
LQG CONTROL WITH MISSING

OBSERVATION AND CONTROL PACKETS

Bruno Sinopoli ∗ Luca Schenato ∗∗

Massimo Franceschetti ∗∗∗ Kameshwar Poolla ∗

Shankar Sastry ∗

∗ Elec. Eng. Comp. Scien. Dept., U.C. Berkeley, U.S.A.,

{sinopoli,poolla,sastry}@eecs.berkeley.edu
∗∗ Dept. of Inform. Eng., Univ. of Padova, Italy,

schenato@dei.unipd.it
∗∗∗ Elec. and Comp. Eng. Dept., U.C. San Diego, U.S.A,

massimo@ece.ucsd.edu

Abstract: The paper considers the Linear Quadratic Gaussian (LQG) optimal
control problem in the discrete time setting and when data loss may occur
between the sensors and the estimation-control unit and between the latter and
the actuation points. For protocols where packets are acknowledged at the receiver
(e.g. TCP type protocols), the separation principle holds. Moreover, the optimal
LQG control is a linear function of the state. Finally, building upon our previous
results on estimation with unreliable communication, the paper shows the existence
of critical arrival probabilities below which the optimal controller fails to stabilize
the system. This is done by providing analytic upper and lower bounds on the
cost functional, and stochastically characterizing their convergence properties in
the infinite horizon. More interestingly, it turns out that when there is no feedback
on whether a control packet has been delivered or not (e.g. UDP type protocols),
the LQG optimal controller is in general nonlinear. Copyright c©2005 IFAC.
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1. INTRODUCTION

Today, an increasingly growing number of applica-
tions demands remote control of plants over unre-
liable networks. These include wireless sensor net-
works used for estimation and control of dynam-
ical systems (Sinopoli et al., 2003). In these sys-
tems issues of communication delay, data loss, and
time synchronization between components play
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a key role. Communication and control become
tightly coupled such that the two issues cannot be
addressed independently. Consider, for example,
the problem of navigating a fleet of vehicles based
on the estimate from a sensor web of its current
position and velocity. The measurements underly-
ing this estimate and control packets sent to the
vehicle from a supervisory controller can be lost
or delayed due to the unreliability of the wireless
links. What is the amount of data loss that the
control loop can tolerate to reliably perform the
navigation task? Can communication protocols be
designed to satisfy this constraint? The goal of
this paper is to examine some control-theoretic



Fig. 1. Overview of the system.We study
the statistical convergence of the expected
state covariance of the discrete time LQG
is performed, where both the observation
and the control signal, travelling over an
unreliable communication channel, can be
lost at each time step with probability 1 − γ̄

and 1 − ν̄ respectively.

implications of using unreliable networks for con-
trol. These require a generalization of classical
control techniques that explicitly take into ac-
count the stochastic nature of the communication
channel.

Communication channels typically use one of two
kinds of protocols: Transmission Control (TCP) or
User Datagram (UDP). In the first case there is
acknowledgement of received packets, while in the
second case no-feedback is provided on the com-
munication link. This paper studies the effect of
data losses due to the unreliability of the network
links. It generalizes the Linear Quadratic Gaus-
sian (LQG) optimal control problem —modeling
the arrival of both observations and control pack-
ets as random processes whose parameters are re-
lated to the characteristics of the communication
channel. Accordingly, two independent Bernoulli
processes are considered, of parameters γ and ν,
that govern packet loss between the sensors and
the estimation-control unit, and between the lat-
ter and the actuation points, see Figure 1.

It turns out that in the TCP case the classic sepa-
ration principle holds and the optimal controller is
a linear function of the state. However, in the UDP
case, a counter-example shows that the optimal
controller is in general non-linear. A similar, but
slightly less general special case was previously
analyzed by (Imer et al., 2004), considering not
only the observation noise but also the process
noise to be zero and the input coefficient matrix
to be invertible.

A final set of results that this paper provides
are on convergence in the infinite horizon. In
this case, previous results on estimation with
missing observation packets in (Sinopoli et al.,

2004) are extended to the control case, showing
the existence of critical values for the parameters
of the Bernoulli arrival processes, below which a
transition to instability occurs and the optimal
controller fails to stabilize the system in both the
TCP and the UDP settings. In other words, in
order to have stability, the observation and control
packet loss rates must be below a given threshold
that depends on the dynamics of the system.

