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1. INTRODUCTION

State estimation of stochastic dynamical systems
has been extensively studied during the last decades
and the problem is usually solved by assuming
white and Gaussian noises on model and mea-
surements (Kalman filter). However, when the sta-
tistical properties of the noises are unknown or
not satisfied, an alternative approach consists in
considering that only bounds on the possible mag-
nitude of the disturbances are available, the so-
called set-membership estimation was first intro-
duced by Schweppe (Schweppe, 1968; Schlaepfer
and Schweppe, 1972) using ellipsoidal bounding
techniques. The aim is to determine a set of state
estimate vectors compatible with the bounds on
the process disturbance and measurement noise.
Since these pioneer works, a vast literature is dedi-
cated to this subject in the context of parameter
identification (Fogel and Huang, 1982; Canudas-
De-Wit and Carrillo, 1990) and (Becis-Aubry et
al., 2003; Becis-Aubry et al., 2004) or state es-

timation (Norton, 1994; Norton, 1995; Kapoor et
al., 1996; Maksarov and Norton, 1996a; Durieu
et al., 2001). The most of works of literature in
the set-membership estimation framework aim to
design the “smallest” set that contains all the pos-
sible values of the quantity to estimate and that is
consistent with the model equations, input/output
data, and the noises bounds. To our knowledge,
very few works have been developed with a concern
for the stability of some “state estimator” vector.
Our goal in this paper is twofold : first, we aim to
find a “guaranteed” estimator – i.e., an estimator
consistent with the model equations, input/output
data, and the noises bounds – in other words, ac-
ceptable estimator ; secondly the estimated vector
to be designed must converge to the true state
vector and this is the main contribution of this
paper.

As the Kalman filter, the algorithm proposed here
can be decomposed into two steps : time updating
and observation updating. These two steps will



be presented successively, next some properties
of the designed algorithm will be established and
finally, the effectiveness of the algorithm will be
demonstrated through a numerical example.

2. PROBLEM FORMULATION

Notations : E(c, P ) := {x ∈ IRs| (x−c)T P−1(x−c) ≤ 1} is

an ellipsoid in IRs (s ∈ IN∗), where c ∈ IRs is its center and

P ∈ IRs×s is a symmetric positive definite (SPD) matrix

that defines its shape, size and orientation in the IRs space ;

‖x‖ = (xT x)
1
2 is the Euclidean norm of the vector x and

‖x‖W = (xT Wx)
1
2 is its weighted Euclidean norm (W is a

SPD matrix of appropriate dimension).

Let us consider the following discrete-time linear 1

system written in the state space :
x∗

k = Φk−1x
∗
k−1 + Hk−1uk−1 + wk−1 (1a)

yk = Fkx∗
k + vk (1b)

where x∗
k ∈ IRn is the unknown state vector to be

estimated, uk−1 ∈ IRm is a known control vector,
yk ∈ IRp is a measurable system output vector,
Φk−1 ∈ IRn×n, Hk ∈ IRn×m and Fk ∈ IRp×n are
the state, input and output matrices, where Φk−1

and Fk are of full rank and wk ∈ IRn and vk ∈ IRp

are unobservable bounded noise vectors with un-
known statistical characteristics that may include
the modeling inaccuracies, the discretization errors
or the computer round-off errors. vk can represent
the measurement noise and wk−1 can be viewed as
unknown but bounded inputs. The only properties
verified by vk and wk−1 are
wk ∈ E(0,Wk) ⇔ vk

T W−1
k vk ≤ 1, ∀k ∈ IN∗ (2a)

vk ∈ E(0, Vk) ⇔ vk
T V −1

k vk ≤ 1, ∀k ∈ IN∗. (2b)
Without loss of generality, we assume that uk = 0,
∀k ∈ IN∗ in (1a). If this is not the case, it suffices
to add Hk−1uk−1 to the expression of the state
prediction x̂k/k−1 given by (3). Let x̂k ∈ IRn be
the estimate of x∗

k. Our aim in the sequel is to
design an estimation algorithm for the system (1a)–
(1b) such that

i. the set that contains all possible values of
the true state vector x∗

k is quantified at each
instant k ;

ii. the (a posteriori) output error vector yk−Fkx̂k

is acceptable, i.e., it remains in the interior of
the ellipsoid (2b) enclosing all possible values
of the disturbance vectors vk, i.e.
(yk − Fkx̂k)T V −1

k (yk − Fkx̂k) ≤ 1, ∀k ∈ IN∗ ;
iii. the estimator is stable and convergent.

