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Abstract: A model-based robust control scheme is applied to a continuous
bioreactor operating in an non stationary regime. The proposed control algorithm
is a fuzzy robust error feedback controller that allows tracking several profiles
of the substract concentration, while maintaining the stability conditions of the
process. A numerical case study is simulated to test the robustness properties of
the proposed controller in the face of parameter uncertainties and changes on load
disturbances. Copyright c°2005 IFAC
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1. INTRODUCTION

Periodically time-varying systems are often used
to model natural or forced periodic phenomena oc-
curring in various engineering applications. Many
processes experience periodic disturbances due
to natural cycle times of upstream processes or
other cyclical environmental influences such as
diurnal temperature fluctuations. In wastewater
treatment plants, for example, the feed flow rate
and its composition can exhibit strong diurnal
variations (Butler et al., 1995). In some appli-
cations, forced periodic operations can be used
either to improve selectivity and yields (Bailey,
1973) or to make a continuous operation feasible
(Ruthven et al., 1994; Wu et al., 1998). A potential
drawback of adopting such an operation mode is
that operation becomes more complex and dif-
ficult to control. Also, processes with periodic
characteristics may show strong non-stationary or
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cyclo-stationary behavior. Additionally, because
of the wide envelope of operating space covered by
a periodic operation, the process dynamics can be
strongly nonlinear. These factors make the control
of periodic processes more complicated than the
designed for constant operation processes.

Lazar and Ross (1990) and Chen et. al. (1995)
have demonstrated that the average concentration
of the product through time from a biochemical
reaction occurring in a CSTR is magnified sub-
stantially by forced oscillations. Sterman and Yd-
stie (1991) have theoretically demonstrated that
low frequency periodic perturbations in the reac-
tion temperature of the CSTR enhance the yield
of a certain set of chemical reactions and that the
maximum yield can be thrice that of the steady
state operation. Cinar et. al. (1987) have study the
modification of dynamic properties of linear and
nonlinear systems by introduction of fast, zero-
average oscillations in a system’s parameters, in
particular they varied reactant flow rates to a
CSTR and found a modification of the S-shaped



steady-state curve, resulting in a higher produc-
tion rate or lower energy expenditure compared to
a steady operation with shifted input conditions.
A common characteristic of these studies relies
on studying the effect of applying those periodic
changes rather than trying to find the appropriate
periodic operating conditions to meet the strin-
gent quality requirements and the suitable control
system to track the nominal oscillating trajecto-
ries.

In this study, a nonlinear robust model-based con-
trol technique is implemented in a continuous bio-
logical reactor to regulate substrate concentration
by tracking varying operating conditions. This ro-
bust regulator, is a fuzzy error feedback controller
which relies on the existence of an internal model,
obtained by finding, if possible, an immersion of
the exosystem dynamics into an observable one,
which allows to generate all the possible steady
state inputs for the admissible values of the sys-
tem parameters (Castillo-Toledo and Di Gennaro,
2002). This controller is a generalization and can
be employed to track several references. We will
show that these control schemes are capable of
maintaining the output tracking error within pre-
defined bounds while ensuring the stability of the
closed-loop system. This paper is organized as fol-
lows: in section 2 an overview of the theory behind
the robust control scheme is presented; a model for
a biological reactor is presented in section 3; the
error feedback controller is developed in section
4, and a study case is solved and discussed in
section 5. Finally, the paper is closed with some
concluding remarks.

2. ROBUST REGULATION PROBLEM FOR
NONLINEAR SYSTEMS

Let us consider the following nonlinear time-
invariant system

ẋ= f (x, u, ω, µ) , (1)

ω̇ = Sω, (2)

e= h (x, ω, µ) , (3)

where x ∈ Rn, u ∈ Rm are the state and
input variables of the plant,.respectively. µ ∈ Rs
denotes a parameter vector which may have some
values in a neighborhood ℘ ⊂ Rs of the nominal
ones. ω ∈ Rr represents the state of an external
signal generator, which models the reference and
disturbance signals affecting the plant, called the
exosystem, which is linear and it is supposed that
it does not depend on µ, which is often verified
in practical problems. Finally, the tracking error
e ∈ Rp which, in many cases, is given as a
difference between the system output and the
reference signal.

