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Abstract: In this paper the problem of the real-time reconstruction of plasma insulin
concentration by using only blood glucose measurements is investigated. This is an
interesting problem because the knowledge of the time course of the glucose and insulin
concentrations in an individual provides precious informations concerning its health state,
and may assume the role of a clinical instrument. For the purpose of the reconstruction
of the insulinemia a dynamical model of the glucose-insuline homeostasis is required.
The present work considers distributed delay models. Such models have been preferred
in recent papers with respect to the standard Minimal Models, available in literature
from 70’s, because they allow to couple the glucose and insulin dynamics in a unique
extended system, whose solutions have been proven to be positive, bounded, and globally
asymptotically stable around the basal values of the equilibrium point. Data are acquired
according to the Intra Venous Glucose Tolerance Test (IVGTT). Simulation results are
reported in order to validate the developed theory. Copyright c°2005 IFAC
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1. INTRODUCTION

Glycemia and insulinemia, i.e. glucose and insulin
blood concentrations, are important variables in di-
abetic individuals, and in serious cases require fre-

1 Work partially supported by FIRB-MIUR Project “Metodi
dell’Analisi Matematica in Biologia, Medicina e Ambiente” and
INFN (Italian National Institute of Nuclear Physics).

quent measurements. Glycemia can be readily mea-
sured with low-cost devices. On the other hand, the
measurement of insulinemia is expensive and not im-
mediate. This fact stimulates the study of algorithms
capable of providing the insulin blood concentration
by processing a stream of glycemia measurements. Al-
gorithms of this kind, in the control systems literature,
are called state observers, and are aimed to recon-



struct the state of a dynamic system by processing the
available measurements. The observer design requires
a dynamical model of the system under investigation.
Many authors in the last decades proposed and studied
different models for the glucose-insulin homeostasis
(Bergman et al., 1979; Toffolo et al., 1980; Pacini
and Bergman, 1986; Fisher and Teo, 1989; Fisher,
1991; De Gaetano and Arino, 2000; Mukhopadhyay
et al., 2004). The models here adopted to estimate
the time course of the plasma insulin concentration
are families of distributed delay models with single
and double kernel (Mukhopadhyay et al., 2004). Such
models allow to couple the dynamics of both glucose
and insulin kinetics in a unique extended system,
whose solutions have been proven to be positive,
bounded, and globally asymptotically stable around
the basal values of the equilibrium point (De Gaetano
and Arino, 2000). The choice of the model in the
family to whom it belongs is left to the researcher,
based upon theoretical or numerical grounds; from a
mathematical point of view different choices are due
to different shapes of the delay-kernels characterizing
the model. This way, a wide frame of circumstances
may be described. The model parameters have been
previously identified according to the Intra Venous
Glucose Tolerance Test (IVGTT), an experimental
procedure easy to perform, minimal invasive, yielding
a rich data set. It consists of an intra venous injection
in a subject at rest of an impulsive amount of glucose:
then, the blood glucose and insulin concentrations
are repeatedly sampled over a typical period of three
hours.

According to the nonlinear feature of the model for the
glucose-insulin homeostasis, the nonlinear observer
presented in (Dalla Mora et al., 2000) has been chosen
to solve the problem of insulin reconstruction from
glucose measurements. It is a powerful tool which
asymptotically estimate the state of a nonlinear system
from a drift observability property. Such an observer
has been already used for the insulin estimate (De
Gaetano et al., 2003), where a modified version of
the Minimal Model (Bergman et al., 1979; Toffolo
et al., 1980; Pacini and Bergman, 1986) had been
adopted.

