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Abstract: The concept of set-invariance is applied to the design of full-order state
observers with limitation of the estimation error, for discrete-time linear systems
subject to unknown but bounded persistent disturbances and measurement noise.
It is shown that if the initial error belongs to a D-(C,A)-invariant set, then
it can be kept in this set by means of a suitable output injection, for all
admissible disturbances and noise. Polyhedral D-(C,A)-invariant sets are explicitly
characterized by necessary and sufficient conditions. Based on such conditions,
algorithms are proposed for the computation of a D-(C,A)-invariant polyhedron
containing the one to which the initial error belongs. The results are illustrated and
compared to other approaches by means of a numerical example. Copyright c©2005
IFAC.

Keywords: Linear systems, state estimation, invariance, constraints, geometric
approaches.

1. INTRODUCTION

Several problems of control systems subject to
constraints on their state, control or output
variables have been solved in the last years
through the so-called set-invariance approach,
mainly when such constraints are linear, corre-
sponding, hence, to polyhedral sets defined in
the state space (see e.g. (Blanchini, 1999) for a
survey). In particular, for linear discrete-time sys-
tems, it is possible to construct the largest (A,B)-
invariant set contained in the polyhedron defined
by the constraints ((Blanchini, 1994; Dórea and
Hennet, 1999)). This means that if the initial state
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belongs to this largest set, then a suitable se-
quence of control inputs can be computed so as to
enforce the constraints along the state trajectory.

An important limitation of such techniques is the
fact that most of the proposed solutions assume
the use of state feedback control laws, requiring
the full measurement of the state, which is not
always possible due to physical or economical rea-
sons. Very often, this difficulty can be circum-
vented by building an observer which estimates
the unaccessible states.

This is the case of the approaches based on
the so-called set-valued observers (Shamma and
Tu, 1998; Shamma, 1999). Roughly speaking, for
each time instant, the (polyhedral) set of states
which could generate the measured output is com-
puted and a point-wise optimal state is selected.
Since such a set have to be computed on-line,



the computational burden can be excessive, and
its practical implementation in fast systems can
become infeasible.

This work analyses another class of observers,
based on the concept of (C,A)-invariant sets
(Wonham, 1985; Basile and Marro, 1992). The
(C,A)-invariance of polyhedral sets was analyzed
in (Pimenta and Dórea, 2004) for deterministic
systems. Here, this concept is extended to sys-
tems subject to unknown but bounded exoge-
nous disturbances and measurement noise and
applied to the design of full-order asymptotic state
observers with estimation error limitation, for
discrete-time single output systems. Firstly, the
D-(C,A)-invariance is defined as the possibility of
keeping the estimation error in a given set in spite
of the action of disturbances and noise belonging
to polyhedral sets. Then, from the derivation of
necessary and sufficient conditions, a complete
characterization of D-(C,A)-invariance for com-
pact convex polyhedra is proposed. In the case for
which the polyhedron defined by the uncertainty
on the initial state is not D-(C,A)-invariant, nu-
merical algorithms are proposed to compute an-
other polyhedron which satisfies this property and
bounds the estimation error as much as possible.
It is shown that when the initial polyhedron is
symmetrical, under some conditions, the best er-
ror limitation can be achieved by the computation
of the smallest D-(C,A)-invariant set containing
it. The proposed results are illustrated by means
of a numerical example.

Notation: In mathematical expressions, the sym-
bol ”:” stands for ”such that”. 1 represents a vector
of appropriate dimensions whose components are
all equal to 1.Mi represents the i-th row of matrix
M . Conv(Ω) represents the convex hull of the set
Ω, i.e., the smallest convex set which contains Ω.

2. D-(C,A)-INVARIANT SETS

Consider the linear, time-invariant, discrete-time,
single-output system, described by:

x(k + 1) = Ax(k) +B1d(k),
y(k) = Cx(k) + η(k),

(1)

where x ∈ Rn is the state, d ∈ Rr is the
disturbance, y ∈ R is the output, η ∈ R is the
measurement noise and k is the sampling time,
with k ∈ N. The pair (C,A) is supposed to be
detectable.

