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Abstract: We present a framework for control synthesis of reconfigurable distributed 
agent systems, where each agent includes its own set of basic functions and local rules. 
There are also global rules, which govern the interaction and communication between 
these agents. Agents are logically defined by a control synthesizer, communicator, and 
executer. The control synthesis is capable of detecting and avoiding single level 
deadlocks at execution level. We illustrate the concept through an example. Copyright 
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1. INTRODUCTION 

 
This work is inspired by the fact that many man-
machine systems, manufacturing and business alike, 
require fast response to the changes in their 
environment. In manufacturing systems, changes in 
demands, part designs and machine failures all 
require system reconfiguration at various levels of 
system control and communication hierarchy. In 
business systems, changes and fluctuations in market 
dynamics, business relationships and protocols 
between partnering organizations require 
reconfiguration in some or all levels of business 
functions.  
 
In centralized systems, the changes are often dictated 
from the top to the units and functions at the lower 
levels. Although this may sound efficient and more 
practical, the fact of the matter is that more and more 
real systems in many application areas are becoming 
distributed in nature. In distributed systems, various 

units or functions must determine their own way of 
responding to the changes in their environment, and 
communicate these changes to the other units and 
functions. Here we will only focus on logical aspects 
of system reconfiguration, that is, at system control 
level. To be reconfigurable at system control level, it 
is necessary that the control logic is model-based and 
furthermore, the underlying processes and rules are 
separated from each other. The boundary between 
“processes” and “rules” is rather vague. In discrete-
event control theoretic framework, Ramadge and 
Wonham (1987a, b) tossed this idea for the first time, 
and built an algorithmic solution for controller 
synthesis. We will follow their line of thought in 
terms of separation of processes and rules, so that 
rules are flexible and changeable, and can be 
changed while processes are fixed. Therefore, 
depending on the level of control, the functions 
performed by a machine or tasks performed by a 
human agent are part of fixed processes, whereas, 
“process plan” describing flow of materials, or the 

 



 

sequence by which a human agent must do his/her 
tasks are rules. It goes without saying that the terms 
“flexible,” “changeable” or “fixed” are relative 
within a control context. 
 
The control synthesis for centralized systems have 
been extensively discussed and analyzed within the 
discrete-event system control-theoretic framework. 
Classical methods include techniques by Petri Nets 
(Zhou and DeCesare, 1993), supervisory control 
theory developed by Ramadge and Wonham (1987a, 
b), control synthesis via condition/event systems 
(Krogh and Kowalewski, 1996, Hanisch and Rausch, 
1995) and time transition models (Ostroff, 1989). 
These works are model-based, synthesizing the 
complete controller from specifications provided as 
input. Should the rules or the underlying processes 
change, the whole synthesis algorithm must be run 
again in order to synthesize the control model again. 
This is in contrast to our approach where we 
synthesize control actions only when needed. The 
system will have a memory of its previously 
synthesized control actions, which can be overridden 
and changed if necessary. Our main inspiration for 
this approach comes from the way humans operate. 
As a human, we are never fully pre-programmed for 
all the tasks that we do in our lives. We rather carry 
with ourselves a set of rules (knowledge) and a set of 
basic functions (skills), which of course can be 
improved and changed by training and learning. 
When we are given a task (which we have not 
previously seen), we basically develop our own set 
of actions and procedures in order to accomplish this 
task. Furthermore, to complete this task, we may 
need to establish communication with other human 
or machine agents in our work environment. If we 
were given a task, which we have seen before, we 
may still need to reestablish our control actions, as 
the existing environmental conditions can be 
significantly different than what we had experienced 
in the past. 
 
Our modeling framework encompasses the following 
major characteristics: Agents can be providers and/or 
requesters. Each agent embeds in it a set of basic 
functions and a set of local rules or control 
specifications. Agent actions are triggered by internal 
or external events (described by flags). Each such 
event or flag is associated with a goal, which must be 
achieved by the agent. Depending on its current 
condition and this goal, the agent internally 
synthesizes its set of control actions in order to 
accomplish the goal. It is very possible that several 
agents (providers) are simultaneously responding to 
the same event triggered by a requester agent. In 
such a case, the requester would select that provider 
which provides the least-cost solution. 
 

