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Abstract: Crude oil blending is an important unit operation in petroleum re�ning
industry. A good model for the blending system is bene�cial for supervision
operation, prediction of the export petroleum quality and realizing model-based
optimal control. Since the blending cannot follow the ideal mixing rule in practice,
we propose a static neural network to approximate the blending properties.
By input-to-state stability and dead-zone approaches, we propose a new robust
learning algorithm and give theoretical analysis. Real data is applied to illustrate
the neuro modeling approach. Copyright c2005 IFAC.
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1. INTRODUCTION

Crude oil blending is an attractive solution for
those re�ners who have the ability to blend dif-
ferent crude types to provide a consistent and
optimal feedstock to re�nery operations. Opti-
mal crude purchasing is an e¤ective method to
improve re�nery pro�ts. In general the blending
rule is nonlinear, it can be regarded as a linear
mixing rule adding a nonlinear term. Crude oil
blending is an optimization operations based upon
real-time analyzers and process knowledge (Gary
and Handwerk, 1994). To address uncertainties in
blending operation, real-time optimization (RTO)
has been proposed (Singh, et al., 2000). The main
drawback of RTO is that it cannot provide opti-
mal set-points from large amounts of history data.
In many cases, optimal inlet �ow rates based on
the history data are required in oil �elds. These
set-points can be used for decision and supervision
control. The exact mathematical model for crude

oil blending is too complex to be handled ana-
lytically. Many attempts were made to introduce
simpli�ed models to construct �model-based�con-
troller (Luyben, 1990). A common method to ap-
proximate the blending operation is to use linear
(ideal ) model (Singh, et al., 2000) or to regard
blending operation has a su¢ cient small nonlinear
uncertainty (Alvarez-Ramirez, 2002).

Neuro modeling approach uses the nice features
of neural networks, but the lack of mathematical
model for the plant makes it hard to obtain theo-
retical results on stable learning. It is very impor-
tant to assure the stability of neuro modeling in
theory before we use them in some real applica-
tions. Lyapunov approach can be used directly to
obtain robust training algorithms for continuous-
time (Yu, 2001) and discrete-time (Polycarpou,
1992) neural networks. It is well known that nor-
mal identi�cation algorithms are stable for ideal
plants (Ioannou and Sun, 1996). In the presence of



disturbances or unmodeled dynamics, these adap-
tive procedures can go to instability easily. Gen-
erally, some modi�cations to the normal gradient
algorithm or backpropagation should be applied,
such that the learning process is stable. For exam-
ple, in (Jin and Gupta, 1999) some hard restric-
tions were added in the learning law, in (Suykens
et al., 1999) the dynamic backpropagation was
modi�ed with NLq stability constraints. Another
generalized method is to use robust modi�cation
techniques of robust adaptive control (Ioannou
and Sun, 1996). (Kosmatopoulos et al., 1996) ap-
plied ��modi�cation, (Jagannathan and Lewis,
1996) used modi�ed ��rule, and (Song, 1998)
used dead-zone in the weight tuning algorithms.
Input-to-state stability (ISS) is another elegant
approach to analyze stability besides Lyapunov
method. It can lead to general conclusions on the
stability by using input and state characteristics.

In this paper, we propose a novel learning algo-
rithm for discrete-time feedforward neural net-
work. By combining ISS and dead-zone tech-
niques, we analyze the stability of identi�ca-
tion error and the parameters. This learning law
can guarantee both modelling error and weights
bounded. The neuro modelling approach is suc-
cessfully used to model crude oil blending via real
data.

2. CRUDE OIL BLENDING

Crude oils are often blended to increase the sale
price or process-ability of a lower grade crude oil
by blending it with a higher grade, higher price
crude. The objective is to produce blended crude
oil to a target speci�cation at the lowest cost using
the minimum higher cost crude oil. The crude oil
feed-stocks used for blending often vary in quality
and for this reason crude oil blenders normally
use viscosity or density trim control systems. API
(American Petroleum Institute) Gravity is the
most used indication of density of crude oil. The
lower the API Gravity, the heavier the compound.
When the blender is started the required �ow rate
and component ratio is set by the control system
based on the ratio in the recipe. A density or vis-
cosity analyzer, installed at a homogeneous point
in the blender header, generates a control signal,
which is used to continually optimize the blended
product by adjusting the component ratio. This
ensures that the blended product remains as spec-
i�ed at all times during the batch. So normal
identi�cation for crude oil blending is on-line. In
this paper we will discuss an o¤-line identi�cation
method.

