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Abstract: The linear quadratic Gaussian control of discrete-time Markov jump linear
systems is addressed in this paper, first for state feedback, and also for dynamic output
feedback using state estimation. In the model studied, the problem horizon is defined by
a stopping time τ which represents either, the occurrence of a fix number N of failures
or repairs (TN), or the occurrence of a crucial failure event (τ∆), after which the system
paralyzed. From the constructive method used here a separation principle holds, and the
solutions are given in terms of a Kalman filter and a state feedback sequence of controls.
The control gains are obtained by recursions from a set of algebraic Riccati equations
for the former case or by a coupled set of algebraic Riccati equation for the latter case.
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1. INTRODUCTION

Markov jump linear systems comprise a class of pro-
cesses that presents changes of structure or modes
according to an underlying Markov chain. The theory
of stability and the quadratic optimal control problem
for MJLS, also refereed as JLQ control problem, can
be found in several papers, under both assumptions,
complete and partial state observations. In general, in
these studies the performance index associated with
the JLQ control problem is related to finite horizon
or to purely infinite horizon. A interesting situation
from of point of view of applications arises when
one considers a stopping time τ of the joint process
{xk,θk, k ≥ 0} modelled by (1) and (2), as horizon of
the functional cost associated with the problem . More
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specifically, when τ represents the occurrence of a fix
number N of failures or repairs of the system (τ = TN)
or a occurrence of a crucial failure event (τ = τ∆).
The stochastic stability analysis for the cases above
described has been developed in (do Val et al., 2003)
and in (do Val and Nespoli, 2003), respectively. The
JLQ control problem for complete observation has
been studied in (Nespoli et al., 2004) for the free noise
case. The proposal of this paper consists in extending
the results in (Nespoli et al., 2004) to the MJLS sub-
ject to a stochastic input {wk;k ≥ 0}. One considers
that the jump variable state is perfectly observable to
the controller and the linear variable is observed only
through an output variable. The results are presented
in the following way. The notation to be employed is
containing in Section 2 as well as the concept of stabil-
ity appropriated to the proposed problems. Section 3
provides the solution for the output feedback control



problem. A numerical example is finally presented in
Section 4.

2. NOTATION AND PROBLEM FORMULATION

Throughout this paper, R
n denotes the n-dimensional

real space and M m×n (M m) and the normed linear
space of all m×n (m×m) real matrices. The transpose
of matrix U is indicated by U ′ and a positive semide-
finite matrix (positive definite) is represented by U ≥ 0
(U > 0). We denote M m0 = {U ∈ M m : U = U ′ ≥ 0},
and M m+ = {U ∈M m :U =U ′ > 0}. The linear space
of all sequences of s real matrices in M m×n (M m)
is represented by M

m×n = {U = (U1, · · · ,Us) : Ui ∈
M m×n, i = 1, . . . ,s } (Mm). In addition M

m0 (Mm+) is
written when Ui ∈ M m0 (Ui ∈ M m+), for i = 1, . . . ,s .
The standard vector norm in R

n is indicated by ‖·‖. In
addition, rσ(U) and N {U} indicate the spectral radius
and the null space of U ∈ M m, respectively, and a∧b
denotes min{a,b} . Let 11{.} be the Dirac measure. For
U ∈ M

m0, the following operators are defined

E∆
i (U) = ∑

j 6=i, j 6=∆
pi jU j and Ei(U) = ∑

j 6=i
pi jU j.