The agents have different ways of computing their 
control synthesis solutions. In the simplest form, an 
agent may just adopt the first feasible solution, which 
defines the set of control actions (tasks) that must be 
taken to reach the goal from the current state. In a 
more complex form, an optimal solution may be 
sought, taking into account current state of the agent 
(provider), the ongoing tasks, and other tasks, which 
must be accomplished. Yet, in another scenario, the 
provider agent may face competition from other 
provider agents. Finally, solution may be in the face 
of uncertainties associated with failures or drop offs 
from other agents. Here we will only focus on the 
simplest solution where the first feasible solution 
obtained is priced and communicated to the 
requester. It is of course possible that in some cases, 
no feasible solution is obtained due to conditions 
such as deadlocks, etc. 
 
 

2. METHODOLOGY 
 

2.1 Definitions  
 
Agent: An agent is a finite set  
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Entity: An entity E is an object that is processed and 
manipulated by the agents and can be shown by the 
tuple E = (PPi, j, k), where PPi is the processing 
sequence id associated with the entity E, j is an 
instance id of the entity E and k is the current stage in 
the processing sequence. 
Processing Sequence: is an ordered set of agents 
where PPi = {All the agents  which must be 
visited in a sequential order by the entity E

iΦ

i} 
State: Each agent is associated with a state defined 
by an n-tuple, where n is a finite number. State of an 
agent changes upon execution of a basic function or 
occurrence of an external event. 
Basic Functions: The primitive capabilities of an 
agent; they are pre-defined by the system and cannot 
be changed by the developer. Every function has a 
set of inputs and outputs. 
Rules: Are the rules defined by the control 
developer. These rules are stated as condition-action 
rules. There are three types of rules/specifications: 
Global Rules: Inter-agent requirements which can be 
changed at the system configuration level. 

 



 

Local Rules: Intra-agent requirements changeable at 
the agent configuration level. Local rules are divided 
into three categories, namely “Pre-conditions,” 
“Post-actions” and “Post-states.” Post-actions are 
functions that must be executed by an agent after an 
action is taken. Post-state or Transition function δ is 
a mapping from S×F to S. Transition functions 
change the state of the agent upon execution of a 
basic function.  
Layout Specifications: Inter-agent requirements 
which define the accessibility between agents, that is, 
which other agents are accessible (physically or 
logically) by an agent. 
Flags: A low/high signal triggered by the agent when 
the execution of a job is finished. 
Attributes: Are the characteristics of the agents. 
Initiators: Are flags that initiate a sequence of tasks 
to be executed by an agent. Each initiator is 
associated with one or more ordered goal functions. 
Initiators will be activated by request messages that 
the agent receives from its requesters. 
 
 
2.2 Architecture of an agent 
 
As shown in Fig. 1 an agent is composed of a “core,” 
a “communication layer,” a “pre-execution layer,” an 
“execution layer” and a “memory “The core has a 
component called the synthesizer. The synthesizer is 
responsible for finding the task schedule of the agent. 
It also triggers algorithms related to fault detection 
and recovery. The core is in continual connection 
with the communication layer. Due to the distributed 
nature of the system, the communication layer is 
responsible for setting up the messages that have to 
be sent to the other agents, requesters or providers 
alike. Receiving information on the state of other 
agents is also done through communication unit. 
Different outputs of the core have to be transferred to 
the pre-execution and communication layers. The 
model synthesized by the agent core is executed by 
the agent’s execution layer. The collected local and 
global information can be stored by the agent in its 
memory unit. 
 

