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Abstract: This work considers the problem of fault-tolerant control of nonlinear
processes with input constraints subject to control system/actuator failures,
and presents and demonstrates an approach to fault-tolerant control predicated
upon the idea of integrating fault-detection, feedback and supervisory control.
Specifically, a nonlinear observer is initially designed to generate estimates of
the states that are used to implement Lyapunov-based state feedback controllers
and a fault-detection filter. The fault-detection filter uses the state estimates to
compute the expected closed–loop behavior in the absence of faults, and detects
the occurrence of faults by comparing the expected behavior of the process
variables with the estimates. A switching policy is then derived to orchestrate the
activation/deactivation of the constituent control configurations to achieve fault-
tolerant control in the event that a failure is detected. Finally, simulation studies
are presented to demonstrate the implementation and evaluate the effectiveness of
the proposed fault-tolerant control scheme. Copyright c©2005 IFAC.
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1. INTRODUCTION

Modern-day chemical plants involve a complex
arrangement of processing units, highly integrated
with respect to material and energy flows through
recycle streams. Increasingly faced with the re-
quirements of safety, reliability and profitabil-
ity, chemical plant operation is relying exten-
sively on highly automated process control sys-
tems. Automation, however, tends to also in-
crease vulnerability of the plant to faults (e.g., de-
fects/malfunctions actuators, failures in the con-
trollers or in the control loops) potentially causing
a host of economic, environmental, and safety
problems that can seriously degrade the operating
efficiency of the plant if not addressed within a
time appropriate to the context of the process
dynamics. In the absence of an appropriate re-

sponse, these faults can potentially cause a host
of economic, environmental and safety problems.

These considerations provide a strong motiva-
tion for the development of systematic methods
and strategies for the design of fault-tolerant
control systems. In process control, given the
complex dynamics of chemical processes (e.g.,
nonlinearities, uncertainties and constraints) and
the geographically distributed, interconnected na-
ture of plant units, the success of any fault-
tolerant control method requires an integrated
approach that brings together several essential
elements, including: (1) the design of advanced
feedback control algorithms that handle complex
dynamics effectively, (2) the quick detection of
process faults, and (3) the design of supervisory



switching schemes that orchestrate the transition
from the failed control configuration to available
well-functioning fall-back configurations to ensure
fault-tolerance. The realization of such an ap-
proach is increasingly aided by a confluence of
recent, and ongoing, advances in several areas of
process control research, including advances in
nonlinear controller designs (e.g., (El-Farra and
Christofides, 2001a; El-Farra et al., 2004; Mhaskar
et al., 2004)), advances in the analysis and control
of hybrid process systems (e.g., (Bemporad and
Morari, 1999; El-Farra and Christofides, 2003))
and advances in fault-detection.

The occurrence of faults in chemical processes and
subsequent switching to fall-back control configu-
rations naturally results in the superposition of
discrete events on the continuous process dynam-
ics giving rise to an overall process behavior that
is more appropriately viewed as a hybrid process,
i.e., intervals of piecewise continuous behavior in-
terspersed by discrete transitions. A hybrid sys-
tems framework therefore provides a natural set-
ting for the analysis and design of fault-tolerant
control systems. A common example is the prob-
lem of actuator/sensor failure where, upon the
detection of faults in a given actuator/sensor con-
figuration, it is often necessary to reconfigure the
control system by switching to some fall-back
configuration in order to preserve stability of the
closed-loop system. This approach was employed
in (El-Farra et al., 2005), where upon occurrence
of a fault, stability region-based reconfiguration
is done to achieve fault-tolerant control. The re-
configuration in (El-Farra et al., 2005), however,
assumes full state measurements and knowledge
of fault occurrence.

