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Abstract: The current work presents an API based on the Real-Time Specification 
for Java (RTSJ) that optimizes real-time embedded systems development. Using this 
API it is possible to state non-functional specifications, like time constraints, and 
guarantee its implementation in the selected platform. Moreover, it discusses how 
real-time requirements derived from the RT-UML standard can be mapped to the 
elements from the proposed API. .An integrated toolset is used to support the 
intermediate steps of this mapping process. The paper illustrates the mapping 
mechanism by means of a case study that implements the control system of an 
automated wheelchair. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
A recent study (Graff, et al., 2003) shows that the 
current industry-practice of embedded software 
development is unsatisfactory, as more and more 
companies are having trouble to achieve sufficient 
product quality and timely delivery. It also depicts 
that development is mostly hardware-driven, i.e. 
software architecture often mirrors hardware 
architectures previously used by the company. Such 
practice limits innovations and optimizations on both 
software and hardware layers from new embedded 
systems projects.  
 
Differently from the current industry practice, we 
defend that embedded systems design process should 
start focusing on systems requirements and software 
architecture. The hardware architecture should be 
addressed only afterwards, during the design phase, 
in conform to the system needs. To follows this 
proposal, high-level specification and modelling 
constructs should be used. A popular modelling 
notation within general-purpose systems is the 
Unified Modelling Language (UML) (Booch, et al., 

1999). Over the last years, UML and its real-time 
extension, namely UML-RT (OMG, 2003), has 
gained in popularity as a suitable tool for 
specification and modeling of embedded systems.  
 
A previous work (Becker, et al., 2002) has shown 
that it is possible to have a clear mapping from high-
level constructs in UML-RT to the programming 
level of standard (not-embedded) real-time systems. 
In this paper we present ideas that extend the 
previous work aiming that such mapping can also 
address embedded systems requirements when using 
appropriated toolset. The related toolset is the 
Sashimi environment (Ito, et al., 2001), which in 
combination with a special API to be presented 
allows the embedded systems generation directly 
from UML models, as further detailed along the 
paper. 
 
The remaining of this paper is organized as follows. 
Section 2 gives an overview of previous work on 
mapping RT-UML to the programming level. Section 
3 presents the Sashimi environment and the new API, 
which are both used to perform embedded systems 



 

     

generation. Section 4 illustrates the proposed 
approach by means of a case study. Finally, section 5 
draws the main conclusions and signals future works. 
 

2. OVERVIEW OF PREVIOUS WORK 
 
Some UML diagrams, like the class and the state-
transition diagrams have a well-defined mapping to 
the programming level. However, there is no 
definition on how to map the timing constraints that 
can be associated to the model elements to the 
programming level. 
 
In (Becker, et al., 2002) it is presented an approach 
that defines a clear link between modelled real-time 
constraints and the programming entities that provide 
their implementation. The main idea is to enhance 
the traceability as well as readability of timing 
constraints from a model-based requirements 
structure to its implementation. Therefore, it focuses 
on the RT-UML standard (OMG 2003) and on the 
Real-time Specification for Java (RTSJ) API (Bollela 
2001). This approach has been validated by several 
case studies. 
 
A possible way of generating real-time Java code 
from the RT-UML model is following some 
conventions in the mapping process, as stated 
bellow: 
• When applied to classes, the RT-UML stereotypes 

correspond to Java classes that may inherit from a 
RTSJ super class. Stereotype tags that are relevant 
in the context of the runtime application are 
mapped to RTSJ class attributes. Class 
constructors should accept initialization values for 
such attributes; 

• When applied to class methods, the RT-UML 
stereotypes correspond to methods implemented in 
the generated class or in one of its attributes. 

 
The current work follows the same approach 
(although the target system is completely different). 
More concrete examples on the proposed mapping 
are shown in section 4. 
 