 
Figure 1: Agent architecture 
 
We comply with the specifications in the FIPA 

(Foundation for Physical Intelligent Agents). Each 
agent has an identifier and this must be registered by 
another agent called the bookkeeper agent. In FIPA 
this component is called Agent Management System 
(AMS). The communication layer in our model is 
equivalent to Message Transport Service (MTS) in 
FIPA. The difference is that in FIPA each Agent 
Platform (AP) has its own individual MTS but in our 
model every agent has a separate MTS.  
 
In this framework the communication between agents 
is handled based on a requester/provider protocol. 
Agents issue request messages and send them to all 
of their existing providers and wait for the best 
proposal. The providers compete to get the jobs by 
bidding. Whichever agent has the best offer wins the 
corresponding job and will be assigned by the 
requester as the provider of the job and the other 
agents will update their flags thereafter. Fig. 2 shows 
part of the sequence diagram of the communication 
process. Different scenarios can occur during 
communication process, depending on the state of 
the plant and agents. Discussion about the details of 
the sequence diagram of the communication is 
outside of the scope of this paper. 
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Figure 2: Part of the sequence diagram of the 
messaging protocol 

 
Agents will initiate their synthesizers upon reception 
of a request. Their synthesizers search for a road map 
(controlled solution) to execute the requested job in 
an appropriate way. This includes not only the 
satisfaction of the local and global rules but also a 
solution that minimizes the cost of the execution. If 
such a path is found by the synthesizer, the provider 
agent announces its price to the requester. The 
bidding policy in this paper is first-price sealed bid 
auction. As soon as a provider agent wins a bid, the 
job will be added to the work-to-do list of the agent 
(part of its memory unit). The pre-execution layer 
will be activated when the agent wants to execute the 
job physically. In this layer another synthesis and 
scheduling process will be performed, because the 
condition of the agent and the environment may have 
been changed during the time of bidding and 
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execution. The output of the pre-execution layer will 
be fed to the execution layer.  
 
Commit Stage. As soon as the requester agent selects 
its provider, a “commit request” is created and sent to 
the selected agents. These agents will then set their 
state to a “locked” condition.  
 
 
2.3 Synthesis 
 
In its simplest form, the provider’s synthesizer uses a 
search algorithm to obtain a feasible solution path 
(using a depth-first search method) from its current 
state to the desired goal state based on its local 
specifications and basic functions. During the path 
generation the algorithm also calculates the cost of 
the generated path according to the specified cost 
function. 
 
Initiator of an agent defines the goal function(s) that 
must be searched from the current state of the agent. 
The algorithm initially starts at the root of the search 
tree. The number of the total possible branches of the 
root is equal to the total number of the basic 
functions that the agent possesses. Each branch is 
equivalent to the execution of the corresponding 
basic function. If all the pre-conditions of a specific 
basic function are satisfied, the algorithm generates a 
new node and goes to the next level of the tree. If 
this is not the case that branch will not be part of the 
solution and the tree will have a dead end at that 
point and the algorithm will continue with the search 
at a previous level of the tree. If a basic function is 
considered as executed (new node generated), then 
the subsequent steps will be to update the states 
(based on the transition functions) and then to 
execute all the post-conditions, which means the 
generation of a new node. This procedure continues 
until a solution has been found or not found. The 
reader is referred to (Amini et al., 2005) for more 
details. Using this method we can easily reconfigure 
agents by changing their rules. No new control 
design will be necessary. 
 
Deadlock detection and prevention. It is possible that 
all providers respond with an infinite cost to a 
request from a requester. Two cases are possible: The 
requester waits for certain time until one of the 
providers becomes available and offers its service. 
The second case is when deadlock condition 
happens. A deadlock occurs, because two or more 
agents require the same resources during a particular 
time period in some circular-wait manner. Hence the 
providers can never find any solution path to reach to 
their desired goals. In these situations we have to 
detect the deadlock state and then prevent the system 
to enter to this state in the future. Fanti and Zhou 

(2004) and Shih and Stankovic (1990) give a 
comprehensive description of deadlock 
detection/prevention/avoidance in manufacturing 
automation and computer science community, 
respectively.  
 