The success of any fault-tolerant control system
relies on the ability to detect the occurrence of
a fault from the available process measurements.
The analytical approach to fault-detection relies
on the use of fundamental models for the con-
struction of residuals, that capture some measure
of the difference between normal and ‘faulty’ dy-
namics, for fault-detection. The problem of us-
ing process models for the purpose of detecting
faults has been studied extensively in the con-
text of linear systems (Frank, 1990; Garcia and
Frank, 1997; Zad and Massoumnia, 1999; Mehran-
bod et al., 2005); and recently, some existential
results in the context of nonlinear systems have
been derived (Saberi et al., 2000; DePersis and
Isidori, 2002).

In summary, a close study of the existing liter-
ature indicates the lack of general and practi-
cal methods for the design of integrated fault-
detection and fault-tolerant control structures for
chemical plants accounting explicitly for actua-
tor/controller failures, process nonlinearities and

input constraints. Motivated by these consider-
ations, in this work, we propose a methodology
for the design of integrated fault-tolerant and
fault-detection systems for nonlinear processes
with actuator constraints. The basic idea is that
of integrating fault-detection, feedback control
and logic-based switching between multiple con-
strained control configurations, each characterized
by a different manipulated input and a different
region of closed-loop stability. A fault-detection
filter is designed for each control configuration.
The switching policy, which is based on the sta-
bility regions, is implemented by a higher-level
supervisor that, upon detecting a fault in the
feedback system, activates/deactivates the appro-
priate control configuration in a way that ensures
actuator fault-tolerance. The efficacy and imple-
mentation of the proposed approach are demon-
strated through a chemical process example. De-
tailed theoretical development and results of the
proposed approach can be found in (Mhaskar et
al., 2005)

2. PRELIMINARIES
2.1 System description - problem formulation

We consider nonlinear processes with constraints
on the manipulated input, represented by the
following state-space description:

ẋ(t) = f(x(t)) + gk(t)(x(t))(uk(t) +mk(t))
ym = hm(x)

|uk(t)| ≤ ukmax
k(t) ∈ K = {1, · · · , N}, N <∞

(1)

where x(t) ∈ IRn, ym ∈ IR denote the vector
of process state and measured variables, respec-
tively, uk(t) ∈ [−umaxk , umaxk ] ⊂ IR denotes the
constrained manipulated input associated with
the k-th control configuration and mk(t) ∈ IR
denotes the fault in the k-th control configuration.
k(t), which takes values in the finite index set K,
represents a discrete state that indexes the vector
field gk(·) as well as the manipulated input uk(·).
For each value that k assumes in K, the process is
controlled via a different manipulated input which
defines a given control configuration. Switching
between the available N control configurations
is controlled by a higher-level supervisor, that
determines k(t), ensuring that only one control
configuration is active at any given time, and that
only a finite number of switches take place over
any finite interval of time.

It is assumed that the origin is the equilibrium
point of the nominal process (i.e., f(0) = 0),
gk(x) 6= 0 ∀ x ∈ IRn, and that the vector functions
f(·) and gk(·) are sufficiently smooth, for all k,
on IRn. The notation ‖ · ‖ is used to denote the
standard Euclidean norm of a vector, the notation
| · | is used to denote the absolute value of a scalar
and x′ denotes the transpose of x. The notation



Lfh denotes the standard Lie derivative of a scalar
function h(·) with respect to the vector function
f(·) and the notation x(T+) denotes the limit of
the trajectory x(t) as T is approached from the
right, i.e., x(T+) = lim

t→T+
x(t). Throughout the

manuscript, we assume that for any |uk| ≤ ukmax
the solution of the system of Eq.1 exists and is
continuous for all t.