We discuss a typical crude oil blending process
in PEMEX (Mexican Petroleum Company), it is
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Fig. 1. TMDB crude oil blending process.

called Terminal Marítima de Dos Bocas Tabasco
(TMDB). The �ow-sheet is shown in Fig.1-(a).
It has three blenders (M1; M2 and M3), one
dehydration equipment and one tank. We use
Fig.1-(b) to describe the static process of the
crude oil blending, qi is �ow rate, pi is the property
of ith feed stock, it can be API Gravity. There
are four feed-stocks, L3 (q1; p1) ; Puerto Ceiba
(q2; p2) ; Maya (q3; p3) and El Golpe (q4; p4) : The
blended product for national use (qn; pn) needs 2
blenders, the product for export (qf ; pf ) needs 3
blenders and is stored in a tank.

For each blender the static properties can be an-
alyzed by thermodynamic. If the partial molar
volume of a component in a solution is nearly the
same as the molar volume of the pure component,
the molar volume is simply the average of the mo-
lar volumes of the pure components at the same
temperature and pressure. The thermodynamic
property is ideal

pa =
2X
i=1

pixi; qa =
2X
i=1

qi; xi =
qi
qa

where xi; qi and pi are the volume fraction, �ow
rate and API Gravity of ith feed-stock; pa and
qa are the �ow rate and the API Gravity of
the blended product of Blender 1 (M1). Unfor-
tunately, this equation is correct only in the ideal
condition, in order to make it universally valid a
correction term � is added

pa =
2X
i=1

pixi +� (1)

where � is called the property change of mixing.
Several approaches can approximate �; for exam-
ples

� Interaction model (Singh, et al., 2000), � =
�x1x2; where � is the interaction coe¢ cient
between the two components

� Zahed model (Zahed et al., 1993), � =
2X
i=1

Mi (xipi)
k
; where Mi and k are con-

stants.



All of above models are only suitable in some
special conditions and the parameters of these
models should be determined by experience data.

Since all of pi and qi in Fig.1-(b) are available,
we can model each blender with input/output
data, then connect them together, we call this
method as distribute model. If the mixing rule is
given by a interaction model, the total blending
is pf = 1

qf
(p4q4 + pbqb) + �3x4xb; where qf =

q1 + q2 + q3 + q4 � qw � qn; �i is mixing rule
coe¢ cient for i-th blender. We can also regard it
as multiple components blending process, we call
it as integrated model. The model can be expressed

as, pf =
4X
i=1

pixi + �: If the mixing rule is given

by a interaction model, � =
4X
i=1

4X
k=i+1

�i;kxixk:

3. MODELLING OF CRUDE OIL BLENDING
VIA DISCRETE-TIME NEURAL NETWORKS

The mathematical models discussed in Section 2
work only in some special conditions. In real ap-
plication we have only input/output data, neural
network can be applied to identify crude oil blend-
ing. Static neural networks can be used to identify
the nonlinear parts � of the distribute model or
the integrated model , it can also identify the
whole blender (linear and nonlinear). This section
will present a new stable learning algorithm for
static neuro identi�cation.

The mixing property can be written in following
form pf (k) = � [u1 (k) ; � � � ; u8 (k)] ; or

y(k) = � [X (k)] (2)

where X (k) = [u1 (k) ; � � � ; u8 (k)]T ; y(k) is the
blended API Gravity value at time k; y(k) =
pf (k) ; � (�) is an unknown nonlinear function rep-
resenting the blending operation, ui (k) are mea-
surable scalar inputs, they are API Gravity and
�ow rates, for example u1 (k) =

q1
qo
; u2 (k) = p1;

u7 (k) =
q4
qo
; u8 (k) = p4: We consider multi-

layer neural network(or multilayer perceptrons) to
model the blending properties as in (2)by (k) = Vk� [WkX (k)] (3)

where the scalar output by (k) and vector input
X (k) 2 Rn�1, the weights in output layer are
Vk 2 R1�m, the weights in hidden layer are
Wk 2 Rm�n; � is m�dimension vector function.
The typical presentation of the element �i(:) is
sigmoid function. The identi�ed blending system
(2) can be represented as

y (k) = V �� [W �X (k)]� � (k)

where V � and W � are set of unknown weights
which may minimize the modeling error � (k). The
nonlinear plant (2) can be also expressed as

y (k) = V 0� [W �X (k)]� � (k) (4)

where V 0 is an known matrix chosen by users,
in general, k� (k)k � k� (k)k : Using Taylor series
around the point of WkX (k), the identi�cation
error can be represented as

e (k) = eVk� [WkX (k)]+V
0�

0fWkX (k)+� (k) (5)

where �
0
is the derivative of nonlinear activation

function � (�) at the point of WkX (k) ; fWk =

Wk �W �; eVk = Vk � V 0; � (k) = V 0" (k) + � (k) ;
here " (k) is second order approximation error of
the Taylor series.