The Error Feedback Regulation Problem for the
aforementioned system is defined as the problem
of tracking the reference signals and/or reject-
ing the disturbance signals, and maintaining the
closed-loop stability property. For the case of ro-
bust regulation, we also impose the requirement
that these conditions hold when the parameters
vary in a neighborhood of the nominal values. This
problem may be solved by determining a certain
submanifold of the state space (x, ω), where the
tracking error is zero, which is rendered attractive
and invariant by feedback; that is, the nonlin-
ear robust regulation problem (NRRP) consists in
finding, if possible, a dynamic controller of the
form

ż =ϕ (z, ω, e)

u= ϑ (z, ω)

such that, for all admissible values µ in a neigh-
borhood ℘ of the nominal values, the following
conditions hold

N1 Stability: The equilibrium point (x, z) =
(0, 0) of the closed-loop system without distur-
bances

ẋ = f (x, ϑ (z, 0) , 0, µ)
ż = ϕ (z, 0, h (x, 0, µ))

is asymptotically stable.
N2 Regulation: For each initial condition (x (0) , z (0) ,
ω (0)) in a neighborhood of the origin, the solu-
tion of the closed-loop system

ẋ = f (x, ϑ (z, ω) , ω, µ) ,
ż = ϕ (z, ω, h (x, ω, µ)) ,
ω̇ = Sω,

satisfies the condition lim
t→∞

e (t) = 0.

A local solution to this problem has been given by
Isidori (1995) which is stated in terms of the ex-
istence of nonlinear mappings xss = π (ω, µ) and
zss = σ (ω, µ) satisfying the regulator equations

∂π (ω, µ)

∂ω
s (ω) = f (π (ω, µ) , ϑ (σ (ω, µ) , ω) , ω, µ)(4)

∂σ (ω, µ)

∂ω
s (ω) =ϕ (σ (ω, µ) , ω, 0) (5)

0 = h (π (ω, µ) , ω, µ) (6)

for all admissible values of µ ⊂ ℘. The next
theorem states the conditions for the existence of
a solution to the NRRP.

Theorem 1. (Isidori 1995) The Nonlinear Robust
Regulation Problem is solvable if and only if there
exist mappings

xss = π (ω, µ) , and uss = γ (ω, µ) =

⎛⎜⎝γ1 (ω, µ)
...

γm (ω, µ)

⎞⎟⎠ ,



with π (0, µ) = 0 and γ (0, µ) = 0, both defined
in a neighborhood of the origin, satisfying the
equations

∂π (ω, µ)

∂ω
s (ω) = f (π (ω, µ) , γ (ω, µ) , ω, µ) ,(7a)

0 = h (π (ω, µ) , ω, µ) , (7b)

for all (ω, µ), and such that for each i = 1, . . . ,m
the exosystem is immersed into a system

ż =ϕ (z, ω) (8a)

γ (ω, µ) =ψ (z) (8b)

defined on a neighborhood Ξ0 of the origin, in
which ϕ (0, 0) = 0 and ψ (0) = 0. and the two
matrices

Φ =

∙
∂ϕ

∂ξ

¸
ξ=0,
ω=0

, H =

∙
∂ψ

∂ξ

¸
ξ=0

are such that the pairµ
A0 0
NC0 Φ

¶
,

µ
B0
0

¶
is stabilizable for some choice of the matrix N ,
and the pair¡

C0 0
¢
,

µ
A0 B0H
0 Φ

¶
is detectable. Where

A0 =
h
∂f(x,u,ω,0)

∂x

i
x=0,
ω=0,
u=0

, B0 =
h
∂f(x,u,ω,0)

∂u

i
x=0,
ω=0
,u=0

,

C0 =
h
∂h(x,ω,0)

∂x

i
x=0,
ω=0

.

