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1. INTRODUCTION

Stochastic constrained optimization is typically
solved by the following techniques: methods based
on the Lagrange multipliers and duality theory,
projection and feasible direction methods, and
penalty function methods. The method based on
the Lagrange multiplies and duality theory exhibit
good convergence rates and can handle noise in
the observations of the objective and constraint
functions. However, these methods require the
objective and constraint functions to be convex
and admit the strong duality (for details, see
(Bertsekas, 1999), (Kushner and Clark, 1978),
(Pflug, 1996) and references cited therein). The
projection and feasible direction methods also
exhibit good convergence rate, but they do not
require the objective function to be convex. How-
ever, these methods cannot handle noise in the

observations of the constraint functions. More-
over, they require the feasible domain (i.e., the
constraint functions) to have a simple structure
(e.g., to be a ball or hyper-rectangle) in or-
der to determine projections and feasible direc-
tions efficiently (for details, see (Bertsekas, 1999),
(Kushner and Clark, 1978), (Pflug, 1996) and ref-
erences cited therein). The penalty function meth-
ods can handle noise in the observations of the ob-
jective and constraint functions and require none
of these functions to be convex. However, these
methods usually exhibit poor convergence rates
(particularly if the constraints are available only
through their noisy observations) and suffer from
ill-conditioning(for details, see (Bertsekas, 1999),
(Kushner and Clark, 1978), (Pflug, 1996) and
references cited therein).



In this paper, stochastic constrained optimization
problems with non-convex objective and convex
feasible domain are considered for the case where
the objective and constraint functions are avail-
able only throuth noisy observations. A general
algorithm of the two time-scale stochastic approx-
imation type is proposed for these problems. The
proposed algorithm is an extension of the exist-
ing feasible direction techniques and can be con-
sidered as a combination of the Frank-Wolf and
gradient recursions (coupled through two time-
scale implementation): the Frank-Wolf procedure
looks for minima of the objective function, while
the gradient recursion ‘interprets’ feasible search
directions as solutions to a subsidiary convex op-
timization problem and uses Lagrange multipliers
to solve it. Compared with the classical feasible
direction methods, this algorithm exhibits similar
convergence rates at a moderately increased com-
putational complexity. It is successfully applied to
Markov decision problems with average cost, av-
erage constraints and parameterized randomized
policy (for more details on constrained Markov
decision problems and their applications see e.g.,
(Altman, 1999) and references cited therein). The
asymptotic behavior of the proposed algorithm is
analyzed for the case where the algorithm step-
sizes are constant and the noise in the observa-
tions of the objective and constraint functions
depends on the algorithm iterates.

2. CONSTRAINED OPTIMIZATION
PROBLEM

Let f : Rp → R and g1, . . . , gq : Rp → R be dif-
ferentiable functions. The optimization problem
we are concerned with in this paper is defined as
follows:

Minimize f(x)

Subject to: g1(x) ≤ 0, . . . , gq(x) ≤ 0. (1)

Constrained optimization problem (1) is consid-
ered for the following case:

(i) g1(·), . . . , gq(·) are convex, but f(·) can be non-
convex.

(ii) f(·), g1(·), . . . , gq(·) and their derivatives are
available only through ‘noisy’ observations, i.e.,
for each x ∈ Rp, instead of exact values, as-
ymptotically unbiased estimates of f(x), ∇f(x),
g1(x),∇g1(x) . . . , gq(x),∇gq(x) are available.

The following notation is used throughout the
paper. ‖ · ‖ denotes the Euclidean vector norm.
For ρ ∈ [0,∞), k ≥ 1, Bk is the family of Borel
sets from Rk and Bk

ρ = {x ∈ Rk : ‖x‖ ≤ ρ}. For
x = y = 0, we use the convention that x/y = 0.

3. TWO TIME-SCALE FEASIBLE
DIRECTION ALGORITHMS

In this section, we derive two-time scale feasible
direction algorithms for the constrained optimiza-
tion problem (1). First, a two time-scale algorithm
is derived for the deterministic counterpart of (1).
Then, using the obtained algorithm as a starting
point, we derive a two time-scale algorithm for the
stochastic version of (1).