In this paper we are only interested in open-
loop identi�cation, we can assume that the plant
(2) is bounded-input and bounded-output stable,
i.e., y(k) and u(k) in (2) are bounded. Since
X (k) = [u (k) ; u (k � 1) ; u (k � 2) ; � � � ]T ; X (k)
is bounded. By the boundedness of the sigmoid
function �; we assume that � (k) in (4) is bounded,
also " (k) is bounded. So � (k) in (5) is bounded.
The following theorem gives a new robust learning
algorithm and stable analysis for the neural iden-
ti�cation. If we use the multilayer neural network
(3) to model the crude oil blending (2), the fol-
lowing dead-zone backpropagation-like algorithm

Wk+1 =Wk � �ke (k)�0V 0TXT (k)

Vk+1 = Vk � �ke (k)�T
(6)

where �k =
sk

1 +
�0V 0TXT (k)

2 + k�k2 ; sk =8<: � e (k)
2 � �

�
�

0 e (k)
2
<
�

�
�
; it means when e (k)2 < �

� �; the

learning is stop. 1 � � > 0; � = �

(1 + �)
2 > 0; � =

max
k

�
�2 (k)

�
; � = max

k

��0V 0TXT (k)
2 + k�k2� :

This updating law can make the modelling error
e (k) and the weights of neural networks bounded

ke(k)k 2 L1; Wk 2 L1; Vk 2 L1 (7)

Also the average of the modelling error satis�es

J = lim sup
T!1

1

T

TX
k=1

e2 (k) � �

�
� (8)

Proof. If e (k)2 � �
� �; the updating law is

(6) with �k =
�

1 +
�0V 0TXT (k)

2 + k�k2 : We
selected a positive de�ned matrix Lk as

Lk =
fWk

2 + eVk2 (9)



where fWk = Wk �W �; eVk = Vk � V 0; fWk

2 =Pn
i=1 ewk2 = trnfWT

k
fWk

o
: From the updating law

(6), we havefWk+1 = fWk � �ke (k)�0V 0TXT (k)eVk+1 = eVk � �ke (k)�T
Since �0 is diagonal matrix, and by using (5) we
have

�Lk =
fWk � �ke (k)�0V 0TXT (k)

2
+
eVk � �ke (k)�T2 � fWk

2 � eVk2
= �2ke

2 (k)
��0V 0TXT (k)

2 + k�k2�
�2�k ke (k)k

V 0�0fWkX (k) + eVk�
(10)

By (5) we know

e (k) = eVk� [WkX (k)] + V
0�

0fWkX (k) + � (k)

Since � > �k > 0; the last term in (10) is

2�k ke (k)k
V 0�0fWkX (k) + eVk�

= 2�k ke (k) [e (k)� � (k)]k
� 2�ke2 (k)� 2�k ke (k) � (k)k
� 2�ke2 (k)� �ke2 (k)� �k�2 (k)
� �ke2 (k)� ��2 (k)

So

�Lk � ��ke2 (k) [1
��k

��0V 0TXT (k)
2 + k�k2�+ ��2 (k)

� ��e2 (k) + ��2 (k)
(11)

where � is de�ned in (8): Because

n
�
min

� ew2i �+min �ev2i �� � Lk
� n

�
max

� ew2i �+max �ev2i ��
they are K1-functions, and �e2 (k) is an K1-
function, ��2 (k) is a K-function. From (5) and
(9) we know Lk is the function of e (k) and � (k) ;
so Lk admits a smooth ISS-Lyapunov function,
the dynamic of the identi�cation error is input-
to-state stable . Because the �INPUT� � (k) is
bounded and the dynamic is ISS, the �STATE�
e (k) is bounded. Also �Lk � 0; Lk is bounded,
so Wk and Vk are bounded.

If e (k)2 < �
� �; Wk+1 =Wk and Vk+1 = Vk; soWk

and Vk are bounded, ke (k)k2 < �
� � < 1 is also

bounded.

For all e (k) ; (7) is correct.

If e (k)2 � �
� �; (11) can be rewritten as

�Lk � ��e2 (k) + ��2 (k) � �e2 (k) + �� (12)

Summarizing (12) from 1 up to T , and by using
LT > 0 and L1 is a constant, we obtain

LT � L1 � ��
TX

K=1

e2 (k) + T��

�
TX

K=1

e2 (k) � L1 � LT + T�� � L1 + T��

Combing with e (k)2 < �
� �; for all e(k) (8) is

established.

Remark 1. V 0 does not e¤ect the stability prop-
erty of the neuro identi�cation, but it in�uences
the identi�cation accuracy, see (8). We design an
o¤-line method to �nd a better value for V 0. If
we let V 0 = V0; the algorithm (6) can make the
identi�cation error convergent, i.e.., Vk will make
the identi�cation error smaller than that of V0: V 0

may be selected by following steps:

(1) Start from any initial value for V 0 = V0;
k = 0:

(2) Update Vt by the learning law (6), until
k = T0:

(3) If the ke (T0)k < ke (0)k ; let VT as a new V 0,
V 0 = VT0 ; go to 2 to repeat the identi�cation
process.