An estimation of the state can be obtained by
means of the following full-order observer:

x̂(k + 1) = Ax̂(k)− v(z(k)),
ŷ(k) = Cx̂(k),

(2)

where x̂ ∈ Rn is the estimated state, ŷ ∈ R is the
estimated output and v(.) is the output injection.

The estimation error and the difference between
the measured output and the estimated output
are respectively defined as:

e(k) = x(k)− x̂(k),
z(k) = y(k)− ŷ(k).

Then, the error dynamics is given by:

e(k + 1) = Ae(k) +B1d(k) + v(z(k)),
z(k) = Ce(k) + η(k),

(3)

The disturbance d is assumed to be unknown but
bounded to a compact (closed and limited) set
D ⊂ Rr. The measurement noise is assumed to
belong to the set N = {η : |η| ≤ η̄}.

Consider now a compact set Ω whose interior
contains the origin, defined on the estimation error
space. The following set of admissible outputs is
associated to Ω:

Z(Ω) = {z : z = Ce+ η for some e ∈ Ω, η ∈ N}.

Z(Ω) is the set, also compact, of all values of z
which can be generated by e ∈ Ω and η ∈ N}.
Therefore, if e(k) ∈ Ω, then z(k) ∈ Z(Ω).

Definition 2.1. The set Ω ⊂ Rn is said to be
D-(C,A)-invariant with respect to system (3) if
∀z ∈ Z(Ω), ∃v : Ae + B1d + v ∈ Ω,∀d ∈ D,∀e ∈
Ω : z = Ce+ η, for some η ∈ N .

After the application of the output injection, Ω is
simply said to be positively D-invariant.

Definition 2.2. Given 0 < λ < 1, the set Ω ⊂
Rn is said to be D-(C,A)-invariant λ-contractive
(or simply D-(C,A)-λ-contractive) with respect to
system (3) if ∀z ∈ Z(Ω), ∃v : Ae + B1d + v ∈
λΩ,∀d ∈ D,∀e ∈ Ω : z = Ce+η, for some η ∈ N .

In words, if the observation error at time k belongs
to Ω, with Ω D-(C,A)-λ-contractive, then, the
knowledge of only z(k) is sufficient to enforce
e(k+1) ∈ λΩ through the computation of v(z(k)),
in spite of the disturbance and the noise. As a
consequence, if the initial observation error e(0) is
known to belong to Ω then, by means of a suitable
output injection v(z(k)), it is possible to keep it
always limited to this set.

One should notice that a necessary condition for
D-(C,A)-λ contractivity is that λΩ contains the
disturbance set D.

3. D-(C,A)-INVARIANCE OF CONVEX
POLYHEDRA

Assume now that Ω and D are compact, convex
polyhedra containing the origin, defined by:



Ω = {e : Ge ≤ 1}, D = {d : Sd ≤ 1},

with G ∈ Rg×n, S ∈ Rs×n.

The set of related outputs is also a compact and
convex polyhedron defined by:

Z(Ω) = {z : z = Ce+ η for some
e : Ge ≤ 1 and η : |η| ≤ η̄}.

In the case of single-output systems, Z(Ω) is a line
segment in R.

Considering Definition 2.2, it is clear that Ω is
D-(C,A)-λ-contractive if and only if, ∀z ∈ Z(Ω):

∃v(z) : G(Ae+B1d+ v(z)) ≤ λ1,

∀e, η : z = Ce+ η, Ge ≤ 1, |η| ≤ η̄,

∀d : Sd ≤ 1

(4)

Since the same v(z) must work for all d ∈ D,
then the effect of disturbances can be taken into
account by considering their worst case row by
row. Let the elements of vector δ ∈ Rg be defined
by the following linear programming problems
(LP):

δi = max
d

GiB1d

under: Sd ≤ 1
.

Then, condition (4) becomes:

∃v(z) : G(Ae+ v(z)) ≤ λ1− δ,

∀e, η : z = Ce+ η, Ge ≤ 1, |η| ≤ η̄.