Consider the discrete-time homogeneous Markov chain
{θk;k ≥ 0} with space state X = {1, . . . ,s}∪{∆} (T =
{1, . . . ,s} is the collection of transient states and ∆ is a
absorbent state), initial distribution µ = (µ1, . . . ,µs,0)
where µi = P(θ0 = i), for all i ∈ X and transition
probability matrix P = [pi j] where

pi j = P(θk+1 = j | θk = i), ∀i, j ∈ X, k ≥ 0. (1)

Let the discrete-time Markovian Jump Linear Systems
(MJLS) defined on the fundamental probability space
(Ω,F,{Fk},P),

S :











xk+1 = Aθk xk +Bθk uk +Hθk wk, x0 ∈ R
n,

zk = Cθk xk +Dθk uk, θ0 ∼ µ,

yk = Fθk xk +Gθk wk, k ≥ 0,

(2)

where {xk,θk;k ≥ 0} is the process state taking values
in R

n ×X; {uk;k ≥ 0}, {zk;k ≥ 0} and {yk;k ≥ 0}
are the control, the output and the measured output
process, respectively. The process {wk;k ≥ 0} is a
sequence of l-vector independent random vectors nor-
mally distributed with mean 0 and covariance I. We as-
sume that {wk;k ≥ 0} and {θk;k ≥ 0} are independent.
Whenever θk = i, one has that Aθk = Ai ∈ M n,Bθk =
Bi ∈ M n×p,Cθk = Ci ∈ M q×n, Dθk = Di ∈ M q×p,
Fθk = Fi ∈ M m×n, Gθk = Gi ∈ M m×l and Hθk = Hi ∈
M n×l . In this work the horizon of the performance
index associated with the system S is given by a
stopping time τ of the joint process {xk,θk, k ≥ 0}
modelled by (1) and (2), that is

J(u) = E
[τ−1

∑
k=0

‖zk‖
2 + x′τSθτ xτ

]

, (3)

where S∈M
m0 is some terminal cost. In particular we

consider the following cases: (i) τ = TN : τ represents

the time of occurrence of a finite number N of failures
or repairs. We deal with this by defining the sequence
T N = {Tn; n = 0,1, . . . ,N} of {Fk}-stopping times

T0 = 0, Tn = min{k > Tn−1 : θk 6= θTn−1}, n ≥ 1.

(ii) τ = τ∆: τ represents the time of the jump into the
state ∆, associated with a crucial failure occurrence.
Thus τ∆ is defined as the hitting-time of ∆, i. e.,

τ∆ = min{k ≥ 1 : θk = ∆}.

We assume that the jump variable is perfectly observ-
able but the linear variable is observed only through
an output variable. In these scenario the problem con-
sists in obtaining a τ-stabilizable control action for the
cases τ = TN and τ = τ∆ such that minimize the cost
criteria as in (3).

Remark 1. The intermediary case τ = τ∆ ∧TN is used
here as strategy for studying the case τ = τ∆ since
considering τ∆ = limN→∞{τ∆ ∧TN}.

Stochastic Stability: Consider the autonomous discrete-
time MJLS S0 (S with u ≡ 0). We adopt the stochastic
τ-stability concept introduced in (do Val et al., 2003)
that is tailored to the announced problems.

Definition 2. Consider a stopping time τ with respect
to {Fk}. Then, the MJLS S0 is Stochastically τ-stable
(τ-SS) if for each initial condition x0 and initial distri-
bution µ

E
[

∑
k≥0

‖xk‖
211{τ≥k}

]

< ∞. (4)

The results below provide necessary and sufficient
conditions to ensure the stochastic τ-stability in the
cases previously described, see (do Val et al., 2003)
and (do Val and Nespoli, 2003).

Theorem 3. Let τ ∈ T N or τ = τ∆ ∧ Tn, n ≤ N. The
following assertions are equivalent:

i) The MJLS S0 is τ-SS.
ii) For any given set of matrices Q ∈M

n+, there ex-
ists a unique set of matrices L ∈ M

n+, satisfying
the Lyapunov equations

piiA′
iLiAi −Li +Qi = 0, i = 1, . . . ,s. (5)