Finally, we want to mention some related work.
Study of stability of dynamical systems where
components are connected asynchronously via
communication channels has received considerable
attention in the past few years and our contribu-
tion can be put in the context of the previous
literature. In (Gupta et al., 2004), the authors
proposed to place an estimator, i.e. a Kalman
filter, at the sensor side of the link without as-
suming any statistical model for the data loss pro-
cess. Other work includes Nilsson (Nilsson, 1998)
that presents the LQG optimal regulator with
bounded delays between sensors and controller,
and between the controller and the actuator. In
this work bounds for the critical probability values
are not provided. Additionally, there is no analytic
solution for the optimal controller. The case where
dropped measurements are replaced by zeros is
considered by Hadijcostis and Touri (Hadjicostis
and Touri, 2002), in the scalar case. Other ap-
proaches include using the last received sample for
control, or designing a dropout compensator (Ling
and Lemmon, 2003), which combines in a single
process estimation and control.

This paper considers the alternative approach
where the external compensator feeding the con-
troller is the optimal time varying Kalman gain.
Moreover, the proposed solution is analyzed in
state space domain rather than in frequency do-
main as it was presented in (Ling and Lem-
mon, 2003), and this paper considers the more
general Multiple Input Multiple Output (MIMO)
case. The work of (Imer et al., 2004) is the closest
to the present paper. In addition we consider the
more general case when the matrix C is not the
identity and there is noise in the observation and
in the process.

The paper is organized as follows. Section 2 will
provide a mathematical formulation for the prob-
lem. Section 3 provides some preliminary results.
Section 4 illustrates the TCP case, while the UDP
case is studied in section 5. Finally conclusions
and directions for future work are presented in
section 6.

2. PROBLEM FORMULATION

Consider the following linear stochastic system
with intermittent observations:



xk+1 = Axk + νkBuk + wk (1)

yk = Cxk + vk, (2)

where (x0, wk, vk) are Gaussian, uncorrelated,
white, with mean (x̄0, 0, 0) and covariance (P0, Q, Rk)

respectively, Rk = γkR + (1 − γk)σ2I, and
(γk, νk) are i.i.d. Bernoulli random variables with
P (γk = 1) = γ̄ and P (νk = 1) = ν̄. Let us define
the following information sets:

Ik =

{
Fk

∆
= {yk, γk, νk−1}, TCP comm. protocol

Gk
∆
= {yk, γk}, UDP comm. protocol

(3)

where y
k = (yk, yk−1, . . . , y1), γ

k = (γk, γk−1, . . . , γ1),
and ν

k = (νk, νk−1, . . . , ν1).

Consider also the following cost function:

JN (uN−1) = (4)

= E

[
x′

NWNxN +

N−1∑

k=0

(x′
kWkxk + νku′

kUkuk)

∣∣∣∣∣ IN

]
.

Note that we are weighting the input only if it
is successfully received at the plant. In fact, if it
is not received, the plant applies zero input and
therefore there is no energy expenditure.

We now look for a control input sequence u∗N−1

as a function of the admissible information set Ik,
i.e. uk = gk(Ik), that minimizes the functional
defined in Equation (4), i.e.

J∗
N

∆
= min

u
N−1

JN (uN−1) = JN (u∗N−1), (5)

where Ik = {Fk,Gk} is one of the sets defined in
Equation 3. The set F corresponds to the informa-
tion provided under TCP communication protocol
in which successful or unsuccessful packet delivery
at the receiver is acknowledged to the sender. The
set G corresponds to the information provided
under UDP communication protocol in which the
sender receives no information about the delivery
of the transmitted packet to the receiver. This
protocol scheme is simpler to implement than
TCP from a communication standpoint, however
the price to pay is a less rich set of information.
The goal of this paper is to design optimal LQG
controllers for each of these protocols for a general
discrete-time linear stochastic system.

3. MATHEMATICAL BACKGROUND

Before proceeding, let us define the following
variables:

x̂k|k
∆
= E[xk | Ik],

ek|k
∆
= xk − x̂k|k,

Pk|k
∆
= E[ek|ke′

k|k | Ik].

