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Abstract. The effect of changes in operating conditions due to fault occurrences can 
alter performances in industrial processes. One way of preventing performances from 
degradation is to modify the control law in order to maintain the functioning of the 
process under acceptable operating conditions. In this paper, a Fault Tolerant Control of 
an Activated Sludge Process is presented. Free fault data are reconstructed from the 
faulty one by mean of a Recursive Principal Component Analysis and the control law is 
designed on the basis of the reconstructed data.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
In the past decades, studies concerning Fault 
Tolerant Control  (FTC) were mainly related to flight 
control systems for obvious safety reasons (Rausch, 
1994; Passino et al., 1995). Recently, they were 
directed towards industrial processes in order to 
improve the reliability of the production and quality 
of products. An extensive survey on FTC can be 
found in (Patton, 1997) and (Blanke et al., (2000).  
 
Different approaches are possible according to the 
severity of the failure. The goal of the FTC is to 
determine a new control law that takes the degraded 
system parameters into account and drives the system 
to a new operating point preserving the main control 
performances (stability, accuracy,...) (Gao and 
Antsalkis, 1992; Looze et a.,l 1985; Bodson and 
Groszkiewicz, 1997; Aubrun, et al., 1993; Noura et 
al., 2000).  
 
A natural way of coping with the FTC problem is to 
modify the control law parameters according to an 

on-line identification of the system parameters when 
a fault occurs. The faults effects appear as parameter 
changes, which are identified on line, and the control 
law is accommodated automatically based on these 
new parameters (Rausch, 1995).   
 
In the approach proposed by (Bonivento et al., 2004)  
FTC consists in designing a controller embedding an 
internal model of the faults. Following this method, 
the faults effects are intrinsically compensated. This 
approach does not require an explicit Fault Detection 
an Isolation step.   
  
Another way of achieving accommodation relies on 
the reconstructed data. Faults are compensated via an 
appropriate control law triggered according to the 
diagnosis of the system before it propagates to other 
elements of the process. Fig. 1 shows the general 
scheme of the FTC procedure.  A performance 
evaluation module, analyses the actual operating 
conditions. In case of fault occurrence, the 
accommodation module determines new set point 



or/and modify the controller structure accordingly to 
the fault severity.  
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig 1. Scheme of the FTC 
 
This paper presents recent developments within 
IFATIS project (EU-IST-2001-32122). It focuses on 
the design of a sensor failure accommodation module 
for Yorkshire Water ASP. FTC is particularly 
important to processes where continuity of 
production or operation is paramount. Aeration 
process commonly used to treat wastewater falls 
within this category and should benefit from the 
application of FTC approaches. The key features of 
control of this type of plant is the measurement of 
Dissolved Oxygen (DO) at key points along a 
process train, and forced delivery of air to maintain a 
specific DO value under changing process 
conditions. The performance of biological systems is 
typically improved by minimising disturbances to 
their environmental parameters. In general, achieving 
and maintaining DO levels is the key control 
objective with ambient temperature being a natural, 
but slowly varying disturbance. Low levels of sensor 
redundancy and a severe instrument environment 
characterize the operation of this type of plant. In 
ASP the performances and operations are measured 
continuously. Usually the number of variable is high 
requiring a methodology to extract and structure 
useful  information from sets of data. For this 
purpose, Principal Component Analysis (PCA) has 
found wide application in process monitoring. 
However, it is clear that this method is not suitable 
for monitoring processes that display non-stationary 
behaviour. An efficient way to circumvent this 
problem is to update the model recursively (Rozen, 
1998; Dayal and Macgregor, 1997). (Li et al., 1999) 
propose a RPCA to adapt for normal process changes 
to reduce false alarm. The algorithm calculate 
recursively the correlation matrix with time varying 
mean and variance. Once a model describing the 
normal process operating condition faulty data are 
reconstructed and then, are replaced with best 
reconstruction in order to maintain control system on 
line (Qin and Li, 1999).   
 
The paper is organized as follows. After a brief 
description of the Benchmark, the paper presents in 
section 3 the Recursive Principal Component 
Analysis (RPCA) approach. The adaptation 
mechanism is described. In section 4 the method is 

applied to accommodate the system to a DO sensor 
failure. Finally, in section 5 the benchmark 
application is detailed and different faults scenario 
are studied.  
 