Theorem 4. Let τ = τ∆. The following conditions are
equivalent:

i) The MJLS S0 is τ-SS.
ii) For any given set of matrices Q ∈M

n+, there ex-
ists a unique set of matrices L ∈ M

n+, satisfying
the Lyapunov equations

s

∑
j=1

pi jA′
iL jAi −Li +Qi = 0, i = 1, . . . ,s. (6)

Remark 5. Applying Theorem 3, notice that the Tn-
stabilizability problem is equivalent to determine the



stabilizability of the pair (p1/2
ii Ai, p1/2

ii Bi) for each
i = 1, . . . ,s in the deterministic sense. In turn, we can
announce from Theorem 4 that the τ∆-stabilizability
of the pair (A,B) is equivalent to the existence of a set
of matrices M ∈ M

n+ for some Q ∈ M
n+ such that

[Ai +BiKi]
′[piiMi +E∆

i (M)][Ai +BiKi]−Mi +Qi = 0,

holds for each i = 1, . . . ,s, and some K = (K1, · · · ,Ks).
Note that if K τ∆-stabilizes the closed-loop system,
then Ki stabilizes (p1/2

ii Ai, p1/2
ii Bi) for each i = 1, · · · ,s.

3. THE CONTROL PROBLEM

3.1 The JLQ problem with additive noise

Assume that at each instant k the linear state xk and the
jump state state θk are precisely known to controller,
i.e., the system S with Fi ≡ I and Gi ≡ 0 for all i ∈ X.
Write ETk [·] and E0[·] to represent E[· | xTk ,θTk ] and
E[· | x0,θ0], respectively, and suppose µi = 1. The cost
for x0 = x and θ0 = i is denoted by

J(x, i,u) := E0

[τ−1

∑
k=0

‖zk‖
2 + x′τSθτxτ

]

. (7)

Firstly we solve the one jump problem related to
horizon τ = T1 ∧m, m > 1, which model is

{

xk+1 = Aixk +Biuk +Hiwk, µi = 1,

zk = Cixk +Diuk,, 0 ≤ k < T1 ∧m.
(8)

Note that θk = θ0 = i para 0 ≤ k < T1 ∧m. Denote
Jm

T1
(x, i,u) the functional in (7) when τ = T1 ∧ m.

Consider uk = Kk
i xk then Jm

T1
(x, i,u) is given by

Jm
T1

(x, i,u) =
m−1

∑
k=0

pk
iix

′
kQ̂k

i xk + pm
ii x′mSixm

+
m−1

∑
k=0

pk
iitr{H ′

i E∆
i (S)Hi}, (9)

with Q̂k
i = Ĉk′

i Ĉk
i + Âk′

i E∆
i (S)Âk

i , Âk
i = Ai + BiKk

i and
Ĉk

i = Ci +DiKk
i . Note that in (9) the last term is a con-

stant which do not depend on the choice of uk, then can
be eliminated in the optimization process. As conse-
quence, the problem of minimizing (9) subject to (8) is
a standard problem found in the literature, see (Davis
and Vinter, 1985). In order to determinate the opti-
mal control law, we define Âi = p1/2

ii Ai, B̂i = p1/2
ii Bi,

Ãi = Ai −Bi[D′
iDi]

−1D′
iCi, C̃i = [I −Di[D′

iDi]
−1D′

i]Ci,
and consider (Âi, B̂i) estabilizable and (C̃i, p1/2

ii Ãi) de-
tectable. Then, there exist an unique matrix Lk,m

i which
is the solution for the set of algebraic Riccati equations
(ARE) given by

Lk,m
i = A′

i[piiL
k+1,m
i +E∆

i (S)]Ai − [A′
i[piiL

k+1,m
i +

E∆
i (S)]Bi +C′

iDi][B′
i[piiL

k+1,m
i +E∆

i (S)]Bi +D′
iDi]

−1

[B′
i[piiL

k+1,m
i +E∆

i (S)]Ai +D′
iCi]+C′

iCi, (10)

for k = m−1, . . . ,0 with Lm,m = S.