In a distributed environment, there cannot be a 
centralized control that usually manages deadlocks. 
Therefore, there must be a framework through which 
agents can communicate and solve the problem of 
deadlock amongst themselves. This involves three 
steps: (1) Determine those resources that cause the 
provider agent not to find any solution path. (2)  
Detect deadlocks. (3) Reconfigure the system so that 
the future deadlocks of the same type and origin are 
avoided. Fig. 3 illustrates the concept. 
 

Deadloc Deadloc

 
Figure 3: Deadlock detection and avoidance steps 
 
We have developed two algorithms: a resource 
detection algorithm to detect unavailable resources, 
and a deadlock detection algorithm using Mitchell 
and Merritt algorithm (1984) to detect deadlocks. 
Should a deadlock be detected, the synthesizer 
triggers another algorithm, the deadlock avoidance 
algorithm, to avoid the same situation in the future. 
For more details, the reader is referred to (Amini et 
al., 2005). 
 
 

3. ILLUSTRATIVE EXAMPLE 
 
Consider the system shown in Fig. 4, which consists 
of one input buffer, one output buffer, two robots and 
three machines and one part type. Buffer I1, robots R1 
and R2, and machines M1, M2, M3 define our agents in 
this system. Parts (of single type) are the entities 
which follow a process plan (global specification). 
Since there is no supervisory control, every single 
agent must work according to its own specifications. 
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Figure 4:  Illustrative Flexible Manufacturing Cell 
 
Due to the lack of space we only present the 
specifications of the robots. 
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Robot  = RΦ i (i = 1, 2) 
 
Description: R1 and R2 are responsible for moving 
parts between different stations. We assume that the 
robots can hold at most one part in their hands. In our 
notation E is the entity (part) that has to be 
processed. 
 
Attributes (Ri.A): Ri.A.a1(capacity) = 1, 
R1.A.a2(reachability) = {I1, M1, M2, M3, O1} 
R2.A.a3(reachability) = {M2, M3, O1} 
 
States (Ri.S): (s1, s2, s3, s4, s5) = (stage, occupancy, 
location, current_part_id_in_process): (idle/busy, 
empty/not empty, Ii/Oi/Mi, E) 
 
Basic Functions (Ri.F):  
R1.F.f1 = move_to(Y, E), where Y ∈ {M1, M2, M3, I1, 
O1} 
R1.F.f2 = take(Y, E) where  Y ∈ {M1, M2, M3, 
I1}R1.F.f3 = put(Y, E) where  Y ∈ {M1, M2, M3, O1}  
R2.F.f1 = move_to(Y, E), where Y ∈ {M2, M3, O1} 
R2.F.f2 = take(Y, E) where  Y ∈ {M2, M3} 
R2.F.f3 = put(Y, E) where  Y ∈ {M1, M2, O1} 
 
Flags (Ri.f): None 
Initiator (R1.In):  
R1.In. 1. 11 =ϕI  or R1.In. 1. 2 =ϕiM : take(Xi, E) → 
put(E.PPi(k+1), E), where Xi∈{M1, M2, M3, I1}, 
(R2.In):R2.In. :take(X1. 2 =ϕiM i,E) → put(E.PPi(k+1), 
E), where Xi∈{M2, M3} 
 
Rules (Ri.R): 
• R1.R.r1: rules for move_to(Y, E): 

Pre-conditions: 
Y∈ R1.A.a2
R1.S.s3 ≠ Y 

Post-actions: None 
Post-states: 

R1.S.s3 = Y 
R1.S.s4= E 

• R1.R.r2: rules for take(Y, E): 
Pre-conditions: 

Y∈ R1.A.a2
R1.S.s1 = - 
R1.S.s2 = empty 
R1.S.s3 = Y 
Y.out = true 

Post-actions: 
move_to(W, E) where W is the next station in 
the processing sequence after Y and E = (PPi, 
j, k + 1) 

Post-states: 
R1.S.s2 = not empty 
R1.S.s3 = Y 
R1.S.s4 = E 

• R1.R.r3: rules for  put(Y, E): 
Pre-conditions: 

Y∈ R1.A.a2

Ri.S.s1 = idle 
Ri.S.s2 = not empty 
Ri.S.s3 = Y 
Ri.S.s4 ≠ Null 
Y.in = true 

Post-actions: None 
Post-states: 

R1.S.s2 = empty 
R1.S.s3 = Y 
R1.S.s4 = E 

Similar specifications hold for R2 and other agents. 
 
