the phase of Pc(u) and ∆u2

u1
[φPc(u)] denote the net

change in phase of Pc(u) as u increases for u1 to
u2.

Lemma 1. Let the real polynomial P (z) have i
roots in the interior of the unit circle, and no roots
on the unit circle. Then

∆π
0 [φP (θ)] = πi = ∆+1

−1[φPc(u)]

Proof. From geometric considerations it is easily
seen that each interior root contributes 2π to
∆2π

0 [φP (θ)] and therefore because of symmetry
of roots about the real axis the interior roots
contribute iπ to ∆π

0 [φP (θ)]. The second equality
follows from the Tchebyshev representation de-
scribed above. ∇∇∇

2.3 Characterization of Schur polynomial in terms
of its Tchebyshev representation

Let P (z) be a real polynomial of degree n. This
polynomial will be said to be Schur if all n roots
lie within the unit circle. In this subsection, we
characterize the Schur polynomial in terms of
its Tchebyshev representation, P (ejθ) = R̃(θ) +
jT̃ (θ) = R(u)+j

√
1− u2T (u), where u = − cos θ.

R(u) and T (u) are real polynomials of degree n
and n− 1, respectively.

Theorem 1. P (z) is Schur if and only if

(1) R(u) has n real distinct zeros ri, i =
1, 2, · · · , n in (−1, +1)

(2) T (u) has n − 1 real distinct zeros tj, j =
1, 2, · · · , n− 1 in (−1,+1)

(3) the zeros ri and tj interlace, i.e

−1 < r1 < t1 < r2 < t2 < · · · < tn−1 < rn < +1
Proof. Let

tj = − cos αj , αj ∈ (0, π), j = 1, 2, · · · , n− 1

or

αj = cos−1(−tj), j = 1, 2, · · · , n− 1,

α0 = 0, αn = π

and let

βi = cos−1(−ri), i = 1, 2, · · · , n, βi ∈ (0, π)

Then (α0, α1, · · · , αn) are the n + 1 zeros of T̃ (θ)
and (β1, β2, · · · , βn) are the n zeros of R̃(θ). the
third condition means that αi and βj satisfy

0 = α0 < β1 < α1 < · · · < βn−1 < αn = π

This condition means that the plot of P (ejθ) for
θ ∈ [0, π] turns counter-clockwise through exactly
2n quadrants. Therefore,

∆π
0 [φP (θ)] = 2n.

π

2
= nπ

and this condition is equivalent to P (z) having n
zeros inside the unit circle. ∇∇∇

3. SYNTHESIS OF SET OF STABILIZING
CONTROLLERS

In this section, we seek to exploit the Interlacing
Property (IP) of Schur polynomials to systemat-
ically generate inner and outer approximation of
the set of stabilizing controllers, S. This approach
leads to sets of Linear Programs(LPs).

Let P (z,K) be a real closed loop characteris-
tic polynomial whose coefficients are affinely de-
pendent on the design parameters K; one can
define the Tchebyshev representation through
P (ejθ,K) = R(u,K) + j

√
1− u2T (u,K), where

u = − cos θ. R(u,K) and T (u, K) are real poly-
nomials of degree n and n−1, respectively and are
affine in the controller parameter K. The leading
coefficients of R(u,K) and T (u, K) are of opposite
sign and are of equal magnitude.

3.1 Inner Approximation

The stabilizing set of controllers, S is the set
of all controllers, K, that simultaneously satisfy
the conditions of Theorem 1. The problem of
rendering P (z, K) Schur can be posed as a search
for 2n − 2 values of u. By way of notation, we
represent the polynomials R(u,K) and T (u,K)
compactly in the following form:

R(u,K) =
[
1 u · · · un

]
∆R

[
1
K

]
(3)

T (u,K) =
[
1 u · · · un−1

]
∆T

[
1
K

]
(4)

In (3) and (4), ∆R and ∆T are real constant
matrices that depend on the plant data and the
structure of the controller sought; they are respec-
tively of dimensions (n+1)×(l+1) and (n)×(l+1),
where, n is the degree of the characteristic poly-
nomial and l is the size of the controller parameter
vector. For i = 1, 2, 3, 4, let Ci and Si be diagonal
matrices of size 2n; for an integer m, the (m+1)st

diagonal entry of Ci is cos( (2i−1)π
4 + mπ

2 ) and the
corresponding entry for Si is sin( (2i−1)π

4 + mπ
2 ).



For any given set of 2n − 2 distinct values of u,
−1 = u0 < u1 < · · · < u2n−2 < u2n−1 = 1,
and for any integer m define a Vandermonde-like
matrix, V (u0, u1, . . . , u2n−1,m), as:

V (u0, u1, . . . , u2n−1, m) :=




1 u0 . . . um
0

1 u1 . . . um
1

1 u2 . . . um
2

...
...