3.1 Deterministic Constrained Optimization

Suppose that the functions f(·), g1(·), . . . , gq(·)
and their gradients are known (i.e., the values
f(x), ∇f(x) and g1(x),∇g1(x), . . . , gq(x),∇gq(x)
are available for each x ∈ Rp). Then, the op-
timization problem (1) can be solved efficiently
by the feasible direction method (also known as
the conditional gradient method; for details see
(Bertsekas, 1999, Chapter 2) and references cited
therein).

Let {αn}n≥0 be a sequence from (0, 1) (e.g., αn =
α for each n ≥ 0, or αn = 1/(1 + n)a for n ≥ 0,
where α is a small positive constant and a is a
constant from (0, 1)). Moreover, for x ∈ Rp, let

h(x) = arg min
gi(y)≤0,1≤i≤q

(∇f(x))T (y − x). (2)

Classical feasible direction algorithms of the
Frank-Wolf type are defined by the following dif-
ference equations:

xn+1 =xn + αn(yn − xn), (3)

yn =h(xn), n ≥ 0. (4)

Due to the fact that g1(·), . . . , gq(·) are convex,
Lagrange multipliers and the duality theory can
be used to solve the (subsidary) constrained op-
timization problem associated to (4) (see e.g.,
(Bertsekas, 1999, Chapter 5)).

Let {βn}n≥0 be a sequence of positive reals (e.g.,
βn = β for each n ≥ 0, or βn = 1/(1 + n)b for
n ≥ 0, where β is a small positive constant and b
is a constant from (0, 1)). Moreover, for y ∈ Rp,
let

G(x) =[g1(y) · · · gq(y)]
T ,

∇G(x) =[∇g1(y) · · · ∇gq(y)],

Π+(y) = arg min
z∈[0,∞)q

‖y − z‖,

while

Ln(y, λ) = (∇f(xn))T (y − xn) +GT (y)λ

for y ∈ Rp, λ ∈ Rq, n ≥ 1 (Ln(·, ·) is the
Lagrangian corresponding to the subsidary opti-
mization problem associated to (4)). Then, owing
to the duality theory, the solution yn of (2), (4)



can be estimated using a gradient search for a
saddle point of Ln(·, ·):

yn
j+1 =yn

j − βj∇yLn(yn
j , λ

n
j )

=yn
j − βj(∇f(xn) + ∇G(yn

j )λn
j ), (5)

λn
j+1 =Π+(λn

j + βj∇λLn(yn
j , λ

n
j ))

=Π+(λn
j + βjG(yn

j )), 1 ≤ j ≤ N, (6)

where N is the number of the executions of the
‘inner’ recursion (5), (6), while the initial values
yn
0 , λn

0 can be selected arbitrary from Rp, [0,∞)q

(natural choice would be yn+1
0 = yn

N , λn+1
0 = λn

N ).
Noticing that xn ≈ xn+1 (due to αn ≈ 0 for
sufficiently large n), we can take N = 1. Then,
we get the following recursive algorithm for the
constrained optimization problem (1):

xn+1 =xn + αn(yn − xn), (7)

yn+1 =yn − βn(∇f(xn) + ∇G(yn)λn), (8)

λn+1 =Π+(λn + βnG(yn)), n ≥ 0. (9)

3.2 Stochastic Constrained Optimization

Suppose that instead of exact values of ∇f(·) and
g1(·),∇g1(·), . . . , gq(·),∇gq(·), we have for any x ∈
Rp their estimates A(x), B(x), C(x), where A :
Rp → Rp, B : Rp → Rp×q, C : Rp → Rq

are random functions. Then, provided that the
estimates are unbiased (i.e., E(A(x)) = ∇f(x),
E(B(x)) = ∇G(x), E(C(x)) = G(x) for all
x ∈ Rp), a reasonable way to get an algorithm
for the constrained optimization problem (1) is
to substitute ∇f(xn), ∇G(yn), G(yn) in (7) –
(9) with their estimates A(xn), B(yn), C(yn). As
a result, we get the following algorithm for the
stochastic counterpart of (1):