(4) If the ke (T0)k � ke (0)k, stop this o¤-line
identi�cation, now VT0 is the �nal value for
V 0.

Remark 2. Since we assume neural networks can-
not match nonlinear systems exactly, we can not
make the parameters (weights) convergence, we
would like only to force the output of neural
networks to follow the output of the plant, i.e. the
identi�cation error is stable. Although the weights
cannot converge to their optimal values, (8) shows
that the identi�cation error will convergence to
the ball radius �

� �:

4. APPLICATION STUDY

In this section, we will use real data of PEMEX
and the neural networks proposed in Section 3 to
model crude oil blending. The TMDB crude oil
blending process in PEMEX is shown in Fig.1,
where the analyzers of API and �ow rates are
installed in every point. The data is recorded in
the form of Microsoft Excel daily. Each day, we
have input data [q1; p1; q2; p2; q3; p3; q4; p4]

T and
output data [qf ; pf ]

T . We use "a=xlsread(data)"
command to transform the data sheet into Mat-
lab. The training data are two years� records,
730 input/output pairs. The testing data, 28 in-
put/output pairs, are one month�s records which
are in the other year. In this way, we can assure
the testing phase is independent of the train-
ing phase. The outputs of each blender (M1;
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M2; M3) in Fig.1 are changed daily and di¤er-
ent. The nonlinearity of the crude oil blending
is strong, it is not easy to identify it by a sim-
ple model. If we assume the crude oil blending
can be expressed as linear and nonlinear parts,

pf =

4X
i=1

pixi + �: It can be expressed as pf �

4X
i=1

pixi = �(q1; p1; q2; p2; q3; p3; q4; p4) : We use

following neural network model to identify �;

by (k) = Vk� [WkX (k)] (13)

The input to neural network is X (k) ; the output

of neural network corresponds to

 
pf �

4X
i=1

pixi

!
,

so X (k) = [q1; p1; � � � q4; p4]T : We choose the 5
nodes in hidden layer, so Wk 2 R5�8; Vk 2 R1�5;
the initial conditions for the elements of Wk and
Vk are random numbers in [0; 1] : We use the
learning algorithm (6) proposed in this paper with
� = 1; �

� � = 0:2; � (�) = tanh(x) = ex�e�x
ex+e�x ;

�0 (�) = sech(x) = 2
ex+e�x : 730 pairs [X (k) ; y (k)]

are applied to train the neural networks (13), and
other 28 pairs data are used to test the training re-
sult, the identi�cation results are shown in Fig.2.

We consider the crude oil blending is a black-box
nonlinear process, we use neural network to model
the whole system. The plant is

pf = f (q1; p1; q2; p2; q3; p3; q4; p4) (14)

The input to neural network is X (k) ; the output
of neural network corresponds to pf : The mod-
elling error is

e (k) = by (k)� pf (k)
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Fig. 3. Black-box identi�cation.

We use the same neural networks and the same
algorithm, the identi�cation results are shown in
Fig.3.

We de�ne the average identi�cation errors as

Je =
1

n

nX
k=1

jpf (k)� bpf (k)j
where bpf (k) is the output of the models. For
least square method, nonlinear part identi�cation
and black-box identi�cation, Je is 0:6; 0:025; 0:1;
respectively. We have the following conclusions:

(1) It is reasonable to divide the blending process
into linear and nonlinear parts

(2) The interaction model for the nonlinear part
is not suitable in crude oil blending.

(3) Neural networks and the robust learning al-
gorithm proposed in this paper are e¤ective
for modelling of crude oil blending.

Now we compare our stable learning algorithm
with normal backpropagation algorithm (Naren-
dra and Parthasarathy, 1999) in the training
phase. We use the same multilayer neural net-
works as (Narendra and Parthasarathy, 1999), it is
�8;5;1 (The numbers of input layer, hidden layer
and output layer are 8, 5, 1, respectively.). We
use a �xed learning rate � = 0:05: We found after
� > 0:1 the normal backpropagation algorithm
became unstable. The performance comparison
can be realized by mean squared errors

J (N) =
1

2N

NX
k=1

e2 (k)

The comparison results are shown in Fig.4: We
can see that the stable algorithm proposed in this
paper has a fast converge rate, J (730) = 0:005.
The identi�cation error of normal backpropaga-
tion algorithm is bigger, J (730) = 0:078:
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5. CONCLUSION

In this paper a new learning algorithm for
discrete-time neural network is proposed. The the-
oretical analysis of stability and convergence of
the neural networks are given. A application ex-
ample is provided to illustrate the neuro modeling
approach. We believe that modelling of crude oil
blending via neural networks is a very e¤ective
method.

(Chapter head:)*
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