3. RELATED TOOLS 
 
A key tool in the proposed design flow is the 
Sashimi environment (Ito, 2001). Therewith, 
designers develop their application directly in Java, 
although they must follow some programming 
restrictions in order to fulfill the environment 
constraints. For example, they must use only APIs 
provided by the Sashimi environment rather than the 
standard Java-API. Once application programming is 
finished, the source code is compiled using the 
standard Java compiler. The generated classes can be 
tested using libraries that emulate the Sashimi API in 
the development host. Afterwards the application can 
be deployed into the FemtoJava processor, which is a 
stack-based microcontroller that natively executes 
Java bytecodes. It is designed specifically for the 
embedded system market. Therefore, the Java 
bytecodes of the application are analyzed, and a 

customized control unit for the FemtoJava processor 
is generated, supporting only the opcodes used by 
that application. The size of its control unit is directly 
proportional to the number of different opcodes 
utilized by the application software.  
 
Another related component is an API developed to 
fulfill the problems related to using the scheduling 
mechanism in the Sashimi environment (avoiding 
low-level system calls) and also to facilitate the 
definition of timing constraints within the embedded 
application. This API is based in the RTSJ. It adopts 
the concept of schedulable objects, which are 
instances of classes that implement the Schedulable 
interface, like the RealtimeThread. It also specifies a 
set of classes to store parameters that represent a 
particular resource demand from one or more 
schedulable objects. For example, the 
ReleaseParameters class (super class from 
AperiodicParameters and PeriodicParameters) 
includes several useful parameters for the 
specification of real-time requirements. Moreover, it 
supports the expression of the following elements: 
time values (absolute and relative time), timers, 
periodic and aperiodic tasks, and scheduling policies. 
The term ‘task’ derives from the scheduling 
literature, representing a schedulable element within 
the system context. It is also a synonym for 
schedulable object. The class diagram of the 
developed API is shown in Figure 1. Follows a brief 
description from the available classes: 
• RealtimeThread: extends the default class 

java.lang.Thread and represents a real-time task in 
the embedded system. The task can be periodic or 
aperiodic, depending on the given release 
parameter object. If it receives a 
PeriodicParameters object then the task is 
periodic, otherwise if the object is an instance of 
AperiodicParameters or SporadicParameters class 
then the task is aperiodic. 

• ReleaseParameters: base class for all release 
parameters of a real-time task. It has attributes like 
cost (required CPU processing time), task deadline, 
and others. Its subclasses are PeriodicParameters 
and AperiodicParameters, which represent release 
parameters for, respectively, periodic and aperiodic 
tasks. PeriodicParameters has attributes like the 
start and end time for the task, and the task 
execution period. The SporadicParameters class is 
a subclass from AperiodicParameters class and, as 
the name suggests, represents a sporadic task that 
may occur at any time after a minimum interval 
between two occurrences. 

• SchedulingParametes: base class from all 
scheduling parameters that are used by the 
Scheduler object. PriorityParameters is a class that 
represents the task priority and that can be used by 
scheduling mechanisms like the PriorityScheduler. 

• Scheduler: abstract class that represents the 
scheduler itself. In the API, the sub-classes 
PriorityScheduler, RateMonotonicScheduler, and 
EDFScheduler represent, respectively, fixed 
priority, rate monotonic and earliest deadline first 
scheduling algorithms. 



 

     

• HighResolutionTime: base class from all classes 
that represent a time value. It has three 32 bits 
integer attributes that represents days, milliseconds 
and nanoseconds. The subclass AbsoluteTime 
represent an absolute instant of time which is 
based in the same date/time reference as specified 
in java.util.Date class (01/01/1970 00:00:00) (Sun, 
2004). The subclass RelativeTime represents a time 
relative to other instant of time that is given as 
parameter. The days, milliseconds and 
nanoseconds attributes represent, respectively, the 
quantity of days, milliseconds and nanoseconds 
relative to a given time instant. 

• Clock: represents a global clock reference. This 
class returns an AbsoluteTime object that 
represents the current date and time of the system. 

• Timer: abstract class that represents a system 
timer. The derived class OneShotTimer represents 
a single occurrence timer, and the derived class 
PeriodicTimer represents a periodic one. 