Let now φ(z) be the vector whose components are
given by the solution of the following LP:

φi(z) = max
e,η

GiAe

under: Ge ≤ 1, |η| ≤ η̄, Ce+ η = z.
(5)

which can be rewritten as:

φi(z) = max
e

GiAe

under: Ge ≤ 1, |Ce− z| ≤ η̄.
(6)

Since the same v(z) must work for all e ∈ Ω
which could have generated the output z, then the
worst case e can be computed row by row. Hence,
condition (4) is equivalent to:

∃v(z) : φ(z) +Gv(z) ≤ λ1− δ (7)

From the numerical point of view, the treatment
of this condition is difficult, because the functions
φi(z) are concave, piece-wise linear and continu-
ous with respect to z (Sakarovitch, 1983). Hence
the computation of their break points (for which
the linear function defining φi(z) changes) would
be necessary.

Consider now the external representation of the
compact polyhedron Ω in terms of its vertices

ej , j = 1, ..., nv. For each ej , two outputs are
associated: zj− = Cej − η̄ and z

j
+ = Cej + η̄. Let

the discrete set Zd(Ω) ⊂ Z(Ω) be composed by all
such outputs as follows:

Zd(Ω) = {z : z = z
j
−, z = z

j
+, j = 1 · · · , nv},

and let nz be the cardinality of Zd(Ω).

It is assumed that the elements zl of Zd(Ω) are
organized in increasing order, i.e., z1 ≤ z2 ≤ ... ≤
znz .

The following necessary and sufficient conditions
can be established:

Theorem 3.1. The polyhedron Ω = {Ge ≤ 1} is
D-(C,A)-λ-contractive if and only if:

∀l = 1, ..., nz, ∃v(z
l) : φ(zl) +Gv(zl) ≤ λ1− δ. (8)

Proof: The necessity is obvious, since all zl,
l = 1, ..., nz must satisfy (7). For the sufficiency,
consider the set of constraints of the LP (6):

Ge ≤ 1, Ce ≤ z + η̄, −Ce ≤ −z + η̄. (9)

The optimal solution of (7) is a vertex of this set,
i.e. a point e for which n inequalities are active
(the equality holds). A break in φi(z) corresponds
to a point e for which an active constraint becomes
inactive and an inactive one becomes active, that
is to a point for which at least n + 1 inequalities
are active (Luenberger, 1989; Sakarovitch, 1983).

For a given z ∈ Z(Ω), two situations must be
considered:

• if none of the two inequalities Ce ≤ z + η̄ or
−Ce ≤ −z + η̄ is active, then the optimal e
is a vertex of Ω. Hence, a break in φi(z) can
only occur when one of the two inequalities
becomes active, i.e. when one of the two
hyperplanes Ce = z + η̄ or −Ce = −z + η̄

reaches a vertex of Ω, that is, for z ∈ Zd(Ω);
• if one of the two inequalities Ce ≤ z + η̄

or −Ce ≤ −z + η̄ is active, then the break
will occur when either this inequality or an
inequality of Ω becomes inactive. It can be
verified that, in both cases, one of the two
hyperplanes Ce = z + η̄ or −Ce = −z + η̄

reaches a vertex of Ω.

As a consequence, for z ∈ Z(Ω) between two
consecutive z ∈ Zd(Ω) the functions φi(z) are
linear.

Consider now the following function:

ε(z) = min
ε,v

ε

under: φ(z) +Gv ≤ ε1− δ.
(10)



With φ(z) linear in the considered interval, it
can be proved (Sakarovitch, 1983) that ε(z) is a
continuous, piece-wise linear and convex function.
Thus, for zl ≤ z ≤ zl+1, the maximum value of
ε(z) is obtained for either zl or zl+1. Considering
all intervals of Z(Ω), one can conclude that the
maximum value of ε(z) corresponds to one of the
zl ∈ Zd(Ω). Therefore, if max

l
ε(zl) ≤ λ, then Ω is

D-(C,A)-λ-contractive. 2

From this Theorem, in order to check for the D-
(C,A)-λ-contractivity of Ω it is enough to solve
the LP (10), for all zl ∈ Zd(Ω), which are associ-
ated to the vertices of Ω.

Assume now that Ω and D are symmetrical with
respect to the origin. Hence, they can be repre-
sented as:

Ω = {e : |Qe| ≤ 1}, D = {d : |Ed| ≤ 1}.