The optimal control law is uk = Kk
i xk where

Kk
i = [B′

i[piiL
k+1,m
i +E∆

i (S)]Bi +DiD′
i]
−1

[B′
i[piiL

k+1,m
i +E∆

i (S)]Ai +D′
iCi]. (11)

In the next proposition the case τ = T1 is recovered
taking limm→∞ Jm

T1
(x, i,u).

Proposition 6. Let τ = T1. Assume (Âi, B̂i) stabiliz-
able and (C̃i, p1/2

ii Ãi) detectable. Then, the matrix Li =

limm→∞ Lk,m
i , with Lk,m

i obtained as in (10), is the
unique solution for the ARE

Li = A′
i[piiLi +E∆

i (S)]Ai− [A′
i[piiLi +E∆

i (S)]Bi +C′
iDi]

[B′
i[piiLi +E∆

i (S)]Bi +D′
iDi]

−1

[B′
i[piiLi +E∆

i (S)]Ai +D′
iCi]+C′

iCi, (12)

The optimal control is uk = Kixk, where

Ki = [B′
i[piiLi +E∆

i (S)]Bi +D′
iDi]

−1

[B′
i[piiLi +E∆

i (S)]Ai +D′
iCi]. (13)

Moreover, the minimal cost is x′Lix + li where li is a
constant.

Case τ = TN : Consider the value function V (zn,φn),
defined as the minimal cost starting at the jump instant
Tn, namely,

V (zn,φn) = min
Kn,...,KN−1

ETn

[TN−1

∑
k=Tn

‖zk‖
2 + z′NSφN zN

]

,

for n = N − 1, . . . ,0, with zn = xTn and φn = θTn .
Using the strong Markov property and the optimality
principle we have

V (zn,φn = i) = min
Kn

i

ETn

[Tn+1−1

∑
k=Tn

‖zk‖
2 +V (zn+1,φn+1)

]

,

Based on one jump problem results, it can be show
that V (zn,φn = i) = z′nLn

i zn + ln
i where Ln

i is the unique
solution for the ARE

Ln
i = A′

i[piiLn
i +E∆

i (Ln+1)]Ai − [A′
i[piiLn

i +E∆
i (Ln+1)]

Bi +C′
iDi][B′

i[piiLn
i +E∆

i (Ln+1)]Bi +D′
iDi]

−1

[B′
i[piiLn

i +E∆
i (Ln+1)]Ai +D′

iCi]+C′
iCi. (14)

and ln
i is a constant.

Theorem 7. Assume (Âi, B̂i) stabilizable and (C̃i, p1/2
ii Ãi)

detectable, for each i = 1, . . . ,s. Then, the set of ma-
trices {L0, . . . ,LN−1} is the unique solution of the
backward recursive ARE (14) for each i = 1, . . . ,s with
LN = S. The optimal control is given by the piecewise
linear feedback law

uk =
N−1

∑
n=0

Kn
θk

xk11{Tn≤k<Tn+1}, k ≥ 0, (15)

where the optimal gains sequence {K0, . . . ,KN−1} is
given by

Kn
i = [B′

i[piiLn
i +E∆

i (Ln+1)]Bi +D′
iDi]

−1

[B′
i[piiLn

i +E∆
i (Ln+1)]Ai +D′

iCi], (16)



for each i = 1, . . . ,s and n = N −1, . . . ,0.

Remark 8. The optimal gain as in (16) coincides with
the optimal gain for the free noisy case, see (Nespoli
et al., 2004).