¥

Remark 1. Equations (7a)-(7b) are known as the
Francis-Isidori-Byrnes equations (FIB) (Byrnes
et al., 1997) used to find the subset Z on the
Cartesian product Rn×Rm called, so far, the zero
tracking error submanifold. The mapping xss =
π (ω, µ) represents the steady state zero output
submanifold and the mapping uss = γ (ω, µ) is
the steady state input which makes invariant this
steady state zero output submanifold.

The main problem using the nonlinear immersion
(8a) consists on finding the observer matrix which
in general is calculated with the linear approxi-
mation Φ, which may differ from the nonlinear
immersion in certain zones, for this reason a fuzzy
approach may introduce some advantages. If the
nonlinear immersion (8a) exists and can be ex-
pressed by the fuzzy system

ς̇ (t) =
dX
i=1

mi (ς, ω)Φiς (t) (9)

γ (ω, µ) =Hς (t) , (10)

then the controller which solves the NRRP is given
by

ξ̇ (t) =A0ξ (t)−B0 (Hς (t)− u)

−
dX
i=1

mi (ς, ω)G1i (C0ξ (t)− e (t)) ,(11a)

ζ̇ (t) =
dX
i=1

mi (ς, ω)Φiς (t)

−
dX
i=1

mi (ς, ω)G2i (C0ξ (t)− e (t)) (12)

u (t) =Kξ (t) +Hζ (t) , (13)

where K and G1i, G2i make stable matrices
(A0 +B0K) and

Ai −GiC, i = 1, 2, . . . , d

respectively, with

Ai =

µ
A0 −B0H
0 Φi

¶
, Gi =

µ
G1i
G2i

¶
, and

C =
¡
C0 0

¢
.

Obviously, the stabilizability an detectability of
the pairs

[A0, B0] and [Ai, C] , i = 1, 2, . . . , d.

Observer matrices Gi, can be calculated by the
linear matrix inequalities

AT
i P + PAi −

¡
CTMT

i +MiC
¢
< 0, i = 1, 2, . . . , d

P > 0

where
Mi = PGi

Notice that the main feature guaranteeing the zero
output tracking error is the immersion (9) which
incorporates the nonlinearity of the steady state
input.

3. THE BIOREACTOR MODEL

Consider a continuous stirred tank biological re-
actor where a substrate is consumed by an mi-
crooganisme. The bioreactor dynamics is given by
the following set of equations which results from
the mass biomass and substrate balances

dx

dt
= [µ (s)−D]x (14)

ds

dt
= (si − s)D − kµ (s)x (15)

where x, and s are, the biomass and substrate con-
centration in the bioreactor, respectively, while si,



and D are the input biomass concentration and
the dilution rate. Finally, the microbial growth
rate, µ (s), is given by a Monod kinetic,

µ (s) =
µmaxs

Ks + s
(16)

this model is widely used in biological processes.

4. ROBUST CONTROL DESIGN

In this section it is presented a generalized case
of tracking an arbitrary operating substrate con-
dition. To facilitate the design and application of
the nonlinear robust control law, let us rewrite
the bioreactor modeling equations (14 and 15) in
terms of the state space

ẋ1 = µ (x2)x1 − x1u (17a)

ẋ2 =−µ (x2)x1 + (si − x2)u (17b)

where the states x1 = kx, and x2 = s, are the
biomass yield and, the substrate concentration
in the reactor. The manipulated variable is the
dilution rate, D. Consider a given reference which
can be described by a lineal dynamic system called
exosystem of the form

ω̇= Sω, ω (0) = ω0 (18a)

x2r = ω1 (18b)

where x2r is the reference substrate concentration,
ω =

¡
ω1 · · · ωr

¢T
are the states of exosystem,

and the dynamic matrix S ∈ Rr×r has the special
form

S =

µ
0 1 0 · · · 0
0 φ

¶
,

where φ ∈ R(r−1)×(r−1) could be any matrix. This
restriction states that the reference signal has the
special form x2r = c+ f (t), where c is a constant
and f (t) could be the integral of any solution for
the system ẇ = φw.