Ω (and D accordingly) can be written in the

standard form Ge ≤ 1, with G =

[

Q

−Q

]

.

Let also the elements of the vector of worst case
disturbances be now defined as:

ξi = max
d

QiB1d

under: |Ed| ≤ 1
.

In this case, considering Q ∈ Rq×n, for i ≤ q,
φi(z) = max

e
QiAe under |Qe| ≤ 1, |Ce − z| ≤ η̄.

Therefore, φi+q(z) = max
e
−QiAe under the same

constraints.

One can then conclude that, for z = 0, φi+q(0) =

φi(0). Hence, φ(0) =

[

φq(0)
φq(0)

]

, where φq(z) corre-

sponds to the q firsts rows of φ(z). Thus condition
(7) becomes, for z = 0:

∃v(0) :

[

φq(0)

φq(0)

]

+

[

Q

−Q

]

v(0) ≤ λ

[

1

1

]

−

[

ξ

ξ

]

As an immediate consequence, the following nec-
essary condition can be stated:

Lemma 3.1. Ω = {e : |Qe| ≤ 1} is D-(C,A)-λ-
contractive only if:

φq(0) ≤ λ1− ξ (11)

One should notice that this necessary condition is
much easier to be verified than the necessary and
sufficient ones of Theorem 3.1, insofar as the com-
putation of vertices is no more required. Moreover,
in many systems tested along the development of
this research it turned out to be sufficient as well.
Condition (11) is also very useful to compute a D-
(C,A)-λ-contractive polyhedron, as described in
next section.

4. COMPUTATION OF A
D-(C,A)-INVARIANT POLYHEDRON

In a typical state observer design problem, the
initial state of the system is not known, but it
is possible to define a region to which it belongs.
Assume that this region is defined by linear in-
equalities which generate a compact symmetrical
polyhedron Ωx = {x : |Qx| ≤ 1}. Then, initial-
izing the observer with x̂(0) = 0, the initial error
e(0) is such that |Qe(0)| ≤ 1, thus e(0) ∈ Ω = {e :
|Qe| ≤ 1}.

The goal now is to compute an output injection
v(z(k)) such that e(k) is limited as much as
possible. This objective would be satisfied if Ω
were D-(C,A)-λ-contractive. Indeed, in this case,
from the definition of D-(C,A)-λ-contractivity,
there would be an output injection v(z(k)) such
that e(k) ∈ λΩ ∀k and ∀d ∈ D, η ∈ N . Therefore
the estimation error would not exceed the known
limits of the initial error, the set Ω.

However, it is quite rare that the polyhedron
defined by the uncertainty on the initial state
is D-(C,A)-λ-contractive. Thus, it is necessary
to construct a polyhedron which satisfies this
propriety, the smallest possible one containing Ω.

For a nonsymmetrical polyhedra, such a smallest
set may not exist. This happens because the in-
tersection of two D-(C,A)-invariant polyhedra is
not necessarily D-(C,A)-invariant. For symmetri-
cal polyhedra, it is not clear whether this property
holds or not. In our experiments to date we could
not find a counter-example either.

Nevertheless, a polyhedron which is D-(C,A)-λ-
contractive and results in a suitable limitation of
the observation error can be computed. To this
end, the following algorithm is proposed (Algo-

rithm I):

Given: Ω = {e : |Qe| ≤ 1}, the initial set of
estimation errors; λ, the desired contraction rate.

(1) Define the tolerance ∆δ. Initialize i = 0,

Q0 = Q, Q0 ∈ Rq0×n, C0 = {e : Q0e ≤ 1}

(2) Compute the vertices of Ci, ei
j

;
(3) Compute the set Zd(C

i); Set nzi
equal to the

cardinality of Zd(Ci).
(4) For l = 1, ..., nzi

:

(a) Compute φi
l

(Cel) from (6);
(b) Compute ε(Cel) from (10);

(5) Set εi = max
l

εl; Set vi and ei as the optimal

values of v and e in (10), associated to εi;
(6) If εi ≤ λ(1 + ∆δ), STOP! Ci = {e : |Qie| ≤

1} is D-(C,A)-λ-contractive;
(7) Compute the set:

Qi = {x : x = Ae+B1d+ vi, for some e, d
such that |Qie| ≤ 1, |Ce− Cei| ≤ η̄,

|Ed| ≤ 1}.