Xn+1 =Xn + αn(Yn −Xn), (10)

Yn+1 =Yn − βn(A(Xn) +B(Yn)λn), (11)

λn+1 =Π+(λn + βnC(Yn))), n ≥ 0, (12)

Remark. In order to emphasise that the iterates
(i.e., states) of the algorithm (10) – (12) are
random variables, they are denoted with capital
letters.

Setting

Un =A(Xn) −∇f(Xn),

Vn =B(Xn) −∇G(Xn),

Wn =C(Xn) −G(Xn)

for n ≥ 0, the algorithm (10) – (12) can be rep-
resented in the form of (two time-scale) stochas-
tic approximation (for details see (Borkar, 1997),
(Kushner and Yin, 1997) and references cited
therein):

Xn+1 =Xn + αn(Yn −Xn), (13)

Yn+1 =Yn − βn(∇f(Xn) + ∇G(Yn)λn

+ Un + Vnλn),

(14)

λn+1 =Π+(λn + βn(G(Yn) +Wn))), n ≥ 0.
(15)

Random variable Un, Vn, Wn themselves can be
interpreted as ‘observation noise’ in the estimates
of ∇f(Xn), ∇G(Yn), G(Yn), respectively.

If the sequences {αn}n≥0 and {βn}n≥0 (the step-
sizes of the algorithm (13) – (15)) are selected
such that αn = α, βn = β for all n ≥ 0,
and α � β (the case of constant step-sizes),
or such that limn→∞ αn = limn→∞ βn = 0
and αn = o(βn) (the case of decreasing step-
sizes), the algorithm (13) – (15) asymptotically
behaves similarly as singularly perturbed ordinary
differential equations (see e.g., (O’Malley, 1991)
and references cited therein). More specifically,
the algorithm (13) – (15) consists of two sub-
recursions: slow (13) and fast one (14), (15). The
iterates {Xn}n≥0 of the slow sub-recursion (13)
are updated with smaller step-sizes ({αn}n≥0)
and evolve on a slower time-scale. On the other
hand, larger step-sizes ({βn}n≥0) are used for
updating the iterates {Yn}n≥0, {λn}n≥0 of the fast
sub-recursion (14), (15), while their evolution is
characterized by a faster time-scale. Moreover,
the fast sub-recursion (14), (15) sees the iterates
of the slow one as ‘static’, while the slow sub-
recursion (13) sees the iterates of the fast one
as ‘equilibrated’. Since h(x) would be a globally
stable equilibrium of (14) (under mild conditions;
see A3, next section) if Xn were constant and
equal to x, we can conclude that Yn tracks h(Xn)
(i.e., Yn ≈ h(Xn) asymptotically as n→ ∞).

4. ASYMPTOTIC RESULTS

In this section, the asymptotic analysis of the
algorithm derived in the previous section is carried
out for the case where the algorithm step-sizes
are constant and the observation noise {Un}n≥0,
{Vn}n≥0, {Wn}n≥0 is state-dependent (i.e., for
each n ≥ 0, Un, Vn, Wn are random functions
of X0, Y0, λ0, . . . , Xn, Yn, λn).

Let αn = α, βn = β for all n ≥ 0, where
α, β are small positive constants. In that case,
the algorithm iterates (i.e., states) {Xn}n≥1,
{Yn}n≥1, {λn}n≥1, as well as the observation noise
{Un}n≥0, {Vn}n≥0, {Wn}n≥0 depend on the step-
sizes α, β (notice that the initial values X0, Y0, λ0

do not depend on α, β). In order to emphasize this
fact, the following notation is used in this section:
With the exception of the initial iterates, α and β
appear in the superscripts of all variables of the
algorithm (13) – (15), i.e., for n ≥ 1, Xα,β

n , Y α,β
n ,

λα,β
n denote Xn, Yn, λn, and for n ≥ 0, Uα,β

n ,



V α,β
n , Wα,β

n stand for Un, Vn, Wn (notice that the
notation for X0, Y0, λ0 remains unchanged).