(6)

Derivations below will make use of the following
facts:

Lemma 1. The following facts are true(Sinopoli et
al., 2005):

(a) E

[
(xk − x̂k)x̂′

k
| Ik

]
= E

[
ek|kx̂′

k
| Ik

]
= 0

(b)
E

[
x′

kSxk | Ik

]
= x̂′

kSx̂k + trace
(
SPk|k

)
=

= x̂′
kSx̂k + E

[
e′kSek | Ik

]
, ∀S

(c) E [E[ g(xk+1) |Ik+1] | Ik] = E [g(xk+1) | Ik] , ∀g(·).

Use of the following properties will prove to be
useful when deriving the equation for the optimal
LQG controller. Let us compute the following
expectation:

E[x′
k+1Sxk+1 | Ik] =

= E[(Axk + νkBuk + wk)′S(Axk + νkBuk + wk) | Ik]

= E[x′
kA′SAxk | Ik] + ν̄u′

kB′SBuk +

+ 2ν̄u′
kB′SA x̂k|k + trace(SQ), (7)

where both the independence of νk, wk, xk, and
the zero-mean property of wk are exploited. The
previous expectation holds true for both the in-
formation sets Ik = {Fk,Gk}. Also

E[e′
k|kTek|k | Ik] = trace(TE[ek|ke′

k|k | Ik]) =

= trace(TPk|k). (8)

4. TCP

First, equations for the optimal estimator are
derived. They will be needed to solve the LQG
controller design problem, as it will be shown
later.

4.1 Estimator Design, σ → +∞

Equations for optimal estimator are derived using
similar arguments used for the standard Kalman
filtering equations. The innovation step is given
by:

x̂k+1|k
∆
= E[xk+1|νk,Fk] = Ax̂k|k + νkBuk (9)

ek+1|k
∆
= xk+1 − x̂k+1|k = Aek|k + wk (10)

Pk+1|k
∆
= E[ek+1|ke′

k+1|k |νk,Fk] = APk|kA′ + Q,(11)

where the independence of wk and Fk is used.
Since yk+1, γk+1, wk and Fk are all independent
of each other and following the same approach
described in (Sinopoli et al., 2004), the correction
step is given by:

x̂k+1|k+1 = x̂k+1|k + γk+1Kk+1(yk+1 − Cx̂k+1|k) (12)

ek+1|k+1

∆
= xk+1 − x̂k+1|k+1 (13)

= (I − γk+1Kk+1C)ek+1|k − γk+1Kk+1vk+1

Pk+1|k+1 = Pk+1|k − γk+1Kk+1CPk+1|k (14)

Kk+1

∆
= Pk+1|kC′(CPk+1|kC′ + R)−1, (15)

after taking the limit σ → +∞. The initial
conditions for the estimator iterative equations
are x̂0|−1 = 0 and P0|−1 = P0.

4.2 Controller design

Derivation of the optimal feedback control law and
the corresponding value for the objective function



will follow the dynamic programming approach
based on the cost-to-go iterative procedure.

Define the optimal value function Vk(xk) as fol-
lows:

VN (xN )
∆
= E[x′

NWNxN | FN ]

Vk(xk)
∆
= min

uk

E[x′
kWkxk + νku′

kUkuk + Vk+1(xk+1) | Fk]

Using dynamic programming theory (Bertsekas
and Tsitsiklis, 1996), one can show that J∗

N =
V0(x0). We claim that the value function Vk(xk)
can be written as:

Vk(xk) = E[ x′
kSkxk | Fk] + ck, k = 0, . . . , N (16)

where the matrix Sk and the scalar ck are
to be determined and are independent of the
information set F . The proof follows an induction
argument. The claim is certainly true for k = N
with the choice of parameters SN = WN and cN =
0. Suppose now that the claim is true for k + 1,
i.e. Vk+1(xk+1) = E[ x′

k+1
Sk+1xk+1 | Fk+1]+ck+1.