(8) Compute Ci+1 = Conv(Ci ∪ 1

λ
Qi)

(9) Do i = i+ 1 and return to step 2.

The key point of this algorithm is step 8. It picks
up the worst case ε, computes the corresponding
optimal v which tries to place the set Qi (the one-
step propagation of all possible points e associated
to the output zi) inside Ci. If it succeeds, then
Ci is D-(C,A)-λ-contractive. Otherwise, another
candidate set is computed through the convex hull
of the union of Ci and 1

λ
Qi. Even though the

convergence of this algorithm has not been proved,
no example for which it does not converge has
been found.

As mentioned before, in general, this algo-
rithm does not generate the smallest D-(C,A)-λ-
contractive polyhedron containing Ω. For symmet-
rical polyhedra, however, it is possible to guaran-
tee, in some situations, the existence of this small-
est polyhedron. Consider then the following class
of polyhedra which satisfy the necessary condition
(11):

K(Ω,D, λ) = {set of symmetrical polyhedra
containing Ω such that φq(0) ≤ λ1− ξ}.

Lemma 4.1. The intersection of two polyhedra be-
longing to K(Ω,D, λ) also belongs to K(Ω,D, λ).

Proof: the condition φq(0) ≤ λ1− ξ is equivalent
to |Q(Ae + B1d)| ≤ λ1,∀e : |Qe| ≤ 1, |Ce| ≤ η̄,
∀d : |Ed| ≤ 1. Then, it is quite straightforward to
verify that the condition |Q(Ae+B1d)| ≤ λ1 will
remain satisfied if another set of constrains, say,
|Qne| ≤ 1 is added to |Qe| ≤ 1 (corresponding to
the intersection of {|Qe| ≤ 1} and {|Qne| ≤ 1}.2

This Lemma assures the existence of the set:

C∞K (Ω,D, λ) = infimal set in K(Ω,D, λ),

which is the smallest set containing Ω satisfying
the necessary condition φq(0) ≤ λ1−ξ. Therefore,
if C∞K (Ω,D, λ) satisfies the sufficient condition too,
it can be assured that it is the smallest D-(C,A)-
λ-contractive set containing Ω.

C∞K (Ω,D, λ) can be computed by means of a sim-
plified algorithm, which will be called Algorithm

II, with the following main modifications with
respect to Algorithm I:

• replace steps 2 to 5 by compute φq(0) and
ε = maxi φqi;

•
Qi = {x : x = Ae+B1d, for some e, d

such that |Qie| ≤ 1, |Ce| ≤ η̄, |Ed| ≤ 1}.

The computational burden associated to Algo-
rithm II is much smaller than the one of Algorithm
I, especially because it is not necessary to compute
φ(.) in all the vertices. The following procedure
can then be proposed for symmetrical polyhe-

dra: compute C∞K (Ω,D, λ) through algorithm II; if
C∞K (Ω,D, λ) isD-(C,A)-λ-contractive, STOP: it is
also the smallest D-(C,A)-λ-contractive set con-
taining Ω. Otherwise, compute another D-(C,A)-
λ-contractive polyhedron containing C∞K (Ω, λ)
from algorithm I.

Concerning the implementation of algorithms I
and II, it is necessary to solve linear program-
ming problems and to manipulate polyhedra (to
compute vertices and convex hulls). Several meth-
ods are available for such computations (see, e.g.
(Schrijver, 1987; Avis and Fukuda, 1992)).

5. NUMERICAL EXAMPLE

The proposed method is now applied to a system
for which a set-valued observer was synthesized in
(Shamma, 1999). The system matrices are:

A =

[

0.7 0.7
−0.7 0.7

]

, B1 =

[

1
1

]

,

C =
[

1 1
]

.

The symmetrical polyhedron Ωx = {x : |Qx| ≤
1} which represents the uncertainty about the

initial state x(0) is represented by: Q =

[

1 0
0 1

]

.

The disturbance and noise sets are given respec-
tively by:D = {d : |d| ≤ 1} andN = {η : |η| ≤ 1}.