In the bounded error estimation context, each
estimated state vector for which the output error
is acceptable is the best estimate one can have.

1 in the sense that its output vector is affine with respect

to its state vector which dynamics are linear.

It is assumed that the state vector x∗
k belongs to a

known ellipsoid E(x̂0, σ2
0P0), where x̂0 is the initial

estimate of x∗
0, P0 is a SPD matrix and σ0 is a

positive scalar. At the sampling time k, the ellipsoid
containing all presumed values of the true state
vector x∗

k is E(x̂k, σ2
kPk), where σk > 0, Pk > 0,

PT
k = Pk and the center of the ellipsoid is the state

estimate vector x̂k. Note that the eigenvalues of
the shape matrix, σ2

kλi(Pk)i=1,...,n correspond to
the squared semi-lengths of its axes, the directions
of which are defined by the associated (orthogonal)
eigenvectors.

In what follows, we have to determine a progression
law for the ellipsoid Ek := E(x̂k, σ2

kPk) such that
the aims i.–iii. are fulfilled.

3. TIME UPDATE

At this stage, we compute, at each step k, the
ellipsoid Ek/k−1 containing the “reach set” from
Ek−1 of the current state vector x∗

k, that evolves
obeying to the plant dynamics described by (1a)
and affected by the unknown noise vector wk−1.
This is done by performing the vector sum of the
ellipsoid E(0,Wk−1) and a linear transformation (of
matrix Fk) of Ek−1 :

Ek/k−1 ⊇ {x ∈ IRn| x = Φk−1x1 + x2,

x1 ∈ Ek−1, x2 ∈ E(0,Wk−1)}.

Lemma 1. Let x∗
k−1 ∈ E(x̂k−1, σ2

k−1Pk−1) obey-
ing to (1a) where wk−1 ∈ E(0,Wk−1) and let
x̂k/k−1 = Φk−1x̂k−1, (3)

Pk/k−1 =
Φk−1Pk−1ΦT

k−1

1− ρ
+

Wk−1

ρσ2
k−1

, 0 < ρ < 1,(4)

σ2
k/k−1 = σ2

k−1 ; (5)
then
∀ρ ∈]0, 1[,x∗

k∈ E(x̂k/k−1, σ
2
k/k−1Pk/k−1) = Ek/k−1.�

Proof. At time k − 1,

Ek−1 =
{

x ∈ IRn| ‖x− x̂k−1‖2P−1
k−1

≤ σ2
k−1

}
=
{

x ∈ IRn| x = x̂k−1 + σk−1P
1
2

k−1y, y ∈ Bn

}
;

we have
x∗

k−1 ∈ Ek−1 ⇔ x∗
k−1 = x̂k−1 + σk−1P

1
2

k−1y, y ∈ Bn

⇔ Φk−1x
∗
k−1 = Φk−1x̂k−1 + σk−1Φk−1P

1
2

k−1z, z ∈ Bn

⇔ Φk−1x
∗
k−1 = Φk−1x̂k−1 + σk−1Φk−1P

1
2

k−1z, z ∈ Bn

⇔ Φk−1x
∗
k−1 ∈ E(Φk−1x̂k−1, σ2

k−1Φk−1Pk−1ΦT
k−1) (6)

where Bn is a unit ball in IRn centered at 0.