2.2 Motivating example
To motivate our fault-tolerant control system de-
sign methodology (presented in section 3), we
introduce in this section a benchmark chemical
reactor example that will be used throughout the
paper to illustrate the design and implementa-
tion of the fault-tolerant control system. To this
end, consider a well-mixed, non-isothermal contin-
uous stirred tank reactor where three parallel ir-
reversible elementary exothermic reactions of the
form A

k1→ B, A k2→ U and A
k3→ R take place,

where A is the reactant species, B is the desired
product and U, R are undesired byproducts, and
measurements of CA are available. The feed to
the reactor consists of pure A at flow rate F ,
molar concentration CA0 and temperature TA0.
Due to the non-isothermal nature of the reactions,
a jacket is used to remove/provide heat to the
reactor. Under standard modeling assumptions, a
mathematical model of the process can be derived
from material and energy balances and takes the
following form:
dT

dt
=

F

V
(TA0 − T ) +

3∑

i=1

Ri(CA, T ) +
Q

ρcpV

dCA
dt

=
F

V
(CA0 − CA)−

3∑

i=1

ki0e

−Ei
RT CA

dCB
dt

= −F
V
CB + k10e

−E1

RT CA

(2)

where Ri(CA, T ) = (−∆Hi)
ρcp

ki0e
−Ei
RT CA, CA and

CB denote the concentrations of the species A and
B, T denotes the temperature of the reactor,Q de-
notes rate of heat input/removal from the reactor,
V denotes the volume of the reactor, ∆Hi, ki, Ei,
i = 1, 2, 3, denote the enthalpies, pre-exponential
constants and activation energies of the three
reactions, respectively, and cp and ρ denote the
heat capacity and density of the reactor, re-
spectively. The values of the process parameters
and the corresponding steady-state values can be
found in (Mhaskar et al., 2005). It was verified
that under these conditions, the process of Eq.2
has three steady-states (two locally asymptoti-
cally stable and one unstable at (Ts, CAs, CBs) =
(388 K, 3.59 kmol/m3, 0.41 kmol/m3)).

The control objective considered here is the one of
stabilizing the reactor at the (open-loop) unstable
steady-state. Operation at this point is typically

sought to avoid high reactor temperature, while
simultaneously achieving reasonable conversion.
To accomplish this objective in the presence of
control system failures, we consider the following
manipulated input candidates (see Fig.1):

(1) Rate of heat input, u1 = Q, subject to
|Q| ≤ u1

max = 748 KJ/s.
(2) Inlet stream temperature, u2 = TA0 − TA0s,

subject to |u2| ≤ u2
max = 100 K.

(3) Inlet reactant concentration, u3 = CA0 −
CA0s, subject to |u3| ≤ u3

max = 4 kmol/m3.

Each of the above manipulated inputs, together
with measurements of reactor temperature and/or
concentration, represents a unique control con-
figuration (or control-loop) that, by itself, can
stabilize the reactor. The first loop involving the
heat input, Q, will be considered as the primary
configuration. In the event of some failure in this
configuration, however, the plant supervisor, will
have to detect that a fault has occurred, using
the available measurements, and then will have
to activate one of the other two backup configu-
rations in order to maintain closed-loop stability.
The important questions, which we address in the
next section, are how can the supervisor detect
a fault, and which control loop to activate once
failure is detected in the active configuration.

3. INTEGRATED FAULT DETECTION AND
FAULT-TOLERANT CONTROL

Having identified the candidate control configu-
rations that can be used, we outline in this sec-
tion the main steps involved in the fault-tolerant
control system design procedure. These include:
1) the synthesis of a stabilizing output feedback
controller for each control configuration, 2) the
explicit characterization of the constrained sta-
bility region associated with each configuration,
3) the synthesis of a fault-detection filter, and 4)
the design of a switching law that orchestrates
the re-configuration of the control system in a
way that guarantees closed-loop stability in the
event a failure is detected in the active control
configuration. Below is a brief description of each
step as applied to the chemical reactor example of
section 2.2.