The goal is to design a dynamic state observer (2)
such that the estimation error is limited as much
as possible.

Initializing the observer with x̂(0) = 0, the initial
estimation error e(0) belongs to the polyhedron
Ω = {e : |Qe| ≤ 1}. The necessary condi-
tion (11) is not verified, thus Ω is not D-(C,A)-
invariant. Then, a D-(C,A)-λ-invariant polyhe-
dron containing Ω must be computed. Through
the application of Algorithm II for λ = 0, 9 and
∆δ = 10−5, after 7 iterations, the polyhedron
C∞K (Ω,D, λ) = {e : |Q7e| ≤ 1} is obtained, with

Q7 =





0 0.2944
0.5294 0
−0.3403 −0.3403



.

C∞K (Ω,D, 0.9) satisfies the sufficient condition (8),
therefore it is D-(C,A)-λ-contractive and it is not
necessary to run Algorithm I. Hence, the optimal
error limitation is achieved.

In figure 1, the polyhedron C∞K (Ω,D, 0.9) and the
initial polyhedron Ω are shown, together with
two trajectories: one computed by the proposed
D-(C,A)-invariance approach and the other gen-
erated by the set-valued observer proposed in
(Shamma, 1999), for x(0) = 0 and the following
disturbance and noise sequences:



−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

Fig. 1. Ω (.) and C∞K (Ω,D, 0.9). Trajectories for
the D-(C,A)-invariant (x) and the set-valued
(o) estimators.

{d} = {1,−1,−1, 1, 1,−1, 1,−1,−1,
−1, 1,−1, 1,−1,−1,−1, 1},

{η} = {1,−1, 1,−1, 1,−1, 1,−1,−1,
−1, 1,−1, 1,−1,−1,−1, 1}.

The output injection was computed“on-line” from
the following LP:

min
ε,v

ε

under: φ(z) +Gv ≤ ε1− δ.

We believe however that the piece-wise affine
output injection law proposed in (Pimenta and
Dórea, 2004), which can be computed off-line, can
be easily extended to the system dealt with here.

As depicted in Figure 1, the set-valued observer
generated errors further from zero than the pro-
posed D-(C,A)-invariant estimator,

6. CONCLUSIONS

In this work a new approach for the design of
full-order state estimators for discrete-time linear
systems subject to persistent disturbances and
measurement noise was presented. Based on the
concepts of set-invariance, it has been shown that
the estimation error can be forced to remain
inside a polyhedral set by means of a suitable
output injection. Two algorithms were proposed
with the objective of limiting as much as possible
the error. In a particular case, it has been shown
that the optimal limitation can be achieved, that
is, the error can be confined to the smallest D-
(C,A)-invariant polyhedron which contains the
polyhedron the initial error is known to belong
to.

Compared to set-valued observers, we believe that
the set-invariant estimator has some important
advantages:

• it is able to impose a limitation to the es-
timation error. In many cases the optimal
limitation can be achieved;

• the D-(C,A)-invariant set is computed off-
line, resulting in less on-line calculation;

• in the case of systems without disturbances
and noise, the contraction rate λ can be used
to accelerate the convergence of the error to
zero.

Some important points, which are presently under
investigation, still have to be clarified such as:
the convergence of Algorithm I, the study of
conditions under which the smallest D-(C,A)-
invariant set can be computed and the extension
of the results to multiple-output systems.
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invariant polyhedra and design of state ob-
servers with error limitation. In Proc. 2nd
IFAC Symp. System, Structure and Control,
Oaxaca, Mexico, pp. 741-746.

Sakarovitch, M. (1983). Linear Programming.
Dowden & Culver, Inc.

Schrijver, A. (1987). Theory of Linear and Integer
Programming. John Wiley and Sons. Chich-
ester.

Shamma, J. S. (1999). Set-valued observers and
optimal disturbance rejection. IEEE Trans.
Automat. Contr. 44(2), 253–264.

Shamma, J. S. and K.-Y. Tu (1998). Output
feedback control for systems with constraints
and saturations: Scalar control case. Syst.
Contr. Lett. 35, 1–11.

Wonham, W. M. (1985). Linear Multivariable
Control - A Geometric Approach. Springer-
Verlag. New York.