...
...

1 u2n−1 . . . um
2n−1




We are now ready to characterize the set of
stabilizing controllers K in terms of the (2n − 2)
values:

Theorem 2. There exists a real control parame-
ter vector K = (k1, k2, · · · , kl) so that the real
polynomial P (z,K)

P (z,K) := P0(z) + k1P1(z) + . . . + klPl(z)

= pn(K)zn + pn−1(K)zn−1 + · · ·+ p0(K)

is Schur if and only if there exists a set of 2n− 2
values, −1 = u0 < u1 < u2 < · · · < u2n−2 <
u2n−1 = 1, so that one of the following two Linear
Programs (LPs) is feasible:
LPs :

CkV (u0, u1, . . . , u2n−1, n)∆R

[
1
K

]
> 0

SkV (u0, u1, . . . , u2n−1, n− 1)∆T

[
1
K

]
> 0

for k=1,3.
Proof. The three conditions of Theorem 1 is
equivalent to the existence of 2n-2 values of u,
−1 < u1 < u2 < · · · < u2n−2 < 1 such that the
roots of the Tchebyshev polynomial R(u,K) lie in

(−1, u1), (u2, u3), (u4, u5)

while the roots of the other Tchebyshev polyno-
mial T (u,K) lie in

(u1, u2), (u3, u4), (u5, u6)

If R(−1, K) > 0, T (−1,K) > 0, then the place-
ment of roots will require

R(u1,K) < 0, R(u2,K) < 0, R(u3,K) > 0, · · ·
and

T (u1,K) > 0, T (u2,K) < 0, T (u3,K) < 0, · · ·
In other words, the signs of R(ui,K) and T (ui, K)
are the same as that of cos(π

4 +iπ
2 ) and sin(π

4 +iπ
2 )

respectively. This corresponds to the LP for k =
1. Similarly for R(−1,K) < 0 and T (−1,K) < 0
we have the LP corresponding to k = 3. ∇∇∇
The essential idea is that the plot of the polyno-
mial P (ejθ) must go through 2n quadrants in the
counterclockwise direction as θ increases from 0 to

π. The conditions given above correspond to the
plot starting in the kth quadrant at θ = 0 .

The procedure to find the inner approximation
is to partition the interval (−1, 1) using more
than (2n−2) points (either uniformly or by using
appropriate Tchebyshev polynomial) and system-
atically searching for the feasibility of the ob-
tained set of linear inequalities. Every feasible LP,
yields a controller K which makes the polynomial
P (z, K) Schur. The union of all the feasible sets
of the LPs described above, for all possible sets of
(2n−2) points in (−1, 1) is the set of all stabilizing
controllers of the given structure. With partition-
ing (−1, 1), however, one will be able to capture
only finitely many of the possible sets of (2n− 2)
points, u1, . . . , u2n−2. The feasible sets of the LPs
corresponding to these finitely many possible sets
will provide an inner approximation of the set of
all stabilizing controllers. This approximation can
be made more accurate by refining the partition
- i.e., if K is a stabilizing controller not in the
approximate set, then there is refinement [which
will separate the roots of R(u,K) and T (u,K)] of
the partition from which one can pick 2n−2 points
so that one of the four LPs corresponding to these
points is feasible. This is the basic procedure for
finding the inner approximation.

3.2 Outer Approximation

In the previous subsection, we outlined a proce-
dure to construct LPs whose feasible set is con-
tained in S. Their union Si is an inner approxima-
tion to S. For computation, it is useful to develop
an outer approximation, So that contains S. In
this subsection, we will present how to construct
an arbitrarily tight outer approximation So as a
union of the feasible sets of LPs. We propose to use
the Poincare’s generalization of Descartes’ rule of
signs.

Poincare’s Generalization: The number of sign
changes in the coefficients of Qk(x) := (x +
1)kP (x) is a non-increasing function of k; for a
sufficiently large k, the number of sign changes in
the coefficients equals the number of real, positive
roots of Q(x).
The proof of the generalization due to Poincare is
given in (Polya and Szego, 1998).

For the sake of a discussion on outer approxima-
tion, we will treat the polynomials, R̂(λ, K) and
T̂ (λ,K), as polynomials in λ obtained through
the bijective mapping λ = 1+u

1−u . This maps the
interval (−1, +1) into the interval (0,∞). This
mapping is applied in the following way:

(1 + λ)nQ

(
λ− 1
1 + λ

)
= Q̂(λ)



The ith roots of R̂(λ,K) and T̂ (λ,K) be rep-
resented as λr,i and λt,i respectively. Since the
polynomials R̂ and T̂ must have respectively n
and n − 1 real, positive roots, an application of
Poincare’s result to the polynomials R̂ and T̂
yields the following:

Lemma 1. If K is a stabilizing control vector,
then (λ + 1)k−1R̂(λ,K) and (λ + 1)k−1T̂ (λ, K)
have exactly n and n − 1 sign changes in their
coefficients respectively for every k ≥ 1.