 

 
Figure 1. Class diagram of the proposed API 

The implementations from some of the proposed API 
classes have slightly differences in comparison to the 
RTSJ. This is due to constraints in the FemtoJava 
architecture and also for clarity matters. An example 
of such differences appears in the RealtimeThread 
class. In the proposed implementation it has two 
abstract methods that have to be implemented in the 
derived subclasses: mainTask() and exceptionTask(). 
They represent, respectively, the task body – 
equivalent to the run() method from a normal Java 
thread – and the exception handling code applied for 
deadlines misses. The latter substitute the use of an 
AsyncEventHandler object, which should be passed 
to the ReleaseParameters object, as specified in the 
RTSJ. If the task deadline is missed, the task 
execution flow deviates to the exceptionTask() code. 
After the exception handling code execution, the 
execution flow may deviate to the run() method or 
even terminated, depending on the real-time task 
characteristic. If the task is periodic, than the run() 
method should be restarted. This difference was 
proposed to provide support to scheduling algorithms 
that use the concept of task-pairs, like the Time-
Aware Fault-Tolerant (TAFT) scheduler (Nett, 
2001), and also to enhance the entire task source 

code readability providing more legibility to source 
code of the entire task code. 
 
Other class that has a different implementation is the 
Timer class. It has a abstract method named 
runTimer() that must to be implemented in the 
subclass and represents the code executed as the 
timer expires. Note that this method appears both in 
OneShotTimer and PeriodicTimer classes. 
 
To support the utilization of the proposed API, some 
development tools must be modified and extended. 
For example, the Sashimi tool and the analysis of the 
Java class files were adapted to support the synthesis 
of objects. Moreover, four new opcodes were added 
in the FemtoJava microprocessor to provide support 
to objects.  
 

4. MAPPING FROM RT-UML TO EMBEDDED 
JAVA 

 
This section illustrates the mapping from a RT-UML 
specification to Java source code using the proposed 
API. Thereby, it presents the RT-UML model of a 
real-time embedded automation and control system 
for an “intelligent” wheelchair, used to support 
people with special needs. The main functions of the 
system are: movement control, collision avoidance, 
navigation, target pursuit, battery control, system 
supervision, task scheduling, automatic movement, 
driver’s health supervision, and self testing. It also 
includes calendar-based activation of tasks (for 
instance, every day at 6 p.m. wheelchair user has to 
be brought to a specific place to get some medicine. 
Hard-real time requirements must be accomplished 
for safety reasons. 
 
Our design starts with the construction of a high-
level object modelling using UML together with the 
profile for Schedulability, Performance and Time 
(SPT) (OMG, 2003), also known as RT-UML. The 
most important UML diagrams used in the model 
are: Use Cases, Collaboration, and Class Diagrams. 
Specially the last two diagrams are decorated with 
the stereotypes and tag-values coming from the SPT 
profile. Due to space limitations, the discussions in 
this paper concentrate in the wheelchair movement 
control, which is essential to the system and 
incorporates critical hard real-time constraints. The 
wheelchair movement control functionality is 
presented in the use case diagram of Figure 2.  
 

 
Figure 2. Use Case diagram for the wheelchair 

movement control  
 



 

     

Figure 3 presents the object collaboration diagram 
that refines the behavior from the ‘movement 
actuation’ use case. This diagram contains three 
classes representing, respectively, the interface class 
for the joystick used in the wheelchair control, the 
interface class for the motor activation drive, and the 
class that represents the movement controller itself. 
Readers should attempt to the stereotypes derived 
from the SPT profile that are used to decorate this 
diagram. For example, the stereotype «SAtrigger» in 
A.1 is used to represent a periodic activation for the 
joystick data sampling. Moreover, «SAresponse»  in 
A.1.2 is used to assign a deadline for  the execution 
of wheelchair motors control. The complete set of 
classes that constitute the wheelchair movement 
control are depicted in the class diagram of Figure 4. 
 

Figure 3. Movement control collaboration diagram. 
 