Considering (6) and the fact that wk−1 ∈ E(0,Wk−1),
then applying the result that gives the expression of
the ellipsoid that contains the sum of two ellipsoids
(Schweppe, 1973), it can be deduced that



∀ρ ∈]0, 1[, (Φk−1x
∗
k−1 + wk−1) ∈

E
(
Φk−1x̂k−1,

σ2
k−1

1−ρ Φk−1Pk−1ΦT
k−1 + 1

ρWk−1

)
(7)

(7) ⇔ x∗
k ∈ E(x̂k/k−1, σ2

k/k−1Pk/k−1) = Ek/k−1.�

The optimal value of ρ is the one that minimizes
either the volume of the ellipsoid Ek/k−1 (i.e., the
determinant of σ2

kPk/k−1) or the squared sum of
its axes lengths (i.e., the trace of σ2

kPk/k−1). These
values and the methods of their obtention are given
in details in the excellent paper (Maksarov and
Norton, 1996a).

4. OBSERVATION UPDATE

The observation equation (1b) and the inequality
(2b) define an other bounding set for the vec-
tor x∗

k. Indeed, it is clear that x∗
k ∈ Sk, where

Sk :=
{
x ∈ IRn| (yk − Fkx)T V −1

k (yk − Fkx) ≤ 1
}
.

The aim of the algorithm to be presented is to
compute recursively the state estimate vector x̂k,
the SPD matrix Pk and the positive scalar σ2

k which
define the ellipsoid containing the presumed values
of x∗

k in light of the current measurements. This
is carried out by performing, at each iteration, the
intersection between the ellipsoid Ek/k−1 (obtained
in the previous section) and the set Sk. This inter-
section does not result, in general, in an ellipsoid
and has to be circumscribed by an ellipsoid :

Lemma 2. If
x̂k = x̂k/k−1 + Kkδk, (8)
Pk = (In −KkFk) Pk/k−1, (9)

σ2
k = σ2

k/k−1+ω[1− δT
k (ωFkPk/k−1F

T
k +Vk)−1δk] (10)

where Kk ∈ IRn×p is the gain matrix of the
estimator and δk ∈ IRp is the innovation vector :

Kk = ωPk/k−1F
T
k

(
ωFkPk/k−1F

T
k + Vk

)−1
, (11)

δk = yk − Fkx̂k/k−1 ; (12)
then ∀ω ∈ IR+,(
E(x̂k/k−1, σ2

k/k−1Pk/k−1) ∩ Sk

)
⊆E(x̂k, σ2

kPk). ■

This lemma is the summarized version of some
propositions enounced in (Becis-Aubry et al., 2003)
applied to the state estimation problem.

Now, we are interested in the derivation of the
“optimal” value of ω with respect to a criterion
to be chosen. Contrary to some algorithms of the
literature (Maksarov and Norton, 1996a; Durieu et
al., 2001) that minimize the size of the ellipsoid
E(x̂k, σ2

kPk), the optimal value of ω chosen here
is the one that guarantees the stability of the
algorithm given by the equations (3),(4),(5) and
(8),(9), (10), (11), (12) in the sense of Lyapunov
and that minimizes the quantity maxvk∈E(0,Vk) Vk−
Vk−1, where Vk is a Lyapunov function of the
estimation error x∗

k−x̂k. This amounts to minimize

σ2
k defined in (10) with respect to ω on IR+ and

leads to the following result :

Lemma 3. The value of ω that solves min
ω∈IR+

σ2
k is

ω∗k =

{
0 if ‖δk‖V −1

k
≤ 1,

$k otherwise ;
(13)

where $k is the unique real positive solution of the

equation β

p∑
i=1

α2
i

(γiω + 1)2
= 1 in the unknown ω,

with αi = αki
=

uki
T V̄kδk

‖δk‖V −1
k

, β = βk = ‖δk‖2V −1
k

and γi = γki
∈ IR+, i ∈ {1, 2, . . . , p} satisfy

det
(
FkPk/k−1F

T
k − γkiVk

)
= 0, (14)

where uki
∈ IRp are such that

V̄kFkPk/k−1F
T
k V̄ T

k uki
= γiuki

(15)

and V̄k satisfies V̄ T
k V̄k = V −1

k (e.g . V̄k = V
− 1

2
k ). ■

Proof. To prove this lemma we need to state the
following proposition (without proof for lack of
place) :