The value function at time step k is the following:

Vk(xk) =

= min
uk

E[x′
kWkxk + νku′

kUkuk + Vk+1(xk+1) | Ik]

= E[x′
kWkxk + x′

kA′Sk+1Axk | Ik] +

+trace(Sk+1Q) + E[ck+1 | Ik] + (17)

+ν̄ min
uk

(
u′

k(Uk + B′Sk+1B)uk + 2u′
kB′Sk+1A x̂k|k

)

where we used Lemma 1(c) in the third line,
and Equation (7) in the last two lines. The value
function is a quadratic function of the input,
therefore the minimizer can be simply obtained
by solving ∂Vk

∂uk

= 0, which gives:

uk = −(B′Sk+1B +Uk)−1B′Sk+1A x̂k|k = Lk x̂k|k. (18)

The optimal feedback is thus a simple linear
function of the estimated state. If we substitute
the minimizer back into Equation (17), and we
use the Equation (16), we get:

Vk(xk) =

= E[x′
kWkxk + x′

kA′Sk+1Axk | Ik] +

trace(Sk+1Q) + E[ck+1 | Ik] + (19)

−ν̄x̂′
k|kA′Sk+1B(Uk + B′Sk+1B)−1B′Sk+1Ax̂k|k

E[x′
kSkxk | Ik] + ck = E[x′

kWkxk + x′
kA′Sk+1Axk −

+ν̄x′
kA′Sk+1B(Uk + B′Sk+1B)−1B′Sk+1Axk | Ik] +

+trace(Sk+1Q) + E[ck+1 | Ik] +

+ν̄ trace(A′Sk+1B(Uk + B′Sk+1B)−1B′Sk+1 Pk|k)(20)

where we used Lemma 1(b). For the previous
equation to hold for all xk, we need to have:

Sk = A′Sk+1A + Wk −

+ ν̄A′Sk+1B(B′Sk+1B + Uk)−1B′Sk+1A (21)

ck = trace
(
(A′Sk+1A + Wk − Sk)Pk|k

)
+

+ trace(Sk+1Q) + E[ck+1 | Ik] (22)

Therefore, the cost function for the optimal LQG
using TCP is given by:

J∗
N = V0(x0) = x̄′

0S0x̄0 + trace(S0P0) + trace(Sk+1Q))

+

N−1∑

k=0

(trace
(
(A′Sk+1A + Wk − Sk)Eγ [Pk|k]

)
. (23)

The matrices {Pk|k}
N
k=0

are stochastic since they
are nonlinear functions of the sequence {γk}. The
exact expected value of these matrices cannot
be computed analytically, as shown in (Sinopoli
et al., 2004). However, they can be bounded by
computable deterministic quantities. In fact let us
consider the following equations:

P̂k+1|k = AP̂k|k−1A′ + Q −

+ γ̄AP̂k|k−1C′(CP̂k|k−1C′ + R)−1CP̂k|k−1A′ (24)

P̂k|k = P̂k|k−1 − γ̄P̂k|k−1C′(CP̂k|k−1C′ + R)−1CP̂k|k−1

P̃k+1|k = (1 − γ̄)AP̃k|k−1A′ + Q (25)

P̃k|k = (1 − γ̄)P̃k|k−1 (26)

initialized to P̂0|−1 = P̃0|−1 = P0. Using similar
arguments as those in (Sinopoli et al., 2004),
it is possible to show that the matrices Pk|k’s
are concave and monotonic functions of Pk|k−1.
Therefore, the following bounds are true:

P̃k|k ≤ Eγ [Pk|k] ≤ P̂k|k, (27)

and we have:

Jmin
N ≤ J∗

N ≤ Jmax
N (28)

Jmax
N = x̄′

0S0x̄0 + trace(S0P0) + trace(Sk+1Q))

+

N−1∑

k=0

(trace
(
(A′Sk+1A + Wk − Sk)P̂k|k

)
(29)

Jmin
N = x̄′

0S0x̄0 + trace(S0P0) + trace(Sk+1Q))

+

N−1∑

k=0

(trace
(
(A′Sk+1A + Wk − Sk)P̃k|k

)
(30)

4.3 Finite and Infinite Horizon LQG control

The previous equations were derived for the finite
horizon LQG. The infinite horizon LQG can be
obtained by taking the limit for N → +∞ of the
previous equations. However, the matrices {Pk|k}
depend on the specific realization of the observa-
tion sequence {γk}, therefore the minimal cost JN

is a stochastic function and does not have a limit.
Differently from standard LQG controller design
where the controller always stabilizes the original
system, in the case of control with packet losses,
the stability can be lost if the arrival probability
ν̄, γ̄ is below a certain threshold. In particular
the equation for the cost matrix Sk is the so-
lution of a Modified Riccati Algebraic Equation
(MARE) which was already introduced and stud-
ied in (Sinopoli et al., 2004). In particular, Equa-
tion (21) is the dual of the estimator equation
presented in (Sinopoli et al., 2004). Therefore, the



same conclusions can be drawn and the previous
result can be summarized in the following theo-
rem:

Theorem 2. [Finite Horizon LQG under TCP]
Consider the system (1)-(2) and consider the
problem of minimizing the cost function (4) with
policy uk = f(Fk), where Fk is the information
available under TCP communication, given in
Equation (3). Then, the optimal control is a
linear function of the estimated system state
given by Equation (18), where the matrix Sk

can be computed iteratively using Equation (21).
The separation principle still holds under TCP
communication, since the optimal estimator is
independent of the control input uk. The optimal
state estimator is given by Equations (9)-(12) and
(11)-(15), and the minimal achievable cost is given
by Equation (23).

Theorem 3. (Infinite Horizon LQG under TCP).
Consider the same system as defined in the pre-
vious theorem with the following additional hy-
pothesis: WN = Wk = W and Uk = U . Moreover,
let (A,B) and (A,Q

1

2 ) be stabilizable, and let

(A,C) and (A,W
1

2 ) be detectable. Let us consider
the limiting case N → +∞. There exist critical
arrival probabilities νmin and γmin which satisfy
the following property:

min

(
1, 1 − 1

|λmax(A)|2
)

≤ νmin ≤ 1, (31)

min

(
1, 1 − 1

|λmax(A)|2
)

≤ γmin ≤ 1, (32)

where |λmax(A)| is the eigenvalue of matrix A

with the largest absolute value, such that for all
ν̄ > νmin and γ̄ > γmin we have:

Lk = L∞ = −(B′S∞B + U)−1B′S∞A (33)

1

N
Jmin

N ≤
1

N
J∗

N ≤
1

N
Jmax

N (34)

where the mean cost bounds Jmin
∞ , Jmax

∞ are given
by:

Jmax
∞ = lim

N→+∞

1

N
Jmax

N

= trace((A′S∞A + Wk − S∞)(P̂∞ −

+ γ̄P̂∞C′(CP̂∞C′ + R)−1CP̂∞)) + trace(S∞Q)

Jmin
∞ = lim

N→+∞

1

N
Jmin

N

= (1 − γ̄)trace
(
(A′S∞A + Wk − S∞)P̃∞

)
+

+ trace(S∞Q),

and the matrices S∞, P∞, P∞ are:

S∞ = A′S∞A + W − ν̄ A′S∞B(B′S∞B + U)−1B′S∞A

P∞ = AP∞A′ + Q − γ̄ AP∞C′(CP∞C′ + R)−1CP∞A′

P∞ = (1 − γ̄)AP∞A′ + Q

Moreover, the assumptions above are necessary

and sufficient conditions for boundedness of the
cost function under LQG feedback. The critical

probabilities νmin and γmin can be computed via
the solution of the following LMIs optimization
problems:

γmin = argminγ̄Ψγ(Y,Z) > 0, 0 ≤ Y ≤ I.

Ψγ(Y, Z) =

=




Y
√

γ(Y A + ZC)
√

1 − γY A√
γ(A′Y + C′Z′) Y 0√

1 − γA′Y 0 Y




νmin = argminν̄Ψν(Y,Z) > 0, 0 ≤ Y ≤ I.

Ψν(Y, Z) =

=

[
Y

√
ν(Y A′ + ZB′)

√
1 − νY A′

√
ν(AY + BZ′) Y 0√

1 − νAY 0 Y

]

5. UDP

In this section equations for the optimal estimator
and controller design for the case of UDP com-
munication protocol are derived. The UDP case
corresponds to the information set Gk, as defined
in Equation (3). Some of the derivations are anal-
ogous to the previous section and are therefore
skipped.

5.1 Estimator Design, σ → +∞

We derive the equations for the optimal estimator
using similar arguments to the standard Kalman
filtering equations. The innovation step is given
by:

x̂k+1|k
∆
= E[xk+1|Gk] = E[Axk + νkBuk + wk|Gk]

= AE[xk|Gk] + E[νk]Buk

= Ax̂k|k + ν̄Buk (35)

ek+1|k
∆
= xk+1 − x̂k+1|k (36)

Pk+1|k
∆
= E[ek+1|ke′

k+1|k |Gk]

= APk|kA′ + Q + ν̄(1 − ν̄)Buku′
kB′, (37)

where we used the independence and zero-mean
of wk, (νk−ν̄), and Gk. Note how under UDP com-
munication protocol, differently from TCP com-
munication, the error covariance Pk+1|k depends
explicitly on the control input uk. This is the main
difference with TCP.