 

 

Figure 4. Wheelchair movement control class 
diagram 

Figure 5 represents the source code of the main class 
from the wheelchair system. In this code one can 
observe that the system has two real-time concurrent 
objects, which are represented in the RT-UML 
diagram by the «SAscheRes» stereotype. These 
objects are instance from JoystickDriver and 
MovementDriver classes. As it can be observed in the 
code, the objects activation is triggered by the start() 
method call.  
 
public class Wheelchair { 
 // Application objects allocation: 
 public static MovementController 

movementCtrl = new MovementController(); 
 
 // periodic tasks 
 public static JoystickDriver  
   joystickDriver = new JoystickDriver(); 
 public static MovementDriver  
   movementDriver = new MovementDriver(); 
 ... //allocates remaining objects 
 
 public static void initSystem() { 
   ... //initializes remaining objects 
 
   // Real-time tasks startup: 
   Wheelchair.joystickDriver.start(); 
   Wheelchair.movementDriver.start(); 
   ... //startup remaining tasks 
 
   while (true) { 
      FemtoJava.sleep(); 
   } 
}; 
Figure 5. Source code from the main class of the 

wheelchair system. 
 
In Figure 6 it is presented the source code for the 
real-time class JoystickDriver, which represents 
objects responsible to read periodically the joystick 
hardware and, if necessary, to notify the 
MovementController about the necessity of acting in 
the movement. The period and deadline information 
derive from tags related, respectively, to the 
«SAscheRes» and «SAscheRes» stereotypes of the 
RT-UML diagram. 
 
import saito.sashimi.realtime.*; 
 
public class JoystickDriver extends 

RealtimeThread {    
 private static RelativeTime  
     _100_us = new RelativeTime(0,0,100000); 
 private static PeriodicParameters 
     schedParams = new PeriodicParameters( 
                        null,  // start time 
                        null,  // end time 
                        _100_us, // period 
                        null,  // cost 
                        _100_us);// deadline 
   // Attributes 
   private int m_angle; 
   private int m_intensity; 
   ... // other attributes 
   public JoystickDriver() { 
      super(null, schedParams); 
      // do other initializations 
   } 
   ... //continues 
}; 

Figure 6. JoystickDriver class 
 
Figure 7 depicts the remaining parts from the 
JoystickDriver class. It contains two important 



 

     

methods: mainTask() and exceptionTask(). The 
former represents the task body, that is, the code 
executed when the task is activated by calling the 
start() method. Since this task is periodic, there must 
be a loop which denotes the periodic execution. The 
loop execution frequency is controlled by calling the 
waitForNextPeriod() method. This method uses the 
tasks release parameters to interact with the 
scheduler and control the correct execution for the 
method. The exceptionTask() method represents the 
exception handling code that is triggered in case of 
deadline miss, that is, if the mainTask() method does 
not finish up to the established deadline.  
 
public class JoystickDriver extends 
                            RealtimeThread { 
 ... //continuation 
 public void mainTask() { 
       
    while(isRunning == true){//periodic loop 
       // read analogic joystick commands 
       this.readValuesFromHardware(); 
 
       Wheelchair.movementCtrl.notify( 
                          this.m_angle, 
                          this.m_intensity); 
 
       this.waitForNextPeriod(); 
    } 
 } 
 
 private void readValuesFromHardware(); { 
   ... // reading hardware 
 } 
 
 public void exceptionTask() { 
   // handle deadline missing 
 } 
}; 

Figure 7. JoystickDriver class continuation 
 

The sporadic task that is responsible to control the 
motor activation of the wheelchair is depicted in 
Figure 8. As showed in Figure 2, the task 
representing the motor driver will be executed each 
time joystick is used. 
 
import saito.sashimi.realtime.*; 
 
public class MovementDriver extends  
                            RealtimeThread { 
 private static RelativeTime  
       _50_us = new RelativeTime(0,0,50000); 
 private static SporadicParameters  
     schedParams = new SporadicParameters( 
             null, // min. interarrival time 
             null, // cost 
             _50_us);// deadline 
 
   // Attributes 
   private int m_angle; 
   private int m_intensity; 
   private int speed; 
   ... // other attributes 
 
   public MovementDriver() { 
      super(null, schedParams); 
      // do other initializations 
   } 
 