Proposition 1. The equation β

p∑
i=1

α2
i

(γiω + 1)2
= 1,

where α1, α2, . . ., αp ∈ IR, with
∑p

i=1 α2
i = 1,

β ∈ IR+ and γ1, γ2, . . ., γp ∈ IR∗+, has one and
only one real strictly positive solution if and only
if β > 1. Furthermore, letting α = (α1 α2 · · ·αp)
and γ = (γ1 γ2 · · · γp), the function Fα,β,γ :

IR+ → IR, ω 7→ Fα,β,γ(ω) = ω − ωβ

p∑
i=1

α2
i

γiω + 1
has a global minimum on IR+ for ω = ω∗ such

that ω∗ =
{

$ if β > 1,
0 otherwise ; where $ ∈ IR∗+ is the

solution of the equation above. ■

From (10), we have

σ2
k = σ2

k−1 − ωδ̄k
T (ωXk + Ip)

−1
δ̄k + ω (16)

where Xk = V̄kFkPk−1F
T
k V̄ T

k and δ̄k = V̄kδk. As
Xk is symmetric, there exists Uk =

(
uk1 . . . ukp

)
such that UkUT

k = Ip, UT
k XkUk is diagonal and

Xkuki
= γki

uki
for all i ∈ {1, . . . , p}, where γki

and uki
are the ith eigenvalue (given in (14) and

(15)) and the associated eigenvector of Xk. It is ob-

vious that uki
T (ω∗kXk + Ip)

−1
uki =

1
(ω∗kγki + 1)

,

thus (16) becomes

σ2
k = σ2

k−1 + ω − ωδ̄k
T
UkUT

k (ωXk + Ip)
−1

UkUT
k δ̄k

= σ2
k−1 + ω

(
1−

p∑
i=1

(
uki

T δ̄k

)2
ωγki + 1

)
= σ2

k−1 + ω

(
1− βk

p∑
i=1

α2
ki

ωγki + 1

)
. (17)

Firstly, as Pk−1 is symmetric positive definite,
as V̄k is non singular and as Fk is a full row



rank matrix, Xk = V̄kFkPk−1F
T
k V̄ T

k is SPD
so γki

> 0, ∀i ∈ {1, . . . , p} ; secondly, as
p∑

i=1

(
uki

T δ̄k

)2
= δ̄k

T
UkUT

k δ̄k =
∥∥δ̄k

∥∥2, we have

p∑
i=1

α2
ki

=
1∥∥δ̄k

∥∥2

p∑
i=1

(
uki

T δ̄k

)2
= 1 ; and thirdly

βk =
∥∥δ̄k

∥∥2 ≥ 0. Consequently, we can use
the function Fαk,βk,γk

from the Proposition 1 to
rewrite (17) as σ2

k = σ2
k−1 +Fαk,βk,γk

(ω) ; and we
show that

ω∗k = arg
(

min
ω≥0

σ2
k

)
= arg

(
min
ω≥0

Fαk,βk,γk
(ω)
)

.

We can therefore use the Proposition 1 to deduce
the value of ω∗k and the Lemma 3 is thus proved. ❑

Corollary 1. The value of ω that minimizes σ2
k is

given by (13) where $k is the unique real positive
eigenvalue of the matrix Ξk ∈ IR2p×2p :

Ξk =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

− ξk0

ξk2p

− ξk1

ξk2p

− ξk2

ξk2p

· · · −
ξk2p−1

ξk2p


where ξki

, i ∈ {0, . . . , 2p}, are the components of

ξk =
p∑

i=1

α2
ki

qk1 ∗ (qk2 · · · ∗ (qki−1
∗ (qki − dk)

∗(qki+1
· · · ∗ (qkp−1

∗ qkp
)))),

qki
= (γki

1)∗(γki
1) =

(
γ2

ki
2γki

1
)
, dk = (0 0 βk),

∗ is the convolution operation 2 and αki , βk and γki

are defined in the Lemma 3. ■

Proof. The proof of this corollary is straightfor-
ward by considering the Lemma 3 and the fact that
the roots of a polynomial are the eigenvalues of its
companion matrix. ❑

5. ALGORITHM’S PROPERTIES

In this section, we show that the proposed al-
gorithm with ω = ω∗k computed by the aid of
Lemma 3 and/or Corollary 1 fulfills the expecta-
tions i − iii expressed in the section 2.