Remark 9. For the mixed case τ∆∧TN , under the same
assumptions above, the set of matrices {L0, . . . ,LN−1}
is the unique solution of the backward recursive ARE

Ln
i = C′

iCi +A′
i[piiLi

n +E∆
i (Ln+1)+ pi∆S∆]Ai

− [A′
i[piiLi

n +E∆
i (Ln+1)+ pi∆S∆]Bi +C′

iDi]

[B′
i[piiLi

n +E∆
i (Ln+1)+ pi∆S∆]Bi +D′

iDi]
−1

[B′
i[piiLi

n +E∆
i (Ln+1)+ pi∆S∆]Ai +D′

iCi], (17)

for each i = 1, . . . ,s and n = N−1, . . . ,0 with LN = S.
The optimal control is given by the piecewise linear
feedback law (15) where {K0, . . . ,KN−1} is given
by (16) for each i = 1, . . . ,s and n = N −1, . . . ,0.

Case τ = τ∆: The strategy to study this case consists in
seeking the limit situation for τ∆ ∧TN , when N → ∞.
In this sense, we use the Weak-detectability concept as
introduced in (Costa and do Val, 2002), for ensure the
convergence of the solutions Ln

i in (17). Firstly, con-
sider the set of observability matrices O ∈ M

n(n2s)×n,
where each of the matrices Oi ∈ M n0 is defined as

Oi := [Wi(0)
... Wi(1)

... · · ·
... Wi(n2s−1)]′

for i ∈ {1, . . . ,s}, where Wi(k) is defined recursively
as Wi(k) := A′

i[piiWi(k − 1) + Ei(W(k − 1))]Ai, with
Wi(0) := C̃′

iC̃i.

Definition 10. The pair (C̃, Ã) is Weak-detectable iff
limk→∞ E[‖xk‖

2] = 0 whenever x0 ∈ N (Oθ0).

The following proposition is a straightforward modifi-
cation of a result proven in (Costa and do Val, 2002).

Proposition 11. Assume that (C̃, Ã) is Weak-detectable.
There exists a unique solution P∈M

n0 for the coupled
algebraic Riccati equation (CARE)

Pi = A′
i[piiPi +Ei(P)]Ai − [A′

i[piiPi +Ei(P)]Bi +C′
iDi]

[B′
i[piiPi +Ei(P)]Bi +D′

iDi]
−1

[B′
i[piiPi +Ei(P)]Ai +D′

iCi]+C′
iCi, (18)

iff (A,B) is τ∆-stabilizable

Substituting in (17) piiLn
i by the approximation piiLn

i =
κpiiLn

i +(1−κ)piiLn+1
i with 0 < κ < 1, we can use the

result bellow, adapted from (Costa and do Val, 2002).

Proposition 12. Assume (C̃, Ã) Weak-detectable and
consider the solutions of the ARE’s

Ln
i = C′

iCi +A′
i[κpiiLi

n +Li(Ln+1)]Ai − [A′
i[κpiiLi

n+

Li(Ln+1)]Bi +C′
iDi][B′

i[κpiiLi
n +Li(Ln+1)]Bi+

D′
iDi]

−1[B′
i[κpiiLi

n +Li(Ln+1)]Ai +D′
iCi], (19)

where Li(Ln+1) = E∆
i (Ln+1) + (1 − κ)piiLn+1

i + pi∆S∆,
for n = 0,−1, . . . and i = 1, . . . ,s, L0

i arbitrary. Then
(A,B) is means square stabilizable iff the sequence Ln

converges to P ∈ M
n+ when n →−∞, where P is the

solution of the CARE (18).

Finally, the next theorem allow us to find the gain K
as required.

Theorem 13. Suppose (A,B) τ∆-stabilizable and (C̃, Ã)
Weak-detectable. Consider the solutions Ln

i ∈ M n0 of
the ARE’s (19). Then Ln

i → Li when n →−∞, where
L ∈ M

n0 is the solution of the CARE (18). Moreover,
uk = Kixk where the optimal gain Ki is given by

Ki = [B′
i[piiLi +E∆

i (L)+ pi∆S∆]Bi +D′
iDi]

−1

[B′
i[piiLi +E∆

i (L)+ pi∆S∆]Ai +D′
iCi], (20)

for each i = 1, . . . ,s.