Let Fα,β
n = σ{Uα,β

i , V α,β
i ,Wα,β

i : 0 ≤ i ≤ n} for
n ≥ 0. The algorithm (13) – (15) is analyzed under
the following assumptions:

A1. For all α, β ∈ (0,∞), there exist Rp-valued

stochastic processes {Uα,β
1,n }n≥0, {Uα,β

2,n }n≥0,

{Uα,β
3,n }n≥0, Rp×q-valued stochastic processes

{V α,β
1,n }n≥0, {V

α,β
2,n }n≥0, {V

α,β
3,n }n≥0, andRq-valued

stochastic processes {Wα,β
1,n }n≥0, {Wα,β

2,n }n≥0,

{Wα,β
3,n }n≥0, such that for n ≥ 0,

Uα,β
n+1 =Uα,β

1,n+1 + Uα,β
2,n+1 + Uα,β

3,n+1 − Uα,β
3,n ,

Uα,β
n+1 =V α,β

1,n+1 + V α,β
2,n+1 + V α,β

3,n+1 − Uα,β
3,n ,

Wα,β
n+1 =Wα,β

1,n+1 +Wα,β
2,n+1 +Wα,β

3,n+1 − Uα,β
3,n .

A2. For all ρ ∈ [1,∞), there exist constants
δρ ∈ (0, 1), Kρ ∈ [1,∞) (not depending on α,
β) such that for all α, β, n ≥ 0, 1 ≤ i ≤ 3,

E(Uα,β
1,n+1I{τα,β

ρ >n}|F
α,β
n ) = 0 w.p.1,

E(V α,β
1,n+1I{τα,β

ρ >n}|F
α,β
n ) = 0 w.p.1,

E(Wα,β
1,n+1I{τα,β

ρ >n}|F
α,β
n ) = 0 w.p.1,

E(‖Uα,β
i,n ‖2I{τα,β

ρ ≥n}) ≤ Kρ,

E(‖V α,β
i,n ‖2I{τα,β

ρ ≥n}) ≤ Kρ,

E(‖Wα,β
i,n ‖2I{τα,β

ρ ≥n}) ≤ Kρ,

E(‖Uα,β
2,n ‖I{τα,β

ρ ≥n}) ≤ Kρ(α+ β),

E(‖V α,β
2,n ‖I{τα,β

ρ ≥n}) ≤ Kρ(α+ β),

E(‖Wα,β
2,n ‖I{τα,β

ρ ≥n}) ≤ Kρ(α+ β),

where

τα,β
ρ =τα,β

1,ρ ∧ τα,β
2,ρ

τα,β
1,ρ = inf({n ≥ 0 :‖Xα,β

n ‖ ∨ ‖Y α,β
n ‖

∨ ‖λα,β
n ‖ > ρ} ∪ {∞}),

τα,β
2,ρ = inf({n ≥ 1 :‖Xα,β

n −Xα,β
n−1‖

∨ ‖Y α,β
n − Y α,β

n−1‖

∨ ‖λα,β
n − λα,β

n−1‖ > δρ} ∪ {∞}).

A3. g1(·), . . . , gq(·) are convex, and there exists
x ∈ Rp such that gi(x) < 0 for each 1 ≤ i ≤ q.

Remark. A1 and A2 are standard noise condi-
tions for the asymptotic analysis of stochastic
approximation algorithms (see e.g., (Benveniste et

al., 1990), (Kushner and Yin, 1997) and references
cited therein). A3 is basically the Slater constraint
qualification condition (see e.g., (Bertsekas, 1999,
Section 5.3)). It ensures that there is no duality
gap in the subsidiary optimization problems (2).