Theorem 1. Consider the state estimation algo-
rithm (3)–(5) (where ρ = ρk−1) and (8)–(12) for
the model (1a)–(1b). The following propositions are
true for all k ∈ IN∗ and for all 0 < ρ < 1

i. if x∗
0 ∈ E(x̂0, σ2

0P0) then x∗
k ∈ E(x̂k, σ2

kPk) for
all ω ∈ IR+ ;

2 If x = (xr · · ·x0) and y = (ys · · · y0), then (assuming
that r ≤ s) z = x ∗ y = (zr+s zr+s−1 · · · z0) where

zj =
∑j

i=0
xiyj−i if j ≤ min(r, s) = r and zj =∑r

i=0
xiyj−i otherwise

ii. the worst case weighted norm of the estima-
tion error vector, max

vk∈E(0,Vk)

∥∥x∗
k − x̂k

∥∥
P−1

k

, is

minimized with respect to ω at ω∗k given by
the Lemma 3 and/or the Corollary 1 ;

Furthermore, if ω = ω∗k, the algorithm has the
following properties

iii. the sequence (σk)k∈IN∗ – which represents an
upper bound on the weighted norm of the
estimation error vector

∥∥x∗
k − x̂k

∥∥
P−1

k

– is
decreasing and convergent on IR+ ;

iv. the a posteriori output error vector is always
acceptable, i.e., ‖yk − Fkx̂k‖V −1

k
≤ 1.

Moreover, if there exists positive reals a1, a2, b1 and
b2 such that the following inequalities are satisfied
for a finite m ∈ IN∗ and for all k ∈ IN :

a1In ≥
k+m−1∑

i=k

Φ̃k+m,i+1WiΦ̃T
k+m,i+1 ≥ a2In

b1In ≤
k+sk(m)∑

i=k

Φ̃T
i,k+sk(m)F

T
i ViFiΦ̃i,k+sk(m)≤ b2In

where
Φ̃k+j,k = Φ̃k+j,k+j−1Φ̃k+j−1,k+j−2 · · · Φ̃k+1,k,

Φ̃k+1,k = Φk, Φ̃k,k+j = Φ̃−1
k+j,k, and Φ̃k,k = In

and sk(m) is such that 3

CardN (ω∗k, ω∗k+1, . . . , ω
∗
k+sk(m)−1) = m

∀k, s ∈ IN∗,N (ω∗k, . . . , ω∗k+s−1)
:= {i ∈ IN∗|k ≤ i < k + s, ω∗i > 0}

then

v. the sequence (ω∗k)k∈IN∗ is convergent in IR+

and lim
k−→∞

ω∗k = 0 ;

vi. the sequences
(
x̂k − x̂k/k−1

)
k∈IN∗

and(
Pk − Pk/k−1

)
k∈IN∗

are convergent in IRn and
IRn×n respectively, with lim

k→∞
x̂k−x̂k/k−1 = 0

and lim
k→∞

Pk − Pk/k−1 = 0n×n ;

vii. the innovation vector tends to the interior of
the ellipsoid E(0, Vk), i.e.,
∀ε > 0,∃k∞ ∈ IN∗,∀k > k∞, δT

k V −1
k δk < 1 + ε ;

viii. Consider the dynamic system of state vector
x̆k = PkP−1

k/k−1Φk−1x̆k−1 ; (18)
1. there exists positive reals c1, c2, c3 and

% < 1 (e.g ., % = min
k≤i≤k+sk(m)

ρi) and a

positive integer m such that the sequence
(V̆k)k∈IN∗ , where V̆k = x̆k

T P−1
k x̆k, satis-

fies the inequalities :
0 < c1 ‖x̆k‖2 ≤ V̆k ≤ c2 ‖x̆k‖2 ,

for all k ∈ IN∗ such that x̆k 6= 0 and

3 In the sequence

{
ω∗k, ω∗k+1, . . . , ω∗i , . . . , ω∗

k+sk(m)−1

}
of

length sk(m), there must be exactly m times ω∗i 6= 0 (i.e.
‖δi‖V−1

k

> 1) and the rest sk(m) − m of ω∗i are zero.