2. SINGLE-KERNEL DELAY MODELS

This section is devoted to present a family of single-
kernel distributed-delay differential models for the
glucose-insulin homeostasis, (Mukhopadhyay et al.,
2004) (the name of the system parameters are the
same adopted in (Mukhopadhyay et al., 2004) where
also their meaning is explained):

_G(t) =¡ b1G(t)¡ b4I(t)G(t) + b7; (1)

_I(t) =¡ b2I(t) + b6
Z 1

0

!(s)G(t¡ s)ds; (2)

with initial conditions

G(t) ´ Gb 8t 2 (¡1; 0); G(0) = Gb + b0 (3)
I(t) ´ Ib 8t 2 (¡1; 0); I(0) = Ib + b3b0: (4)

The weight function !(t) is a non negative square
integrable function defined on IR+ = [0;1) such
that:Z 1

0

!(t)dt = 1;

Z 1

0

t!(t)dt < +1: (5)

The finite quantity ¢a =
R1
0
t!(t)dt has the mean-

ing of an average time delay.

Equation (1) refers to the glucose kinetics: the first
term models the constant rate spontaneous glucose
decay, the second term models the insulin-dependent
glucose disappearance rate, while the third term is
necessary in order to have an asymptotic decay to
the basal glycemia level. Equation (2) describes the
variation of the insulin plasma concentration as a
function of two terms: the first models the insulin
catabolism (constant rate insulin decay), the second
models the pancreatic insulin secretion as an integral
function of the past glycemia. Physiologically, the
delay integral kernel of equation (2) accounts for
the sensitivity of the pancreas to the concentration of
blood glucose: the pancreas output insulin at a given
instant is proportional to a suitably weighted average
of the past blood glucose concentrations. A liver first-
pass effect is taken into account in the second of
equations (4), where an instantaneous insulin release
at time 0 is assumed, proportional to the equivalent
concentration of the glucose bolus b0.

Seven parameters are present in the model (1)-(4)
(from b0 to b7, b5 is missing). However, there are
only five free parameters. Assuming the subject at
equilibrium (G(t)7! Gb, I(t)7! Ib) for a sufficient
long time (t 7! +1), the following two conditions
are obtained from equations (1)–(2)

0 = ¡b1Gb ¡ b4IbGb + b7
0 = ¡b2Ib + b6Gb:

(6)

Taking b0; b1; b2; b3; b4 as free parameters, b6 and b7
are given by:

b6 = b2
Ib
Gb
; b7 = b1Gb + b4IbGb: (7)

As far as what concern the weighting function !(t)
in the integral in equation (2), its shape characterizes
the choice of the model according to the features
of individuals to whom it is related. For instance,
normal individuals, showing a prompt and appropriate
insulin response to hyperglycemic stimuli, will likely
have a promptly rising and falling ! curve. NIDDM
(Non Insulin Dependent Diabetes Mellitus) subjects,
presenting a sustained insulin response to moderately
hyperglycemic stimuli, will likely have persistently
elevated ! for long times in the past; while IDDM
subjects, with almost absent pancreatic response to
circulating glucose, will show ! small for long times.



These examples suggest to choose for the kernel ! a
class of functions that is flexible enough: ! should
be suitably parameterized to give the possibility of
distinguishing between patient populations (the cor-
rect values of the parameters for a given individual
should be obtained through experimental parameter
identification). The requirement for !(t) to be non-
negative and square-integrable over [0;1) implies
asymptotic decay to zero. Moreover, the shape of !(t)
should be such to give zero weight to recent glucose
concentration measurements and maximum weight to
measurements at a given delay ¢m. This implies that
!(0) = 0, then !(t) increases to reach a maximum in
t = ¢m, and then asymptotically decreases to zero.
In this work, the following shape is chosen for !:

!(t) = °2te¡°t; (8)

identified uniquely by its parameter °. The maximum
of °2te¡°t is at ¢m = 1=°, while the average delay
is ¢a = 2=°.