 

2. BENCHMARK DESCRIPTION 
 
The process is the aeration of industrial effluent 
using mechanical aeration followed by tapered 
aeration using air from a pressurised ring-main. The 
effluent is split into parallel lanes and each lane is 
divided into three aeration zones. There are a total of 
4 DO instruments installed to measure the oxygen 
concentrations. One is located in the mechanical 
zone and one in each of the three zones. Fig. 2, 
presented in appendix, shows the basic layout of one 
lane.  
 
The air used in the process is provided by a 
combination of up to 4 blowers and the air flow rate 
for each of the  three zones (1,2 and 3) is controlled 
by local PLC. In each of the tapered aeration zones 
that follow after the mechanical aeration zone, there 
are control valves that modulate the flow of air into 
the effluent to maintain the DO in that zone at the 
desired value. The control is achieved by the mean of 
PI controller. The position of the valve (%) is 
adjusted to supply a volume of air to the 
corresponding zone. 
 
A benchmark has been developed and implemented 
using SIMULINK/MATLAB in order to evaluate 
FTC strategy. The initialisation procedure for the 
states and parameters values are determined in such a 
way that that it faithfully reproduces the real 
behaviour of the ASP in terms of internal dynamics, 
of time varying parameters, of structural non-
linearities. The following measurements are available 
to model the process: 
• DO_mech: DO measurement in mechanical zone  
• DO_Zi : DO measurement in zone i (i=1,2,3)  
• F : Influent flow rate  
• V_i : Valve opening in zone i (i=1,2,3) 
 
The suspended solids concentration may display 
large and fast changes in the measurement. It is 
observed that the probes may read low due to built 
up of rag on the sensor. This will result in an 
unexpected increase of the control signal on the PI 
controller in the corresponding zone leading to a high 
value of DO. 
 
 

3. RPCA FOR DATA RECONSTRUCTION 
 
In PCA we are concerned with finding the latent 
vector space that explains the greatest amount of 
variability in a single matrix of data.  
 
Let us consider, x(k), a set of m variable. Assume 
that the process data are given in a matrix X (n x m) 



where n represents the number of samples.. X is 
approximated as 
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where pi are the first k largest eigenvectors (p1…pk) 
of the covariance matrix of X and the scores ti are 
linear combinations of the process measurement and 
are defined by  
 

ti = Xpj (2) 
 

By applying PCA on matrix X, the information 
contained in X can be summarized by a lower 
dimensional score space defined by the principal 
components and reduce the dimension of the analysis 
space. Then, identification of the process model by 
PCA consists in determining eigenvalues and 

eigenvectors of matrix XTX. nx(k) ℜ∈ is 
decomposed into  
 

x(k)PPx(k)PPx(k) TT ~~
+=  (3) 
 

where      ln×ℜ∈P are eigenvectors corresponding to 
the principal eigenvalues λ1≥,…,≥ λℓ of the 
correlation matrix of x(k) and     P~  are eigenvectors 
corresponding to the remaining eigenvalues 
λℓ+1≥,…,≥ λn. Then, the reconstructed part of x(k) is 
given by the following expression 
 

Cx(k)x(k)PP(k)x T ==ˆ  (4) 
 

And the residual part of x(k) is given by 
 

x(k)CC)x(k)(Ix(k)PP(k)x T ~~~~ =−==  (5) 
 

Consider a set of data in which variable xi is 
supposed to be faulty. xi(k) is arbitrarily set to zero. 
 
xmi(k) = [x1(k)  x2(k)   …   xi-1(k)  0 xi+1(k)…  xm(k)] 
 
and let e be the reconstruction error defined as  
 

(k)xx(k)e(k) ˆ−=  (6) 
 

which gives 
 

iimi C(k)xC(k)xe(k) ~~
+=  (7) 

 
Then the faulty value can be reconstructed as follows 
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The detection index is the Squared Prediction Error 
(SPE) defined by 
 

d(k)=e(k)Te(k) (9) 

PCA assumes that data are stationary which is 
usually not the case in ASP monitoring. This 
limitation can be overcome by use of an adaptive 
PCA. The PCA model is continuously updated using 
an exponential memory. Then, the model has to adapt 
to slow modification of the process operating 
condition. At each iteration the covariance matrix is 
updated recursively as follows (Dayal and 
MacGregor 1997) 
 

XTX(k) = αXTX(k-1) + (α−1)x(k)Tx(k) (10) 
 

Where α is a forgetting factor. The value of α is 
adjusted according to the dynamics of the system. 
 