The correction step is the same as for the TCP
case, given by:

x̂k+1|k+1 = x̂k+1|k + γk+1Kk+1(yk+1 − Cx̂k+1|k)

Pk+1|k+1 = Pk+1|k − γk+1Kk+1CPk+1|k, (38)

Kk+1

∆
= Pk+1|kC′(CPk+1|kC′ + R)−1, (39)

where again we took the limit σ → +∞. The
initial conditions for the estimator iterative equa-
tions are x̂0|−1 = 0, P0|−1 = P0.

5.2 Controller design: General case

In this section, we show that the optimal LQG
controller is, in general, not a linear function



of the state estimate, since estimator and con-
troller design cannot be separated anymore. To
show this, we consider a simple scalar system
and we proceed using the dynamic programming
approach. Let us consider the scalar system where
A = 1, B = 1, C = 1,WN = Wk = 1, Uk = 0, R =
1, Q = 0. Similarly to the TCP case, the value
function, Vk(xk) for k = N is given by VN (xN ) =
E[x′

NWNxN | GN ] = E[x2
N | GN ]. Also, it is easy

to show that VN−1 = (2 − ν̄)E[x2
N−1

| GN−1] +
ν̄PN−1|N−1 and u∗

N−1
= −x̂N−1|N−1. Let us con-

sider the value function for k = N − 2:
VN−2(xN−2) =

= min
uN−2

E[x2
N−2 + VN−1(xN−1) | GN−2]

= E[(3 − ν̄)x2
N−2 | GN−2] + γ̄ + ν̄PN−2|N−2 +

+ν̄(1 − γ̄)PN−2|N−2 +

+ min
uN−2

(
ν̄(2 − ν̄)u2

N−2 + 2ν̄(2 − ν̄)uN−2x̂N−2|N−2

+ν̄2(1 − ν̄)(1 − γ̄)u2
N−2 +

+ ν̄γ̄
1

PN−2|N−2 + ν̄(1 − ν̄)u2
N−2

+ 1

)
(40)

The first three terms inside the round parenthesis
are convex quadratic functions of the control input
uN−2, however the last term is not. Therefore, the
minimizer u∗

N−2
is, in general, a non-linear func-

tion of the information set Gk. We can summarize
this result in the following theorem:

Theorem 4. Let us consider the stochastic system
defined in Equations (1) with horizon N ≥ 2.
Then, the optimal control feedback uk = g∗k(Gk)
that minimizes the functional (4) under UDP is,
in general, a nonlinear function of information
set Gk.

The nonlinearity of the input feedback arises
from the fact that the correction error covariance
matrix Pk+1|k+1 is a non-linear function of the
innovation error covariance Pk+1|k.

6. CONCLUSION AND FUTURE WORK

This paper analyzes the LQG control problem in
the case where both observation and control pack-
ets may be lost when travelling through a com-
munication channel. This is the case of many dis-
tributed systems, where sensors, controllers and
actuators physically reside in different locations
and they have to rely on network communication
to exchange information. In this context the paper
presents analysis of the LQG control problem for
two types of protocols, i.e. TCP and UDP. In the
first case packet acknowledgement of arrival of
control packets is available to the controller, while
it is not available in general in the second case.
For TCP-like protocols a solution for a general
LTI stochastic system is provided for both the
finite and infinite horizon case, showing that the
optimal control is still a linear function of the

state. Moreover, the infinite horizon cost function
J∞ is bounded if arrival probabilities γ̄, ν̄ are
higher than a specified threshold. UDP-like pro-
tocols present a much more complex scenario, as
the lack of acknowledgement of the control packet
at the controller makes the separation principle
not valid anymore. Estimation and control are
now coupled. The paper shows that in general
the optimal control is non linear. The control law
cannot be determined in closed form, making this
solution impractical.

Future work will involve the study of special cases,
where, under UDP, the optimal controller is still
linear. From a practical standpoint, it is also
useful to compute the optimal static linear control
for the UDP case. Even though this constitutes a
suboptimal solution for the original problem, ease
of computation and implementation will make it
a valuable resource for the designer.
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