In order to solve the state estimation problem, a first
order differential system has to be achieved from (1)-
(2). Such a purpose is obtained by suitably defining
the extended state component:

´(t) =

Z 1

0

!(s)G(t¡ s)ds =
Z t

¡1
!(t¡ ¿)G(¿)d¿

(9)
with ¿ = t¡ s. Then:

_́(t) = !(0)G(t) +

Z t

¡1

d!(t¡ ¿)
dt

G(¿)d¿: (10)

According to (8) !(0) = 0, so that:

_́(t) =

Z t

¡1

d!(t¡ ¿)
dt

G(¿)d¿: (11)

Since:
d!(t)

dt
= ¡°!(t) + °2e¡°t (12)

it follows:

_́(t) = ¡°´(t) + °2
Z t

¡1
e¡°(t¡¿)G(¿)d¿: (13)

By defining a further state component

»(t) =

Z t

¡1
e¡°(t¡¿)G(¿)d¿ (14)

with:
_»(t) = ¡°»(t) +G(t): (15)

equation (13) becomes:

_́(t) = ¡°´(t) + °2»(t): (16)

Finally, according to the positions:

x(t)
def
=

2664
x1(t)
x2(t)
x3(t)
x4(t)

3775 =
2664
G(t)
I(t)
´(t)
»(t)

3775 2 IR4 (17)

the following system is obtained:

_x1(t) = ¡b1x1(t)¡ b4x2(t))x1(t)
+ (b1 + b4Ib)Gb; (18)

_x2(t) = ¡b2x2(t) + b2
Ib
Gb
x3(t); (19)

_x3(t) = ¡°x3(t) + °2x4(t); (20)
_x4(t) = ¡°x4(t) + x1(t); (21)

with the initial conditions:

x1(t) ´ Gb 8t < 0; x1(0) = Gb + b0 (22)
x2(t) ´ Ib 8t < 0; x2(0) = Ib + b3b0 (23)

and x3(0) = Gb, x4(0) = Gb=°, in that:

x3(0) =

Z 0

¡1
!(¡¿)G(¿)d¿ = Gb

Z 0

¡1
!(¡¿)d¿

(24)

x4(0) =

Z 0

¡1
e°¿G(¿)d¿ = Gb

Z 0

¡1
e°¿d¿ (25)

Assuming that the measurements are just blood glu-
cose concentration, the output equation is simply:

y(t) = x1(t): (26)

3. DOUBLE-KERNEL DELAY MODEL

In the present section a double-kernel distributed-
delay model is investigated, which differs from model
(1)-(2) only in the equation describing the time course
of blood glucose concentration, where a delay kernel
is also present. Retaining the same names for the
parameters used in the previous section, the model
equations are the following:

_G(t)=¡ b1G(t)¡b4G(t)
Z 1

0

!I(s)I(t¡ s)ds+ b7
(27)

_I(t)=¡ b2I(t) + b6
Z 1

0

!G(s)G(t¡ s)ds; (28)

with the same initial conditions stated in (3)-(4).

Note that a subscript has been added to the weighting
functions ! to distinguish between glucose and insulin
kinetics. The properties of the two kernels !I and !G
are similar; in particular conditions (5) are both true.
That means, a unique equilibrium point (Gb; Ib) exists
for model (27)–(28), satisfying the same conditions of
(6), from which (7) are straightforward. Physiological
considerations, analogous to those made for the kernel
!(t) in (2), suggest the following forms for the two
kernels in (27)–(28)

!I(t) = °
2
I te

¡°It; !G(t) = °
2
Gte

¡°Gt: (29)

In this work the assumption that !G(t) ´ !I(t) ´
!(t) as in (8) is considered, that means °I = °G =
°, according to (29). By introducing the following
further state components as in (9)-(14):

´G(t) =

Z 1

0

!(s)I(t¡ s)ds; (30)



»G(t) =

Z t

¡1
e¡°(t¡s)I(s)ds; (31)

´I(t) =

Z 1

0

!(s)G(t¡ s)ds; (32)

»I(t) =

Z t

¡1
e¡°(t¡s)I(s)ds; (33)

the following 6-th order nonlinear system is obtained:

_x1(t) =¡ b1x1(t)¡ b4x1(t)x3(t);
+ (b1 + b4Ib)Gb; (34)

_x2(t) =¡ b2x2(t) + b2
Ib
Gb
x5(t); (35)