Thus, the tracking errors can be expressed as

e1 (t) = x2 (t)− ω1 (t) . (19a)

To find the steady state mappings, we proceed as
follows. The tracking error is zero when

π2 (ω) = ω1 (t) , (20)

π̇1 =

∙
µ (ω1)−

ω̇1
si − ω1

¸
π1 −

µ (ω1)

si − ω1
π21,

γ (ω) =
ω̇1 + µ (ω1)π1

si − ω1
,

the solution for π1 (ω) is

π1 (ω) =
(si − ω1)π10

π10 + (si − ω10) e
−
R t
0
µ(ω1)dt

. (21)

which for a large enough time, π1 (ω) ≈ si − ω1,
and steady state input approach to

γ (ω) =
ω̇1

si − ω1
+ µ (ω1) ,

this input, for a given exosystem of the form (18a)
is generated by the generalized immersion

ż1 = φz1 + z11z1,

ż2 = Sbz2 − 2ω̇1
ω1

bz2 + z22z2 (22)

γ (ω) = z11 + z21

where z1 = (z11, . . . , z1r−1)
T , z2 = (z21, . . . , z2r)

T ,
and bz2 = (z22, . . . , z2r)

T . As it can be seen, im-
mersion (22) is time-varying nonlinear The fuzzy
version for this nonlinear immersion consists in
8 rules which depend on z11, z21, and z22 −
2ω̇1
ω1

(whose estimated ranges are −a1 ≤ z11 ≤
a1,−a2 ≤ z21 ≤ a2,−a3 ≤ z22 − 2ω̇1

ω1
≤ a3) as

follow

(1) IF z11 is negative, z21 is small and z22− 2ω̇1
ω1

is negative
THEN ż = Φ1z, γ (ω) = Hz

(2) IF z11 is negative, z21 is small and z22− 2ω̇1
ω1

is positive
THEN ż = Φ2z, γ (ω) = Hz

(3) IF z11 is negative, z21 is large and z22 − 2ω̇1
ω1

is negative
THEN ż = Φ3z, γ (ω) = Hz

(4) IF z11 is negative, z21 is large and z22 − 2ω̇1
ω1

is positive
THEN ż = Φ4z, γ (ω) = Hz

(5) IF z11 is positive, z21 is small and z22 − 2ω̇1
ω1

is negative
THEN ż = Φ5z, γ (ω) = Hz

(6) IF z11 is positive, z21 is small and z22 − 2ω̇1
ω1

is positive
THEN ż = Φ6z, γ (ω) = Hz

(7) IF z11 is positive, z21 is large and z22 − 2ω̇1
ω1

is negative
THEN ż = Φ7z, γ (ω) = Hz

(8) IF z11 is positive, z21 is large and z22 − 2ω̇1
ω1

is positive
THEN ż = Φ8z, γ (ω) = Hz

where

Φi =

µ
Φ1i 0
0 Φ2i

¶
Φ1i = φ+ I1 (−1)ceil(i/4) a1

Φ2i =

µ
0 (−1)ceil(i/2) a2 0 · · · 0
0 φ

¶
+ I2 (−1)i a3,

I1 and I2 are identity matrices of dimension r −
1 and r, respectively, while ceil(x), means the
nearest integer towards zero. Hence the global
fuzzy immersion has the form



ż =
8X

i=1

mi (z, ω)Φiz (23)

where the membership functions are

mi (z, ω) = h 3+(−1)ceil(n/4)
2

(z) · h 7+(−1)ceil(n/2)
2

(z) ·

·h 11+(−1)n
2

(z, ω)

h1 (z) =
1

2

µ
1− z11

a1

¶
,

h2 (z) = 1− h1 (z) ,

h3 (z) =
1

2

µ
1− z21

a2

¶
,

h4 (z) = 1− h3 (z) ,

h5 (z, ω) =
1

2

µ
1− z22

a3
+
2ω̇1
a3ω1

¶
,

h6 (z) = 1− h5 (z) .