Remark 14. Hence, adding noise to the case τ∆ makes
no difference to the optimal gain which coincides with
the optimal gains to the free noise, see (Nespoli et
al., 2004).

3.2 Output Feedback Control

We now consider control problem associated with the
system S defined in (2). Suppose additionally that x0 is
normal with mean m0 and covariance P0. The state xk
cannot be measured directly, but “noisy observations”
yk−1 = (y0,y1, . . . ,yk−1) are available at time k−1, so
that x̂k|k−1 = E[xk | yk−1] denotes the linear estimator
of xk given yk−1. Also, the control uk = uk(yk−1).
Analogously to previous section, one studies the one
jump problem associated with the model
{

xk+1 = Aixk +Biuk +Hiwk µi = 1,

yk = Fixk +Giwk 0 ≤ k < T1 ∧m,
(21)

We deal this problem by replacing (21) by the corre-
sponding innovations representation, see (Davis and
Vinter, 1985), which provides an equivalent model in
the form

x̂k+1|k = Aix̂k|k−1 +Biuk +Zk
i νk, x̂0|−1 = m0, (22)

for 0 ≤ k < T1 ∧ m. The innovation process νk :=
yk − Fix̂k+1|k is a white-noise process with mean 0
and covariance function E[νk,ν′k] = FiPk

i F ′
i + GkG′

k,
where Pk

i = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
′] satisfies the

recursive ARE

Pk+1
i = AiPk

i A′
i +HiH ′

i − [AiPk
i F ′

i +HiG′
i]

[FiPk
i F ′

i +GiG′
i]
−1[F ′

i Pk
i A′

i +GiH ′
i ], (23)

with P0 = P0. The Kalman gain Zk
i is given by

Zk
i = [AiPk

i F ′
i +HiG′

i][FiPk
i F ′

i +GiG′
i]
−1. (24)

Note that, yk satisfies

yk = Fix̂k|k−1 +νk. (25)



Under the conditions above, the new state x̂k|k−1 is
the best linear estimator of xk given yk−1. The func-
tional Jm

T1
(i,u) bellow, re-express (9) in a way which

involves x̂k|k−1,

Jm
T1

(i,u) = E
[m−1

∑
k=0

pk
iix̂

′
k|k−1Q̂k

i x̂k|k−1 + pm
ii x̂m|m−1Six̂m|m−1

]

+
m−1

∑
k=0

pk
iitr{HiE∆

i (S)H ′
i +Pk

i Q̂k
i }+ pm

ii tr{Pm
i Si}. (26)

Notice about the above expressions that the first term
is the cost (9) in the variable x̂k|k−1, and the remaining
two terms are constants which do not depend on
the choice of uk and then can be eliminated in the
optimization process.

In this section one intends to apply the results for
the completely observable case to the new sys-
tem (22) and (25). In this sense, define ν̃k = [FiPk

i F ′
i +

GiG′
i]
−1/2νk. Consequently (22) can be written

x̂k+1|k = Aix̂k|k−1 +Biuk +Zk
i [FiPk

i F ′
i +GiG′

i]
1/2ν̃k. (27)

Since E[ν̃kν̃′k] = I, ν̃k is a normalized white-noise
process and then the equation (27) is in the standard
form of (21) with Hi replaced by Zk

i [FiPk
i F ′

i +GiG′
i]

1/2.
Defining Ăi = Ai − HiG′

i[GiG′
i]
−1Fi and H̆i = Hi[I −

G′
i(GiG′

i)
−1Gi] the solution for the output feedback

control with horizon T1 is obtained analogously to
Proposition 6.