_x3(t) =¡ °x3(t) + °2x4(t); (36)
_x4(t) =¡ °x4(t) + x2(t); (37)
_x5(t) =¡ °x5(t) + °2x6(t); (38)
_x6(t) =¡ °x6(t) + x1(t); (39)

where it has been posed:

x(t)
def
=

26666664
x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)

37777775 =
26666664
G(t)
I(t)
´G(t)
»G(t)
´I(t)
»I(t)

37777775 2 IR
6: (40)

The initial conditions for x1, x2 are the same as in
(22)-(23); the initial conditions for the other state
components are:

x3(0) = Ib; x4(0) = Ib=°; (41)
x5(0) = Gb; x6(0) = Gb=°; (42)

as it easily comes according to (24)-(25). The output
equation is still (26).

4. STATE OBSERVERS FOR NONLINEAR
SYSTEMS

In this section the observer for nonlinear systems
presented in (Dalla Mora et al., 2000) is applied to
(18)-(21) and to (34)-(37) with (26) as available mea-
surements. Note that both the models are stationary
autonomous nonlinear systems, that means they are
described by the following equations:

_x(t) = f
¡
x(t)

¢
; x(0) = x0; (43)

y(t) = h
¡
x(t)

¢
(44)

where x(t) 2 IRn is the state vector, y(t) 2 IR is
the scalar output (glucose measurements). f; h are
analytical vector field, with h(x) = x1.

The observer presented in (Dalla Mora et al., 2000)
is a dynamic system with the following structure
(identity observer):

_̂x(t) = f
¡
x̂(t)

¢
+H

¡
x̂(t)

¢³
y(t)¡ h

¡
x̂(t)

¢´
: (45)

The design of the observer gain H(¢) is fundamental
to ensure the exponential decay to zero of the obser-
vation error e(t) = x(t) ¡ x̂(t). The construction of

H(¢) according to the theory presented in (Dalla Mora
et al., 2000) is illustrated below. First, the definition
of repeated Lie derivatives is reported for the easy of
the reader:

L0fh(x) = h(x) (46)

Lsfh(x) =
@Ls¡1f h(x)

@x
f(x): (47)

The following definition formalizes a necessary con-
dition for the construction of the observer and for its
convergence:

Definition 1. (Dalla Mora et al., 2000) A system of
the type (43)-(44) is said to be drift observable in
− µ IRn if the observability map defined as

©(x) =

2666664
L0fh(x)

L1fh(x)
...

Ln¡1f h(x)

3777775 (48)

is a diffeomorfism in an open set that contains or
coincides with −.

Note that the drift-observability ensures that the Ja-
cobian @©(x)=@x of the observabilty map is nonsin-
gular in −.

Definition 2. (Dalla Mora et al., 2000) A system of
the type (43)-(44) is said to be uniformly Lipschitz
drift-observable (ULDO) in a set − µ IRn if it
is drift-observable in − and both the maps ©, ©¡1
are uniformly Lipschitz in − and ©(−) respectively.
If − ´ IRn, the system is said globally-ULDO
(GULDO).

Theorem 3. (Dalla Mora et al., 2000) Assume that
a system of the type (43)-(44) is GULDO and,
moreover, that the function

Lnfh
¡
©¡1(z)

¢
; (49)

is uniformly Lipschitz in IRn. Consider the observer
(45) with H

¡
x̂(t)

¢
given by:

H
¡
x̂(t)

¢
= Q¡1

¡
x̂(t)

¢
K (50)

with Q
¡
x̂(t)

¢
the Jacobian of the observability map

©(x)

Q
¡
x̂(t)

¢
=
@©(x)

@x
(51)

Then, for any ® > 0, there exists a choice for the
gain vector K such that for any initial condition
of the original system x0 and of the observer x̂0
the observation error e(t) = x(t) ¡ x̂(t) has an
exponential decay to zero at rate ®:

ke(t)k ·Me¡®tke(0)k (52)

for some M > 0.