Agent R1 is accessible by I1, M1, M2, M3, O1 and R2 by 
M2, M3 and O1. The state of the robot is determined 
by a 5-tuple: The first value can be either idle (when 
there is no part in its hand and does not move) or 
busy (if it has a part in its hand or is moving towards 
a machine or buffer). The second value defines robot 
occupancy. It will be either empty or not empty. The 
next value is the robot’s location. Since the robot is 
moving around in the cell, this value has to be 
tracked. The state of the part currently held by the 
robot is the next element in the tuple (this value will 
be NULL if there is no part carried by the robot). 
 
R1 has three basic functions available. Using 
move_to(Y, E) function it will move from its current 
location towards location Y, to perform a task related 
to entity E. Function take(Y, E) will be responsible 
for taking part E form agent Y. And put(Y, E) 
function is responsible for putting part E into agent 
Y. 
 
The process plan is defined by PP1={I1, M1, M2, M3, 
O1}. Consider the state of R1 to be R1.S.(idle, empty, 
M1, NULL), and the state of the M1 to be  M1.S.(idle, 
0, NULL) (0 is number of parts currently being 
processed in the machine). Now suppose that part 
E(PP1, 1, 1) arrives in input buffer I1. PP1 means that 
the arriving part is of type 1. The first “1” in the tuple 
means that this part is the first instance of this entity 
type arriving into the cell. The second “1” means that 
the part is currently in its first station (I1). At this 
time 

11 .. ϕfI becomes equal to one. I1 then sends a 
request message to R1, since R1 is the only provider 
of I1. R1 will receive the request message that part E 
is ready to be picked up. From its list of 
specifications, R1 will find the required target(s). 
According to the specifications (R .In1 . 1. 11 =ϕI ), the 
objective of R1 will be to take(I1, E)→put(E.PP1(2), 
E). Which means, to take the part from the input 
buffer and put it in M1 (The second station in PP1 is 
M1). At this point the robot will start to construct its 
search tree in the synthesis process. Since the 
location of R1 is currently M1, it cannot take the part 
from the input buffer (a pre-condition for the basic 
function take(I1, E) is R1.S.s3 = I1, which is currently 
not true). The only possible action that the robot can 

 



 

take is move_to(I1, E), since all the pre-conditions 
for this action are satisfied. If the robot performs it, 
its next state will become R1.S.(busy, empty, I1, 
NULL) based on the transfer functions (post-states).  
Since the pre-conditions for take(I1, E) are satisfied 
now, the agent can perform this function next and 
therefore the resulting state of  the agent will become 
R1.S.(busy, not empty, I1, E(PP1, 1, 1)). Given that 
take function has a post-action, the robot will do the 
post-action first. This action is going to be 
move_to(M1, E(PP1, 1, 2)). Since all the pre-
conditions are satisfied, it will perform this step and 
therefore the next state of R1 will become R1.S.(busy, 
not empty, M1, E(PP1, 1, 2)). Now the only basic 
function that can be executed by the robot is put. One 
of the pre-conditions of put function is Y.in = true, 
where Y is M1. in and out functions are related to the 
communication and are used to get the state of the 
other agents in this distributed environment. The 
state of M1 is currently M1.S.(idle, 0, NULL). The 
robot calls the public function (in) of the machine. If 
all the pre-conditions of M1 for this function are 
satisfied (i.e. if the machine can accept a new part as 
input), it will return “true” and therefore the robot 
can put the part into the machine and by doing this, 
the request can be executed. At the execution stage 
R1 will “lock” all the necessary resources (I1 and M1) 
and will commit this job henceforth. 
 