 

4. DO SENSOR FAULT ACCOMMODATION 
 
The scheme of the DO sensor fault accommodation is 
illustrated in Fig 3. 
 
 
 
 
 
 
 
 
 
Fig 3. Sensor fault accommodation mechanism 
 
The decision mechanism triggers an alarm and the 
faulty measurement is automatically replaced by the 
free fault estimation computed on the basis of the 
updated model.  
 
The fault detection and isolation is based on the 
partial SPE index principle (Kourti and MacGregor 
1996 ; Harkat et al., 2000). The principle of partial 
SPE is represented in Fig. 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Fault isolation by partial SPE 
 
The PCA approach combined with appropriate index 
allows detection but cannot isolate the fault. It can be 
achieved by considering separately the contribution 
of each data on SPE index. The partial SPE is built 
from the whole data vector after removing data 
related to the different zone. The contribution of each 
zone on the detection index is quantified by mean of 
the partial SPE. The lower is the SPE value of a 



zone, the higher is the probability that fault occurred 
in that zone. 
 
 

5.  BENCHMARK APPLICATION 
 
The fault accommodation procedure described above 
was applied on the benchmark of the ASP.  
• The sample period is 5 minutes and the duration 
of the experiment is 14 days. 
• The data vector is built as follows: 
X = [ V_1 V_2  V_3  F  DO_Z3  DO_Z2  DO_Z1] 
• The faults scenarios are: 
- Fault 1 : abrupt bias on DO probe measurement 
in zone 2 between instant 6.5 and 7.5 (Bias 
magnitude of 0.5 mg/l) 
- Fault 2 : Complete breakdown of DO probe in 
zone 3 between instant 8 and 8.5 
- Fault 3 slow drift of DO probe measurement in 
zone 1 between instant 9 and 11 (Drift +0.4 mg/l per 
day  due to probe soiling mode). 
 
The investigations were performed in closed loop 
configuration and following two cases study : 
a) Faulty data with no accommodation algorithm 
b) Faulty data with accommodation algorithm 
 
The diagnostic and reconstruction algorithm was 
designed and tested with data containing the three 
faults at the same time. 
 
 

5.1 Fault detection results 
 

The graph presented in Fig. 5 shows the evolution of  
the global SPE index during 14 days.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Global SPE index (---without 

reconstruction;― with reconstruction) 
 
As the global SPE index is computed on the basis of 
all measurement it does not allow to isolate the fault. 
The dashed line (SPE index without data 
reconstruction)  indicates clearly the occurrence of 
fault 1 and 2 meanwhile the detection is not very 
effective in case of fault 3.  
 
The partial SPE is applied on raw data set. Results 
are summarised in table1. 

 
Table 1. Fault contribution for each zone 

 
Fault  

Scenario 
Detection  

time End SPE_3 SPE_2 SPE_1 
Fault 1      6.5 7.6 1.74 0.64 2.8 
Fault 2     8.1 8.8 0.03 51.69 22.10 
Fault 3     10.4 10.9 2.58 1.04 0.08 

 
 

5.2 Sensor fault accommodation 
 
The fault accommodation is conducted after the fault 
has been detected. Fig 6 shows the fault 
identification result for the DO measurement in zone 
1. The plot of the DO values are presented in Fig 6. 
Table 1 gives detection time 10.39. This delay seems 
to be reasonable as the fault is a drift. The doted line 
showed in Fig. 6 (non compensated fault) exhibits a 
large magnitude peak at instant 10.4 meanwhile the 
reconstructed data follows quite fairly the fault free 
values. 
The accommodation procedure prevents the system 
from fault propagation. Dashed line at time index 8 
exhibits peaks due to the compensated fault 
occurring in zone 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. reconstructed DO measurement  
 
 

6. CONCLUSIONS 
 
A fault complete sensor fault accommodation scheme 
is proposed based on RPCA approach to reconstruct 
faulty data. The fault is detected, isolated and 
replaced by its best estimation computed by the 
RPCA algorithm. Three type sensor fault, bias, drift, 
complete failure are considered. The detection and 
isolation, based on a partial squared prediction error 
index,  exhibits good performances for the bias and 
complete failure. The adaptive mechanism of PCA 
introduce a delay in the detection for the drift. 
Nevertheless, when the fault is detected, the 
accommodation procedure is effective. 
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Fig. 2. Basic layout of one lane. 
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