Let X̄α
0 = X0 and

X̄α
n+1 = X̄α

n + α(h(X̄α
n ) − X̄α

n ) (16)

for n ≥ 0.

As a main result on the asymptotic behavior of
the algorithm (13) – (15), the following theorem
is obtained:

Theorem 1. Let A1 – A3 hold. Suppose that
∇f(·) and ∇g1(·), . . . , gq(·) are locally Lipschitz
continuous. Then,

lim
α,β→0

α/β,β2/α→0

P

(

sup
0≤n≤t/α

‖Xα,β
n − X̄α

n ‖ ≥ δ

)

= 0

for all δ, t ∈ (0,∞).

For the proof, see (Tadić et al., 2004).

Remark. Theorem 1 basically claims that the
iterates {Xα,β

n }n≥0 of the algorithm (13) – (15)
asymptotically behave as the classical feasible
direction algorithm (3), (4).

5. MARKOV DECISION PROBLEMS WITH
AVERAGE COST AND AVERAGE

CONSTRAINTS

In this section, Markov decision problems with av-
erage cost, average constraints and parameterized
randomized policy is considered. Using the general
results obtained in Sections 3, 4, we develop and
analyze simulation based (i.e., Monte-Carlo) algo-
rithms for this class of Markov decision problems.

Let µ(·), ν(·) be a non-negative measure on
(Rr,Br), (Rs,Bs), respectively. Moreover, let p :
Rr × Rs × Rr → [0,∞), q : Rp × Rr × Rs →
[0,∞) be Borel-measurable functions such that
∫

p(ξ, ζ, ξ′)µ(dξ′) =
∫

q(x, ξ, ζ ′)ν(dζ ′) = 1 for all
x ∈ Rp, ξ ∈ Rr, ζ ∈ Rs. A Markov controlled
processes with a parameterized randomized sta-
tionary policy can be defined as a parameterized
Rr × Rs-valued Markov chain {(ξx

n, ζ
x
n)}n≥0 (x ∈

Rp is the parameter) satisfying

P(ξx
n+1 ∈ Bξ|ξ

x
0 , . . . , ξ

x
n, ζ

x
0 , . . . , ζ

x
n)

=

∫

Bξ

p(ξx
n, ζ

x
n , ξ)µ(dξ) w.p.1,

P(ζx
n+1 ∈ Bζ |ξ

x
0 , . . . , ξ

x
n, ξ

x
n+1, ζ

x
0 , . . . , ζ

x
n)

=

∫

Bζ

q(x, ξx
n+1, ζ)ν(dζ) w.p.1

for all x ∈ Rp, Bξ ∈ Br, Bζ ∈ Bs, n ≥ 0.

Let φ : Rr×Rs → R and ψ1, . . . , ψq : Rr×Rs → R
be Borel-measurable functions, while

fn(x) =E(φ(ξx
n, ζ

x
n)),

gn
i (x) =E(ψi(ξ

x
n, ζ

x
n)) (17)



for x ∈ Rp, 1 ≤ i ≤ q, n ≥ 0. Suppose that

f(x) = lim
n→∞

fn(x), (18)

gi(x) = lim
n→∞

gn
i (x) (19)

are well-defined and finite for all x ∈ Rp, 1 ≤ i ≤
q (which holds if {(ξx

n, ζ
x
n)}n≥0 is geometrically

ergodic for all x ∈ Rp). Markov decision prob-
lems with average cost, average constraints and
parameterized randomized policy can be defined
as the optimization problem (1) with f(·) and
g1(·), . . . , gq(·) defined in (18), (19).

In order to apply the algorithm (13) – (15) to
the previously described Markov decision prob-
lem, we need to find estimates for ∇f(·) and
∇g1(·), . . . ,∇gq(·). It is straightforward to verify
that

∇fn(x) =E

(

φ(ξx
n, ζ

x
n)

(

n
∑

i=1

∇xq(x, ξ
x
i , ζ

x
i )

q(x, ξx
i , ζ

x
i )

))

,

(20)

∇gn
i (x) =E

(

ψi(ξ
x
n, ζ

x
n)

(

n
∑

i=1

∇xq(x, ξ
x
i , ζ

x
i )

q(x, ξx
i , ζ

x
i )

))

(21)

for all θ ∈ Rp, 1 ≤ i ≤ q, n ≥ 0 (under some
regularity conditions; see B1 – B3 below).