(a) Constrained output feedback controller: In this
step, we synthesize, for each control configura-
tion, an output feedback controller that enforces
asymptotic closed-loop stability in the presence
of actuator constraints. In the case of Eq.2, a
simplification can be obtained by noting that CB
does not affect the evolution of either T or CA, and
therefore the controller design can be addressed
on the basis of the T and CA equations only. A
controller that stabilizes the (T,CA) system will
automatically stabilize the full system. While our
control objective is to achieve full state stabiliza-
tion (and not output tracking), controlled outputs



are introduced to facilitate transforming the sys-
tem of Eq.2 into a form more suitable for explicit
controller synthesis. To generate the estimates of
the states from the available measurements of
CA (which are required for the implementation
of the state feedback control designs), we define
ym = CA − CAs, and for the first two control
configurations, we use an observer of the form:

˙̃y =
[
−Liai1 1
−L2

i a
i
2 0

]
ỹ +

[
Lia

i
1

L2
i a
i
2

]
ym (3)

where i = 1, 2. This observer design generates
ỹ1 = ĈA as an estimate of CA while ỹ2 is
an estimate of ĊA, using which T̂ is computed.
For the third configuration, the estimates are
generated as follows:

dT̂

dt
=

F

V
(TA0 − T̂ ) +

3∑

i=1

Ri(ĈA, T̂ )

+
Q

ρcpV
+ α1(CA − ĈA)

dĈA
dt

=
F

V
(CA0 − ĈA)−

3∑

i=1

ki0e

−Ei
RT̂ ĈA

+α2(CA − ĈA)

(4)

where α1, α2 are real numbers, and T̂ , ĈA are esti-
mates of T and CA, respectively. These estimates
are used in conjunction with the state feedback
control designs presented below.

1. For the first configuration with u1 = Q, we con-
sider the controlled output y1 = CA − CAs. This
choice yields a relative degree of r1 = 2 for the
controlled output with respect to the manipulated
input. The coordinate transformation (in error
variables form) takes the form: e1 = CA − CAs,
e2 = F

V (CA0 − CA)−∑3
i=1ki0e

−Ei
RT CA.

2. For the second configuration with u2 = TA0 −
TA0s, we choose the output y2 = CA−CAs which
yields the same relative degree as in the first
configuration, r2 = 2, and the same coordinate
transformation.

3. For the third configuration with u3 = CA0 −
CA0s, a coordinate transformation of the form
used for configurations 1 and 2 above does not
yield a sufficiently large estimate of the stability
region, we therefore choose a candidate Lyapunov
function of the form V3(x) = x′Px, where P >
0 and x = [T − Ts CA − CAs]′ with P ={

0.011 0.019
0.019 0.101

}
.

Note that since our objective is full state stabi-
lization, the choice of the controlled output in
each case is really arbitrary. However, to facili-
tate our controller design and subsequent stability
analysis, we have chosen in each case a controlled
output that produces a system of relative degree
2. For the first and second configurations, the
corresponding state transformation yields a sys-

tem, describing the input/output dynamics, of the
following form:

ė = Ae+ lk(e) + bαkuk
:= f̄k(e) + ḡk(e)uk

(5)

where A =
[

0 1
0 0

]
, b =

[
0
1

]
, lk(·) = L2

fk
hk(x),

αk(·) = LgkLfkhk(x), hk(x) = yk is the output as-
sociated with the k-th configuration, x = [x1 x2]T

with x1 = T − Ts, x2 = CA − CAs, and the func-
tions fk(·) and gk(·) can be obtained by re-writing
the (T,CA) model equations in Eq.2 in the form
of Eq.1. The explicit forms of these functions are
omitted for brevity. Using a quadratic Lyapunov
function of the form Vk = eTPke, where Pk is
a positive-definite symmetric matrix that satisfies
the Riccati inequality ATPk+PkA−PkbbTPk < 0,
we synthesize, for each control-loop, a bounded
nonlinear feedback control law (see (Lin and Son-
tag, 1991; El-Farra and Christofides, 2001b; El-
Farra and Christofides, 2001a; Christofides and
El-Farra, 2005)) of the form:

u = −r(x, ukmax)LḡkVk (6)

where r(x, ukmax) =

L∗̄
fk
Vk +

√
(L∗̄

fk
Vk)2 + (ukmax|LḡkVk|)4

(|LḡkVk|)2

[
1 +

√
1 + (ukmax|LḡkVk|)2

] (7)

and L∗̄
fk
Vk = Lf̄kVk + ρ|e|2, ρ > 0. The character-

ization of the stability region for this controller is
discussed in the next step.