5. NUMERICAL SIMULATION RESULTS

In this section we illustrate the features of the
robust error feedback controller (REFC) tracking
not constant operating conditions in the bioreac-
tor. For simulation purposes this controller was
applied to a waste water anaerobic biological re-
actor, whose system parameters were taken from
Alcaraz Gonzalez et. al. (2003). For the sake of
completeness, these values are reported in Table
1.

We selected the following tracking case to test the
REFC:

Reference: sr = 2 + 0.5 sin
³π
2
t
´
,

which can be generated by the exosystem⎛⎝ω̇1
ω̇2
ω̇3

⎞⎠ =

⎛⎝0 c 0
0 0 c
0 −c 0

⎞⎠⎛⎝ω1
ω2
ω3

⎞⎠ ,

hence the nonlinear immersion (22) becomes

ż11 = cz12 + z211

ż12 =−cz11 + z11z12

ż21 = z21z22

ż22 = cz23 − 2
cω2
ω1

z22 + z222

ż23 =−cz22 − 2
cω2
ω1

z23 + z22z23

The fuzzy version for this nonlinear immersion
is calculate as in equation (23), and the robust
controller has the form of equations (11a), (12)
and (13). In order to test the disturbance and
parametric changes rejection properties of the
REFC for this controller, some changes in various
kinetic parameter values and inlet conditions were
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Fig. 1. Substrate concentration in the bioreactor
(initial condition s = 0)
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Fig. 2. Dilution rate.

introduced in the system. These changes took into
account the presence of realistic perturbations
that are unavoidable in industry as perturbations
in the inlet substrate concentration and error
in the values of the kinetic constants of Monod
expression which play a very important role in
the modeling because it is contained both in the
substrate and biomass balances. Table 2 lists these
changes of the aforementioned parameters (with
respect to the nominal values) and the time where
those changes were introduced during the progress
of the simulation.

Figures 1, 2 and 3 show, respectively, the output,
input and error produced in the system. As it can
be seen the bioreactor tracks the oscillatory signal
despite perturbations and parametric variations.
The controller is able to overcome saturation and
to achieve stabilization, finding the zero error
input-submanifold.
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Fig. 3. Output error, e = s − ω1 and observer
calculated error.

6. CONCLUSIONS

A scheme for the robust control of a biological
reactor was presented. It is composed of an error
feedback controller and a fuzzy estimator which
allows to assure stability for nonlinear immersion.
The performance of the robust regulator has been
examined through numerical simulation under
various uncertainties and external disturbances.
The proposed structure has shown to maintain
good properties, even when confronting significant
modeling errors, such as parameter uncertainties
and load disturbances. It must be pointed out
the applicability of the proposed controller is not
restricted to biological systems. In fact, our design
methodology can be easily extended to higher di-
mensional (partially or fully) linearizable systems,
such as chemical reactors and distillation columns.
Results in this direction will be reported in the
near future.

Table 1. Parameter nominal values,
changes and input disturbances

Parameter Nominal % deviation from nominal value
value 0 ≤ t < 1 1 ≤ t < 1.5 1.5 ≤ t < 3 3 ≤ t < 5 t > 5

µmax 0.69 20% −20% −30% 50% 10%
Ks 4.95 10% −10% 30% 20% −20%
k 6.6 −10% 0% 20% −15% 0%
Si 10 0% 10% −10% −20% 20%
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