Proposition 15. Let τ = T1. Suppose (Âi, B̂i) and
(Ăi, H̆i) stabilizable; (C̃i, p1/2

ii Ãi) and (Fi, Âi) detectable
for each i = 1, . . . ,s. Then, the matrices Li = Lk,m

i when
m → ∞ and Pk

i are the unique solution for the fol-
lowing ARE (12) and (23), respectively. The optimal
control is given by ûk = Kix̂k|k−1, with Ki obtained as
in (13). The filter dynamics is given by

x̂k+1|k = Aθk x̂k|k−1 +Bθk uk +Zk
θk

[yk −Fθk x̂k|k−1], (28)

where the Kalmam gain Zk
i for each i = 1, . . . ,s is

obtained as in (23) and (24).

Observe that the gains Ki are the same as in the com-
plete observation case, so that the named certainty-
equivalence principle is verified for T1.

Case τ = TN : The function value V (ẑn,φn) associated
to the partial observation problem, now is defined as

V (ẑn,φn) = min
Kn,...,KN−1

E
[TN−1

∑
k=Tn

‖zk‖
2 + z′NSφN zN | φn

]

,

n = N−1, . . . ,0, with φn = θTn and ẑn := x̂Tn = E[xTn |
y0, . . . ,yTn−1,Tn = k]. It can be show

V (ẑn,φn = i) = min
Kn

i

E
[Tn+1−1

∑
k=Tn

‖zk‖
2 +V (ẑn+1,φn+1) | φn

]

,

= ẑ′nLn
i ẑn + tr{Ln

i P̂T n}+ l̂n
i ,

where Ln
i is the unique solution of the ARE (14) and

the sequence {l̂n
i } is bounded. Considering that the

Table 1. ERA model parameters.

Symbol Description Unit
gearbox ratio N = −260.6 -

motor torque constant gm = 0.6 N/%
the damping coefficient β = 0.4 N/%
inertia of the input axis Im = 0.0011 Kg m2

inertia of the output axis Ison = 400 Kg m2

motor current ic Am
spring constant c = 130000 N/%

certainty-equivalence principle holds for T1, the same
procedure for complete observation case can be em-
ployed here to determine the sequence {K0, . . . ,KN−1}.

Theorem 16. Assume (Âi, B̂i) and (Ăi, H̆i) stabiliz-
able; (C̃i, p1/2

ii Ãi) and (Fi, Âi) detectable for each i =
1, . . . ,s. Then, the set of matrices {L0, . . . ,LN−1} is
the unique solution of the backward recursive ARE
(14) for each i = 1, . . . ,s with LN = S. The optimal
control is given by the piecewise linear feedback law

uk =
N−1

∑
n=0

Kn
θk

x̂k|k−111{Tn≤k<Tn+1}, k ≥ 0, (29)

where the optimal gains sequence {K0, . . . ,KN−1}
is given by (16) for each i = 1, . . . ,s and n = N −
1, . . . ,0. The filter dynamics is given by (28) where
the Kalmam gain Zk

i for each i = 1, . . . ,s is obtained
as in (23) and (24).

Case τ = τ∆: K is obtained as in the observable case.

Theorem 17. Suppose (A,B) τ∆-stabilizable, (C̃, Ã)
Weak-detectable, (Ăi, H̆i) stabilizable and (Fi, Âi) de-
tectable for each i = 1, . . . ,s. Then there exist a set of
matrices L which is an solution of the CARE (18).
The optimal gain K is determinate by (20). The filter
dynamics is given by (28) where the Kalmam gain Zk

i
for each i = 1, . . . ,s is obtained as in (23) and (24).