(b) Characterization of stability regions: Given
that actuator constraints place fundamental limi-
tations on the initial conditions that can be used
for stabilization, it is important for the control
system designer to explicitly characterize these
limitations by identifying, for each control con-
figuration, the set of admissible initial conditions
starting from where the constrained closed-loop
system is asymptotically stable. As discussed in
step (c) below, this characterization is necessary
for the design of an appropriate switching policy
that ensures the fault-tolerance of the control sys-
tem. The control law designed in step (a) provides
such a characterization. Consider the set:

Θ(ukmax) = {x ∈ IRn : L∗̄fkVk ≤ u
k
max|LḡkVk|} (8)

Then, using Lyapunov arguments, it can be shown
that an invariant subset of Θ(ukmax), Ω(ukmax)
provides an estimate of the stability region for
the k-th control configuration (see (El-Farra and
Christofides, 2001a) for more details on this issue).
The fact that the state feedback controllers are
implemented using the state estimates requires
appropriate design of the observer so that a chosen
subset of the state feedback stability region Ω can
be used as the output feedback stability region Ω̂.



(c) Fault-detection filter: The approach employed
in the filter design is to compare the expected
behavior in the absence of faults, to the true
behavior and use the difference between the two,
as an indicator of a fault. The prediction of
the expected behavior in the absence of faults,
however, requires knowledge of the true values
of the process states. The filter design, therefore,
uses the estimates of the states generated by
the state estimator to predict the behavior in
the absence of faults, and compares it with the
observed behavior of the system to generate a
residual, r(t). The presence of estimation error
means, however, that r(t) 6= 0 even in the absence
of faults. It is possible, however, to establish a
bound δm on the residual which captures the
expected difference in behavior in the absence of
faults and is used as a threshold in declaring a
fault. Consequently, if no fault is present, r(t) ≤
δm, while the supervisor detects faults for which
r(t) > δm. The residual is generated as:

ri = ‖(T̂ , ĈA)− (T̃ , C̃A)‖ (9)

where i is the active configuration, ri is the
residual for the i-th control configuration and:

dT̃

dt
=

F

V
(TA0 − T̃ ) +

3∑

i=1

Ri(C̃A, T̃ )

+
Q

ρcpV

dC̃A
dt

=
F

V
(CA0 − C̃A)−

3∑

i=1

ki0e

−Ei
RT̃ C̃A

(10)

with C̃A(Td) = ĈA(Td) and T̃ (Td) = T̂ (Td) where
Td > 0 is of the order of 1/L, where L is the
observer gain. Note that the fault-detection filter
is initialized using the value of the state estimates
after some time has elapsed to allow for the
estimates to converge to the true values. Note also
that both the bound on the residual and the time
after which the fault-detection filter is initialized
can be made as small as desired by appropriate
choice of the observer gain (for more details on
the filter design, see (Mhaskar et al., 2005)).

(d) Supervisory switching-logic: The key idea in
designing the switching logic is that, because of
the limitations imposed by constraints on the sta-
bility region of each configuration, and the un-
availability of the true state values, the supervisor
can only activate the control configuration for
which the closed-loop state is within the stabil-
ity region at the time of control system failure,
and the supervisor needs to make this inference
by using the available state estimates. To this
end, the supervisor first computes the sets, Ω̃j ,
j = 1, . . . , N such that the presence of the state
estimates in Ω̃j (after they have converged to
the true state values) ensures the presence of the
states in the output feedback stability region Ω̂j .
Without loss of generality, let the initial actuator

configuration be k(0) = 1 and T be the time when
the residual value for this configuration becomes
greater than δm, then the switching rule given by

k(t) = j ∀ t ≥ T if x̂(T ) ∈ Ω̃j(ujmax) (11)

for some j ∈ {2, 3, · · · , N} guarantees asymptotic
closed-loop stability.