Card S is the cardinal of the set S = {s1, . . . , sm} and is

equal to the finite number m of its elements.



V̆k+sk(m)+1 − (1− %)sk(m)+1V̆k

≤ −c3

∥∥x̆k+sk(m)+1

∥∥2
< 0,

for all k ∈ IN∗ such that x̆k+sk(m)+1 6= 0 ;
2. the homogenous part – represented by

the system (18) – of the estimator given
by (3)–(5) and (8)–(12)associated to the
model (1a)–(1b), as well as the homoge-
nous part of the estimation error, x̂k−x∗

k,
is uniformly asymptotically stable ;

ix. the volume and the lengths of all the axes of
E(x̂k, σ2

kPk) are bounded for all k ∈ IN∗. ■

Proof. For the lack of place, the proof of this
theorem is omitted. ❑

Remark 1. The point vi. of the Theorem 1
means that after a sufficient number of iterations,
the estimator’s dynamics approaches those of the
system (1a)–(1b). While the gain matrix becomes
smaller and smaller, the estimator consists merely
in its time update part, such that it can simply
follow the system’s evolution. ▼

Remark 2. One can notice that the aims i–iii
of the Section 2 are indeed fulfilled : all the way
through the paper, it seems obvious that the set
containing all possible values of x∗

k is quantified
by the ellipsoid E(x̂k, σ2

kPk) (aim i) ; from the
point iv. of the Theorem 1, it is clear that the
output error vector is acceptable (aim ii) ; and the
points v.–viii. show that the estimator is stable
and convergent (aim iii). ▼

All the remarks made in (Becis-Aubry et al., 2003)
can also be applied here.

6. NUMERICAL EXAMPLE

The example studied here is the one presented in
(Maksarov and Norton, 1996b) within the mini-
mal volume state estimation in the presence of
bounded noises framework. Consider the system

(1a)–(1b) where Φk =

 0.0 1.0 0.0
0.0 0.0 1.0
0.18 −0.96 1.5

 and

Fk =
(

1.2hk 1.8 −0.3
−1.0 0.6 −2.0hk

)
where hk = cos(0.1k)

and the noise vectors satisfy vk ∈ E(0, Vk) and

wk ∈ E(0,Wk) with Vk = α

(
100 −50
−50 100

)
and

Wk =

 5.0 0.5 −1.0
0.5 5.0 0.5

−1.0 0.5 5.0

, Vk involves a factor

α ∈ {1.6, 10}. wk is uniformly distributed in
the ellipsoid E(0,Wk), as for vk, it is generated
according to two different configurations :

config. 1 : vk is uniformly distributed in the el-
lipsoid E(0, Vk) ;

config. 2 : vk can be anywhere in the ellipsoid
E(0, Vk) but is more likely to draw near to its
boundary.

We will compare two algorithms :

algo. 1 : the algorithm presented here and given
by the equations (3)–(5) and (8)–(12), where ρ
is chosen such that the volume of the ellipsoid
Ek/k−1 computed at the time update step is
minimized.

algo. 2 : an other algorithm of the literature
(Maksarov and Norton, 1996a) that minimizes
the ellipsoid’s volume at both steps : time and
observation updates.

For each value of α, the simulations are run M = 50
times and the simulation horizon is N = 200
samples. The ellipsoid E0 containing the initial
state estimate is E(0, 100I3) and x∗

0 is uniformly
distributed in this ellipsoid.