The procedure in (Bhattacharyya et al., 1988)
corresponds to k = 1 of the above lemma.

The following lemma takes care of the interlacing
of the roots of two polynomials:

Lemma 2. Let K render a polynomial P (z, K)
Schur. Then the polynomial Q̃(λ,K, η) = λT̂ (λ,K)−
η(1 + λ)R̂(λ,K) has exactly n real positive roots
for all η ∈ R.

Proof. In the interest of saving space, we only
provide a sketch of the proof. The roots T̂ (λ, K)
and R̂(λ,K) are real and positive and they inter-
lace if and only if Q̃(λ,K, η) has exactly n real
positive roots for all η ∈ R. To prove sufficiency,
we consider the graph of the rational function
y := λT̂ (λ)

(1+λ)R̂(λ)
and consider the intersections with

y = η. To prove necessity, we argue, via a root
locus, that if the interlacing of real roots condi-
tion is violated, then for some value of η ∈ <,
polynomial Q̃(λ,K, η) will have at least a pair of
complex conjugate roots. ∇∇∇
Lemmas 1 and 2 can be put together to show that
an arbitrarily tight outer approximation can be
constructed.

Example 1 Consider a plant

G(z) =
z2 − 2z + 1
1.9z2 + 2.1

.

It is desired to calculate the complete set of first
order controllers of the form

C(z) =
k1(z − 1)
z + k2

The characteristic equation is given by

(1.9+k1)z3 +(1.9k2− 3k1)z2 +(2.1+3k1)z +(2.1k2−k1)

The Tchebyshev polynomials is found to be:

R = −(7.6 + 4k1)u3 + (3.8k2 − 6k1)u2 + 3.6u + 2k1 + .2k2

T = (7.6 + 4k1)u2 + (6k1 − 3.8k2)u + (2k1 + 0.2)

An inner and outer (black color) approximation
of the set of gains is shown in Fig. 1. The inner
approximation finds an excellent approximation of
the complete set of stabilizing controllers.
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Fig. 1. Set of stabilizing controllers - An inner and
outer approximation

Fig. 2. Solution for Example 2: - An inner approx-
imation

Example 2 Consider a plant:

G(z) =
1

z2 − 0.25
The controller is considered to be of the following
structure:

C(z) =
k3z

2 + k2z + k1

z2 − z

An inner approximation of the set of controllers is
shown in Fig. 2. An inner and outer (yellow color)
approximation of the set of controllers is shown in
Fig. 3.

4. CONCLUSIONS

In this paper, we consider the problem of the
synthesis of fixed order and structure controllers,
where the coefficients of the closed loop polyno-
mial are linear in the parameters of the controller.
A novel feature of this paper is the systematic
exploitation of the interlacing property of Schur
polynomials and the use of Poincare’s generaliza-
tion of Descartes’ rule of signs to generate LPs in
the parameters of a fixed order controller. For real
stabilization, the feasible set of any LP generated



Fig. 3. Set of stabilizing controllers - An inner and
outer approximation

for an inner approximation of the set of all stabi-
lizing controllers, can be indexed by a set of 2n−2
increasing values, −1 = u0 < u1 < u2 < · · · <
u2n−2 < u2n−1 = 1; in particular, any controller
in the feasible set of LPs places the roots of the
Tchebyshev polynomials of P (z, K) alternately in
the intervals (ui, ui+1), i = 0, . . . , 2n − 1. The
problem of inner approximation of the set of stabi-
lizing controllers is then posed as the search for all
sets of ordered 2n−2-tuples of points for which the
associated LP is feasible; the union of all feasible
LPs is an inner approximation for the set of all
stabilizing controllers. The proposed methodology
naturally extends to the computation of the set of
simultaneously stabilizing controllers. We provide
examples to illustrate some of the results derived
in this paper.

Recent solutions to the PID controller design
problem (Datta et al., 2000) requires the even
and odd parts of a polynomial to have certain
patterns of root separation. In (Datta et al., 2000),
the authors carry out a search for the separating
frequencies by exploiting the structure of the PID
control problem. This method is dependent on the
special structure of the controller. The method
proposed in this paper can find an inner and
an outer approximation to the set of stabilizing
controllers of any fixed order or structure. To il-
lustrate the methodology developed in this paper,
we have used simple examples in which the set of
stabilizing controllers can be shown.
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