4. SIMULATION RESULTS
In this section, we illustrate the implementation of
the proposed fault-tolerant control methodology
to the chemical reactor example introduced in
section 2.2. We have already described in section
3 how the output feedback controllers can be de-
signed and the stability regions characterized for
each of the three control configurations and how
the fault-detection filter is designed. Fig.1 depicts
the stability region, for each configuration. For the
first two control configurations, a state estimator
of the form of Eq.3 is designed. For fault-detection
thresholds of δm = 0.0172 and 0.00151, the pa-
rameters in the observer of Eq.3 are chosen as
L1 = L2 = 100, a(1)

1 = a
(2)
1 = 10 and a

(1)
2 =

a
(2)
2 = 20 and in the observer of Eq.4 are chosen

as α1 = −104 and α2 = 10. The reactor is ini-
tialized at T (0) = 330 K, CA(0) = 3.6 kmol/m3,
CB(0) = 0.0 kmol/m3, using the Q-control con-
figuration, while the state estimates are initialized
at T̂ (0) = 390 K, ĈA(0) = 3.6 kmol/m3.

The states in the fault-detection filter are ini-
tialized and set equal to the value of the state
estimates at t = 0.01 minutes ≡ T b1 ; note that
by this time the estimates have converged to the
true values. For the purpose of comparison, if the
fault detection filter was initialized at t = 0, it
results in a false alarm (the value or r1(t) crosses
the threshold before t = 0.01 minutes ≡ T b1
even in the absence of faults). By initializing the
fault-detection filter appropriately, a false alarm
is prevented (the value of r1(t) does not hit the
threshold in the absence of a fault after a time t =
0.01 minutes, see Fig.2a). As shown by the solid
lines in Fig.1, the controller proceeds to drive the
closed-loop trajectory towards the desired steady-
state, up until the Q-configuration fails after 3.0
minutes ≡ T f1 of reactor startup. Note that at
this time, the value of r1(t) becomes non-zero and
hits the threshold at t = 3.3 minutes ≡ T s1 . From
Fig.1, it is clear that the failure of the primary
control configuration occurs when the closed-loop
trajectory is within the stability region of the
second control configuration, and outside the sta-
bility region of the third control configuration.
Therefore, on the basis of the switching logic of
Eq.11, the supervisor activates the second con-
figuration (with TA0 as the manipulated input,
see solid line in Fig.1) which continues to drive
the state trajectory closer to the desired steady-
state. When a second failure occurs (this time
in the TA0-configuration) at t = 13.0 minutes
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and in the absence of a fault-detection filter
(dashed line).
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Fig. 2. Evolution of the residual for (a) the first

control configuration and (b) the second con-
trol configuration.

≡ T f2 before the process has reached the steady
state, the filter detects this failure via the value
of r2(t) hitting the threshold (see Fig.2b). From
the solid line in Fig.1, it is clear that the failure
of the second control configuration occurs when
the closed-loop trajectory is within the stability
region of the third configuration. However, if the
fault-detection filter is not in place and the backup
configuration is implemented late in the closed–
loop (at t = 30 minutes ≡ T s2 ), by this time the
state of the closed–loop system has moved out of
the stability region of the third control configura-
tion, and closed–loop stability is not achieved (see
dashed line in Fig.1). In contrast, when the fault-
detection filter is in place, it detects a fault at
t = 15.82 minutes ≡ T s2 and when the supervisor
switches to configuration 3, closed–loop stability
is achieved (see solid line in Fig.1).
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