After M1 finishes its job on the part it will announce 
this event to its providers (only R1). Since R1 is at idle 
state, it will be able to take the part from M1 and put 
it into M2. M2 finishes its job and sends a request to 
both of its providers, namely R1 and R2 with current 
states of them being R1.S.(idle, empty, M2, NULL) 
and R2.S.(idle, empty, M3, NULL), respectively. The 
two robots receive a message from M2 to move the 
outstanding part to M3, and both are able to find a 
solution. But since R1 is closer to the M2, its cost is 
estimated at a lower value and therefore it will offer a 
better price. Hence M2 will select R1 as its provider. 
The last step from M3 to O1 will be executed by R2 
since it is the only robot connected to O1. 
 
 

4. IMPLEMENTATION 
 
We have used IEC 61499 standard for the 
implementation of the above distributed control 
systems. This standard is based on “function blocks” 
and it provides an easily distributable methodology 
combined with an event-driven data exchange. For 
more details the reader can refer to (Amini et al., 
2005). 
 
 
 

5. CONCLUSION 
 
We have developed a framework for control 
synthesis of distributed agent system. Each agent has 
its own controller, which can be reconfigured by 
changing its local specifications and/or the global 
specifications. The synthesizer is capable of 
detecting and avoiding single level deadlocks at 
execution level.  
 
 

REFERENCES 
 

Amini, A., P. Zhao, and M.A. Jafari (2005). Control 
synthesis for distributed multi agent systems. 
Manuscript under revision. 

Fanti, M.P. and M. Zhou (2004). Deadlock Control 
Methods in Automated Manufacturing Systems. 
IEEE Transactions on Systems, Man, and 
Cybernetics—Part A: Systems and Humans, vol. 
34, no. 1. 

Hanisch, H-M. and M. Rausch (1995). Synthesis of 
Supervisory Controllers based on Novel 
Representation of Condition/Event Systems. 
Proceedings of IEEE International Conference 
on Systems, Man and Cybernetics, vol. 4., pp. 
3069-3074. 

Krogh, B.H. and S. Kowalewski (1996). State 
Feedback Control of Condition/Event Systems. 
Mathematical and Computer Modelling, vol. 23, 
no. 11/12, pp. 161-173. 

Mitchell, D.P. and M.J. Merritt (1984). A Distributed 
Algorithm for Deadlock Detection and 
Resolution. Proceedings of the Third Annual 
ACM Symposium on Principles of Distributed 
Computing, ACM SIGACT SIGOPS, pp. 282-284. 

Ostroff, J.S. (1989). Synthesis of controllers for real-
time discrete event systems. IEEE Proceedings of 
the 28th Conference on Decision and Control, 
Tampa, Florida, pp. 138-144. 

Ramadge, P.J. and W.M. Wonham (1987a). 
Supervisory Control of a Class of Discrete Event 
Processes. SIAM Journal on Control and 
Optimization, vol. 25, no.1, pp. 206-230. 

Ramadge, P.J. and W.M. Wonham (1987b). On the 
Supremal Controllable Sublanguage of a Given 
Language. SIAM Journal on Control and 
Optimization, vol. 25, no. 3, pp. 637-659. 

Shih, C.-S. and J. Stankovic (1990). Survey of 
Deadlock Detection in Distributed Concurrent 
Programming Environments and Its Application 
to Real-Time Systems and Ada. Technical Report 
UM-CS-1990-069, University of Massachusetts, 
Amherst, MA. 

Zhou, M.C. and F. DiCesare (1993). Petri Net 
Synthesis for Discrete Event Control of 
Manufacturing Systems. Kluwer Academic 
Publishers, Netherlands. 

 


	INTRODUCTION
	METHODOLOGY
	2.1 Definitions
	2.2 Architecture of an agent
	2.3 Synthesis

	ILLUSTRATIVE EXAMPLE
	IMPLEMENTATION
	CONCLUSION