4. ILLUSTRATIVE EXAMPLE

The linear model of one joint of “European Robot
Arm” (ERA), see (Yang and Blanke, 1999), is utilized
as example. The parameters are given in Table 1. The
space-state model of the system is given by











ẋ(t) = Ax(t)+Bu(t)+Hw(t), t ≥ 0,

z(t) = Cx(t)+Du(t),
y(t) = Fx(t)+Gw(t),

where x =
[

Ω Ω̇ ε ε̇
]

, y =
[

Ω+ ε NΩ̇
]′, u = ic,

A =















0 1 0 0

0 0
c

N2Im
0

0 0 0 1

0
−β
Ison

(
−c

N2Im
+

−c
Ison

)
−β
Ison















, B =















0 0
gm

2NIm

gm

2NIm
−gm

2NIm

−gm

2NIm
0 0















,

H = 0.01I, C =

[

1 0 1 0
0 N 0 0

]

, D =

[

0.1
0.1

]

,

F = 0.01
[

1 1 1 1
]

and G = F .



Table 2. Optimal control gains for τ = T3

Intervals Control gains

K0
1 =

[

−0.0050 −0.1193 −10.8276 3.0058
−0.0051 −0.1454 −10.8277 3.0058

]

[0,T1) K0
2 =

[

−0.0057 −0.1326 62.1058 1.
−0.0058 −0.1586 62.1057 1.7550

]

K0
3 =

[

−0.0026 −0.0692 −63.1985 1.6320
−0.0027 −0.0953 −63.1986 1.6320

]

K1
1 =

[

−0.0145 −0.2086 0.8923 0.0214
−0.0146 −0.2347 0.8922 0.0214

]

[T1,T2) K1
2 =

[

−0.0085 −0.1794 148.3138 0.7306
−0.0086 −0.2054 148.3137 0.7306

]

K1
3 =

[

−0.0053 −0.1100 −14.1831 1.7818
−0.0054 −0.1360 −14.1832 1.7818

]

K2
1 =

[

−0.0254 −0.2651 −0.1348 −0.2260
−0.0255 −0.2912 −0.1349 −0.2260

]

[T2,T3) K2
2 =

[

−0.0235 −0.2438 0.0863 −0.2320
−0.0236 −0.2698 0.0862 −0.2320

]

K2
3 =

[

−0.0123 −0.1735 0.4648 −0.0494
−0.0124 −0.1995 0.4647 −0.0494

]

Table 3. Optimal control gains for τ = τ∆

Control gains

K1 =

[

0.4758 130.0280 0.2659 −0.2178
−0.5242 −130.5720 −0.7341 −0.2178

]

K2 =

[

0.4779 130.0505 0.6317 −0.2234
−0.5221 −130.5495 −0.3683 −0.2234

]

K3 =

[

0.4781 130.0649 0.2511 −0.1937
−0.5219 −130.5351 −0.7489 −0.1937

]

We consider two kinds of possible faults of the sys-
tem, namely, g f

m =: Fgm gm and I f
m =: FIm Im where

the parameters Fgm and FIm represent the fault lev-
els of corresponding system parameters, respectively,
assuming the valuesFgm = 1, Fgm = 1.2, Fgm = 0.12,
FIm = 1 and FIm = 0.5. Since this work deals with
discrete time MJLS, the set of systems defined above
it was discretesized with sampling interval of 10. The
Markov chain with state space S = {∆,1,2,3} rep-
resent the faults that occur according the next val-
ues of (Fgm ,FIm), namely, (0.12,1), (0.12,0.5), (1,1),
(1,0.5) and (1.2,1), in this order. Notice that ∆ =
{(0.12,1),(0.12,0.5)}. When Fgm = 0.12 one has a
actuator fault which explain the states (0.12, .) be
considered absorbent states. The following matrix of
probability is adopted

P =











1 0 0 0
0.05 0.90 0.05 0
0.05 0.05 0.85 0.05
0.20 0.05 0.05 0.70











.

Assuming m0 = [π/8 0 0 0] and Si = 100I for i =
∆,1,2,3 we present the control gains from the results,
for the cases: (i) τ = TN for N = 3 in Table 2, and
(ii) τ = τ∆ in Table 3. Figures 1 and 2 present the
corresponding trajectories for ‖xk‖ and ‖x̂k|k−1‖ as
well as for trace of Pk (tr{Pk}).
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