Let us define a measure of each component of the
estimation error vector :

ei =
1
M

M∑
j=1

1
N

N∑
k=1

(
jx∗ik

− j x̂ik

)2
, i ∈ {1, 2, 3}.

where jx∗ik
(resp. j x̂ik

) is the ith component of
the true (resp. estimated) state vector for the kth

iteration (among N) of the jth simulation (among
M). Let us also define the mean Ek’s volumes :

νk =
1
M

M∑
j=1

vol
(
E(j x̂k, jσ2

k
jPk)

)
, ν̄ =

1
N

N∑
k=1

νk,

where, similarly, j x̂k and jσ2
k

jPk are the center
and the shape matrix of the ellipsoid for the kth

iteration (among N) of the jth simulation (among
M). We define the mean number of steps for which
the observation update of the algorithm is frozen,
i.e.,

r̄ =
1
M

∑M
j=1 Card

(
k ∈ {1, . . . , N}| jω∗k = 0

)
=

1
M

∑
Card

(
k ∈ {1, . . . , N}| j x̂k = j x̂k/k−1,

jPk = jPk/k−1,
jσ2

k = jσ2
k/k−1

)
,

and finally, define the mean computation time, T ,
in seconds, (which corresponds to the mean dura-
tion of one simulation for the M simulations made
by the software of technical computing, MATLAB).
The values of all these measures are given in the
tables 1 and 2.

After examining these tables, one can be struck
by the difference between the ellipsoid’s volumes
obtained by the two methods. Indeed, it is reason-
able that the algorithm (algo. 2) that minimizes
the volume of the ellipsoid produces ellipsoids with
volumes smaller than the ones of the algo. 1. This is
the main drawback of our algorithm. We can how-
ever notice that the difference between the ellip-
soid’s volumes decreases when the ellipsoid E(0, Vk)
becomes bigger.



On the other hand, the values of the ratio r̄/N and
the values of the mean computation time T show
that the number of observation updates for alog. 1
are less than those for algo. 2. Roughly speaking,
out of 200 iterations of a simulation, more than
100 observation updates are frozen for the algo 1,
where only the observation updates remain active.
For algo. 2, however, both time and observation
updates are almost always active, except when the
noise vk is very important.

Despite of the small number of observation up-
dates, the Table 1 shows that the estimation errors
given by the algo. 1 is acceptable and is even better
than those obtained by the algo. 2 : the estimation
errors for algo. 1 are in all cases smaller than
those given for algo. 2 (except, perhaps, when the
noise vk is very small). The more the noise vk is
important, the smaller is the estimation error for
the algo. 1 and the bigger it is for the algo. 2.

α = 1.6 α = 10
e1 e2 e3 e1 e2 e3

algo. 2, config. 1 5.3 4.9 6.1 7.6 7.4 7.6

algo. 1, config. 1 7.0 6.9 8.8 12.9 11.0 10.5
ei(algo. 2)
ei(algo. 1)

1.3 1.4 1.4 1.6 1.5 1.4

algo. 2, config. 2 4.0 3.6 4.6 5.2 4.9 5.8

algo. 1, config. 2 7.5 7.5 9.2 16.7 14.9 13.1
ei(algo. 2)
ei(algo. 1)

1.9 2.1 2.0 3.9 2.9 2.3

Table 1. Estimation errors

α = 1.6 α = 10

algo., config. ν̄ r̄/N T ν̄ r̄/N T

2, 1 10101 0.68 38.5 13429 0.83 38.8

1, 1 1498 0 74.4 6477 0.14 68.4

2, 2 7615 0.53 41.5 10680 0.60 39.7

1, 2 1294 0 73.7 4629 0.77 70.4

Table 2. Mean volume, update ratio and
computation time

7. CONCLUSION

A recursive state estimation technique for linear
discrete-time systems corrupted by unknown but
bounded noises has been presented. An ellipsoid
that encloses all the possible values of the state
vector and which is consistent with the bounds of
the noises was determined at each sampling time.
As the Kalman filter, the algorithm has been de-
composed into time update and observation update
steps. The observation update stage is skipped as
soon as the a priori output error (innovation) vec-
tor is acceptable, that is, when (yk−Fkx̂k/k−1) ∈
E(0, Vk), what makes the algorithm faster. It was
proved that the estimate provided by this algorithm
assures the acceptability of the a posteriori output
error and that this estimate converges to the state
vector. Finally, a comparison study showed the
advantages and the drawbacks of this method with
respect to an other method of literature.
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