For ξ ∈ Rr, ζ ∈ Rs, let

Ψ(ξ, ζ) = [ψ1(ξ, ζ) . . . ψq(ξ, ζ)]
T .

Moreover, for x ∈ Rp, γ ∈ (0, 1), let Sx,γ
0 = 0,

while

Sx,γ
n+1 = (1 − γ)Sx,γ

n +
∇xq(x, ξ

x
n+1, ζ

x
n+1)

q(x, ξx
n+1, ζ

x
n+1)

for n ≥ 0. Owing to (17), (19), ψi(ξ
x
n, ζ

x
n) is an as-

ymptotically unbiased estimate of gi(x) for all x ∈
Rp, 1 ≤ i ≤ q, while (20), (21) imply that for all
x ∈ Rp, 1 ≤ i ≤ q, φ(ξx

n, ζ
x
n)Sx,γ

n , ψi(ξ
x
n, ζ

x
n)Sx,γ

n

are asymptotically unbiased estimates of ∇f(x),
∇gi(x) as n → ∞, γ → 0. This (together with
the results of Section 3) suggests the following
simulation based (i.e., Monte-Carlo) algorithm for
the Markov decision problem described above:

Xn+1 =Xn + αn(Yn −Xn), (22)

Yn+1 =Yn − βn(Snφ(ξn, ζn) + S̃nΨT (ξ̃n, ζ̃n)λn),
(23)

λn+1 =Π+(λn + βnΨ(ξ̃n, ζ̃n)), (24)

Sn+1 =(1 − γ)Sn +
∇xq(Xn, ξn+1, ζn+1)

q(Xn, ξn+1, ζn+1)
, (25)

S̃n+1 =(1 − γ)S̃n +
∇xq(Yn, ξ̃n+1, ζ̃n+1)

q(Yn, ξ̃n+1, ζ̃n+1)
. (26)

In the difference equations (22) – (26), {αn}n≥0,
{βn}n≥0 have the same meaning as in the al-
gorithm (13) – (14), while γ ∈ (0, 1) is a con-
stant. Moreover, for each n ≥, ζn, ζ̃n are sam-
ples from q(Xn, ξn, ·), q(Yn, ξ̃n, ·) (respectively)

drawn independently from ξ0, ξ̃0, . . . , ξn−1, ξ̃n−1,
ζ0, ζ̃0, . . . , ζn−1, ζ̃n−1, while ξn+1, ξ̃n+1 are sam-
ples from p(ξn, ζn, ·), p(ξ̃n, ζ̃n, ·) (respectively)
drawn independently from ξ0, ξ̃0, . . . , ξn−1, ξ̃n−1,
ζ0, ζ̃0, . . . , ζn−1, ζ̃n−1.

{αn}n≥0, {βn}n≥0 are the step-sizes in the al-
gorithm (22) – (26). γ can be considered as a
forgetting factor in (25), (25) ensuring the sta-
bility of {Sn}n≥0, {S̃n}n≥0, while for n ≥ 0,

Snφ(ξn, ζn), Ψ(ξ̃n, ζ̃n), S̃nΨT (ξ̃n, ζ̃n) are estima-
tors of ∇f(Xn), G(Yn), ∇G(Yn) (respectively).

The asymptotic behavior of the algorithm (22) –
(26) is analyzed for the case when αn = α, βn = β
for each n ≥ 0, where α, β are small positive
constants. In that case, the algorithm iterates
{Xn}n≥1, {Yn}n≥1, {λn}n≥1 depend on the step-
sizes α, β and the forgetting factor γ (notice that
the initial valuesX0, Y0, λ0 do not depend on α, β,
γ). In order to emphasize this fact, the following
notation is used in the rest of the section: With
the exception of the initial ones, α, β, γ appear
in the superscripts of all algorithm iterates, i.e.,
for n ≥ 1, Xα,β,γ

n , Y α,β,γ
n , λα,β,γ

n denote Xn, Yn,
λn (notice that the notation for the initial iterates
X0, Y0, λ0 remains unchanged).