   ... //continues 
}; 

Figure 8. MovementDriver class 
 

The code structure for the maiTtask() and 
exceptionTask() is similar to the JoystickDriver class. 
Note that this approach (two methods representing a 
task) is a difference in comparison with the RTSJ. 
The mainTask() and the exceptionTask() represent, 
respectively, the task body – equivalent to the run() 
method from a normal Java thread – and the 
exception handling code applied for deadlines 
misses. The latter substitute the use of an 
AsyncEventHandler object, which should be passed 
to the ReleaseParameters object, as specified in the 
RTSJ. If the task deadline is missed, the task 
execution flow deviates to the exceptionTask() code. 
After the exception handling code execution, the 
execution flow may deviate to the run() method or 
even terminated, depending on the real-time task 
characteristic. If the task is periodic, than the run() 
method should be restarted. This difference was 
proposed to provide support to scheduling algorithms 
that use the concept of task-pairs, like the Time-
Aware Fault-Tolerant (TAFT) scheduler (Nett, et al. 
2001), and also to enhance the entire task source 
code readability. 
 
The last discussion of the section relates to the 
ConsoleInterface class, which is not present in the 
presented UML diagram, but incorporates important 
features. This class is responsible for controlling the 
interaction between the wheelchair-user and the 
control system. It was chosen because it exemplifies 
the timer usage. The scenario exposed in this sample 
relates to an operation parameter change. The user 
chooses the parameter to change and, afterwards, has 
up to 15 seconds to save the new value. If he does 
not save the new value until the time limit, then the 
crane user interface will be restarted. In Figure 7 one 
can observe the ParameterTimeOut class that is 
responsible to signal the timeout. Note that the 
ParameterTimeOut extends the OneShotTimer, in 
other words, the timer will be executed just once per 
activation. 
 
public class ParameterTimeOut extends 
OneShotTimer { 
   private ConsoleInterface m_owner; 
 
   public ParameterTimeOut(ConsoleInterface 
owner, HighResolutionTime timeout) { 
      super(timeout); 
      m_owner = owner; 
   } 
 
   protected void runTimer() { 
      owner.abortUserInput(); 
   } 
}; 

 
 
Figure 9. ParameterTimeOut class 
 
The ConsoleInterface class can be analyzed in Figure 
8. Note that in the getParameterFromInterface() 
method the timer will be started and the routine will 
remain in loop until the user saves the new value or 
until the operation is aborted because the timeout 
occurrence. 
 



 

     

 

public class ConsoleInterface extends 
RealtimeThread { 
   // 15 seconds 
   private RelativeTime _15_s = new 
RelativeTime(0, 15000, 0);  
   private ParameterTimeOut paramTimeOut = 
new ParameterTimeOut(this, _15_s); 
   private m_UserInputOK = false; 
   private m_Abort = false; 
 
   ... // continuation 
 
   public void getParameterFromInterface() { 
..// Print user interface and wait the input 
 
      m_UserInputOK = false; 
      m_Abort = false; 
 
      paramTimeOut.start(); 
      while ((!m_UserInputOK) || (!m_Abort))  
         FemtoJava.sleep(); 
 
      ... // make apropriate finalizations 
   } 
 
   public void abortUserInput() { 
      m_Abort = true; 
   } 
}; 

 
 
Figure 10. ConsoleInterface class  
 

 
5. CONCLUSIONS 

 
The current work presented an API based on the 
RTSJ that optimizes real-time embedded systems 
development. Moreover, it discusses how RT-UML 
specifications can be mapped to the API elements. 
Using the proposed mapping it is possible to 
generate the embedded application directly from the 
UML level. 
 
It is important to mention that the mapping process is 
not unique and other APIs offer different alternatives 
to implement a given specified timing requirement. 
The mapping process presented in this paper focused 
on the simplest constructors in order to increase 
readability by generating a modular and maintainable 
code. These features are obtained from the adequate 
structure of the proposed API. 
 
For future work authors intend to implement the 
proposed mapping scheme into a case tool, 
increasing the automation level from embedded 
systems design-flow. 
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