The proof is in (Dalla Mora et al., 2000), where also
weaker convergence conditions are given. The choice
of the gain vector K is strictly related to the desired
rate of convergence ® and to the Lipschitz constant
of the function (49). In practice, the computation of
K is made by choosing a set ¸ of n eigenvalues

¸ = f¸1; ¢ ¢ ¢ ; ¸ng;
with ¸n < ¢ ¢ ¢ < ¸2 < ¸1 < ¡® < 0 (53)

and finding K such to assign such to the the ma-
trix Ab ¡ KCb, where (Ab; Cb) is an observable
Brunowsky pair in IRn, i.e.

Ab =

266664
0 1 ¢ ¢ ¢ 0

0 0
. . .

...
...

. . . . . . 1
0 ¢ ¢ ¢ 0 0

377775 : Cb =
£
1 0 ¢ ¢ ¢ 0

¤
(54)

The vector K that assignes the set ¸ of eigenvalues
can be easily computed by:

K = ¡V ¡1(¸)

264¸1...
¸n

375 ; (55)

with

V (¸) =

264¸
n¡1
1 ¢ ¢ ¢ ¸1 1
...

. . .
...

...
¸n¡1n ¢ ¢ ¢ ¸n 1

375 (56)

the Vandermonde matrix associated to the set ¸ of
eigenvalues (see also (Dalla Mora et al., 1997) for
more details).

5. SIMULATION RESULTS

Simulations have been presented for both the families
of models concerning the glucose-insulin homeosta-
sis. In both cases, data are acquired according to
the Intra Venous Glucose Tolerance Test (IVGTT),
an experimental procedure easy to perform, minimal
invasive, yielding a rich data set. It consists of an intra
venous injection in a subject at rest of an impulsive
amount of glucose: then, the blood glucose and insulin
concentrations are repeatedly sampled over a typical
period of three hours.

Below are reported a pair of significative simulations
concerning the observer presented in the previous
section applied to both the single and double kernel
delay models. In both cases, parameters from b0 to b4
are taken from the ones estimated in (De Gaetano and
Arino, 2000), even if the models to whom they are
referred are slightly different, because they maintain
the same physiological meaning. More in details, they
are referred for a 25 years old man, height 170cm,
body weight 66Kg, basal glycemia Gb = 87mg/dl,
basal insulinemia Ib = 37:9pM, with:

b0 = 311mg=dl; b1 = 1 ¢ 10¡4min¡1;
b2 = 0:2196min

¡1; b3 = 0:64pM=(mg=dl);

b4 = 3:73 ¢ 10¡4 (57)

so that, from (7), it comes:

b6 = 0:096min
¡1pM=(mg=dl);

b7 = 1:24(mg=dl)min
¡1
: (58)

Parameter ° in both the models has been chosen equal
to 0:2.

The eigenvalues used for the computation of K are:

¸ = ¡[10¡4 0:1 0:2 0:4] (59)

for the single-kernel model and

¸ = ¡[10¡2 2 ¢ 10¡2 3 ¢ 10¡2 0:4 0:6 5] (60)

Figures 1-2 show the results of the numerical simula-
tions concerning the measured and estimated plasma
insulin concentrations over a one hour time range.

Fig. 1. Observer applied to the single-kernel model

6. CONCLUSIONS AND FUTURE
DEVELOPMENTS

Similarly to (De Gaetano et al., 2003), in this work the
problem of the state reconstruction, by applying the
theory of asymptotic state observation for nonlinear

Fig. 2. Observer applied to the double-kernel
model



systems, has been explored for distributed-delay ker-
nel models of glucose-insulin homeostasis. The aim
is the real-time monitoring of the plasma insulin con-
centration using only measurements of blood glucose
concentration.

An analytic methodology is introduced in order to
recast the distributed-delay nonlinear models into
a nonlinear systems without delay, in front of an
increase of the state space dimension.

The availability of real-time data on the insulin
concentration is a prerequisite for the development
of an artificial pancreas controlling in real time the
blood glucose level with optimum insulin infusions
from an in vivo pump. Finally, the main aspect, from a
biomedical point of view, of the future research is the
clinical validation of the models used in this paper,
based on sets of real measurements of groups.
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