The algorithm (22) – (26) is analyzed under the
following assumptions:

B1. For all x ∈ Rp, {(ξx
n, ζ

x
n)}n≥0 has a unique

invariant probability measure π̃(x, ·). There exists
a Borel-measurable function p̃ : Rp × Rr × Rs →
[0,∞) such that p̃(·, ξ, ζ) is differentiable for all
ξ ∈ Rr, ζ ∈ Rs, and

π̃(x,B) =

∫

IB(ξ, ζ)p̃(x, ξ, ζ)µ(dξ)ν(dζ)

for all x ∈ Rp, B ∈ Br+s.

B2. For all ρ ∈ [1,∞), there exists a Borel-
measurable function ϕρ : Rr+s → [1,∞) such that

max{|φ(ξ, ζ)|, |ψi(ξ, ζ)‖} ≤ ϕ1/4
ρ (ξ, ζ),

max

{∥

∥

∥

∥

∇xp̃(x, ξ, ζ)

p̃(x, ξ, ζ)

∥

∥

∥

∥

,

∥

∥

∥

∥

∇xq(x, ξ, ζ)

q(x, ξ, ζ)

∥

∥

∥

∥

}

≤ ϕ1/4
ρ (ξ, ζ),

∥

∥

∥

∥

∇xp̃(x
′, ξ, ζ)

p̃(x′, ξ, ζ)
−

∇xp̃(x
′′, ξ, ζ)

p̃(x′′, ξ, ζ)

∥

∥

∥

∥

≤ ϕ1/4
ρ (x)‖x′ − x′′‖,

∥

∥

∥

∥

∇xq(x
′, ξ, ζ)

q(x′, ξ, ζ)
−

∇xq(x
′′, ξ, ζ)

q(x′′, ξ, ζ)

∥

∥

∥

∥

≤ ϕ1/4
ρ (x)‖x′ − x′′‖

for all x, x′, x′′ ∈ Rp, ξ ∈ Rr, ζ ∈ Rs, 1 ≤ i ≤ q.

B3. For all ρ ∈ [1,∞), there exist constants
rρ ∈ (0, 1), Kρ ∈ [1,∞) such that



∣

∣

∣

∣

E(ϕ(ξx
n, ζ

x
n)|ξx

0 = ξ, ζx
0 = ζ)

−

∫

ϕ(ξ′, ζ ′)p̃(x, ξ′, ζ ′)µ(dξ′)ν(dζ ′)

∣

∣

∣

∣

≤ Kρr
n
ρϕρ(ξ, ζ)

for all x ∈ Bp, ξ ∈ Rr, ζ ∈ Rs, n ≥ 0, and
any Borel-measurable function ϕ : Rr × Rs → R
satisfying 0 ≤ ϕ(ξ, ζ) ≤ ϕρ(ξ, ζ) for all ξ ∈ Rr,
ζ ∈ Rs.

Remark. B1 – B3 imply that f(·), g1(·), . . . , gq(·)
are well-defined, finite and differentiable.

Let {X̄α
n }n≥0 has the same meaning as in Section

4. As a main result on the asymptotic behavior of
the algorithm (22) – (26), the following theorem
is obtained:

Theorem 2. Let B1 – B3 hold. Suppose that A3 is
satisfied with g1(·), . . . , gq(·) defined in (19). Then,

lim
α,β,γ→0

α/β,β2/α→0

P

(

sup
0≤n≤t/α

‖Xα,β,γ
n − X̄α

n ‖ ≥ δ

)

= 0

for all δ, t ∈ (0,∞).

For the proof, see (Tadić et al., 2004).
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