

SAMPLE PAGES TO BE FOLLOWED EXACTLY
IN PREPARING SCRIPTS

AN APPROACH FOR DESIGNING REAL-TIME EMBEDDED SYSTEMS
FROM RT-UML SPECIFICATIONS

Wehrmeister, M. A.1, Becker, L. B.2, Pereira, C. E.3

1 Computer Science Institute, UFRGS, Brazil
2 Automation and Control Systems Department, UFSC, Brazil

3 Electrical Engineering Department, UFRGS, Brazil
Email: 1 mawehrmeister@inf.ufrgs.br; 2lbecker@das.ufsc.br; 3cpereira@eletro.ufrgs.br;

Abstract: The current work presents an API based on the Real-Time Specification
for Java (RTSJ) that optimizes real-time embedded systems development. Using this
API it is possible to state non-functional specifications, like time constraints, and
guarantee its implementation in the selected platform. Moreover, it discusses how
real-time requirements derived from the RT-UML standard can be mapped to the
elements from the proposed API. .An integrated toolset is used to support the
intermediate steps of this mapping process. The paper illustrates the mapping
mechanism by means of a case study that implements the control system of an
automated wheelchair. Copyright © 2005 IFAC

Keywords: embedded systems design, real-time, programming support.

1. INTRODUCTION

A recent study (Graff, et al., 2003) shows that the
current industry-practice of embedded software
development is unsatisfactory, as more and more
companies are having trouble to achieve sufficient
product quality and timely delivery. It also depicts
that development is mostly hardware-driven, i.e.
software architecture often mirrors hardware
architectures previously used by the company. Such
practice limits innovations and optimizations on both
software and hardware layers from new embedded
systems projects.

Differently from the current industry practice, we
defend that embedded systems design process should
start focusing on systems requirements and software
architecture. The hardware architecture should be
addressed only afterwards, during the design phase,
in conform to the system needs. To follows this
proposal, high-level specification and modelling
constructs should be used. A popular modelling
notation within general-purpose systems is the
Unified Modelling Language (UML) (Booch, et al.,

1999). Over the last years, UML and its real-time
extension, namely UML-RT (OMG, 2003), has
gained in popularity as a suitable tool for
specification and modeling of embedded systems.

A previous work (Becker, et al., 2002) has shown
that it is possible to have a clear mapping from high-
level constructs in UML-RT to the programming
level of standard (not-embedded) real-time systems.
In this paper we present ideas that extend the
previous work aiming that such mapping can also
address embedded systems requirements when using
appropriated toolset. The related toolset is the
Sashimi environment (Ito, et al., 2001), which in
combination with a special API to be presented
allows the embedded systems generation directly
from UML models, as further detailed along the
paper.

The remaining of this paper is organized as follows.
Section 2 gives an overview of previous work on
mapping RT-UML to the programming level. Section
3 presents the Sashimi environment and the new API,
which are both used to perform embedded systems

generation. Section 4 illustrates the proposed
approach by means of a case study. Finally, section 5
draws the main conclusions and signals future works.

2. OVERVIEW OF PREVIOUS WORK

Some UML diagrams, like the class and the state-
transition diagrams have a well-defined mapping to
the programming level. However, there is no
definition on how to map the timing constraints that
can be associated to the model elements to the
programming level.

In (Becker, et al., 2002) it is presented an approach
that defines a clear link between modelled real-time
constraints and the programming entities that provide
their implementation. The main idea is to enhance
the traceability as well as readability of timing
constraints from a model-based requirements
structure to its implementation. Therefore, it focuses
on the RT-UML standard (OMG 2003) and on the
Real-time Specification for Java (RTSJ) API (Bollela
2001). This approach has been validated by several
case studies.

A possible way of generating real-time Java code
from the RT-UML model is following some
conventions in the mapping process, as stated
bellow:
• When applied to classes, the RT-UML stereotypes

correspond to Java classes that may inherit from a
RTSJ super class. Stereotype tags that are relevant
in the context of the runtime application are
mapped to RTSJ class attributes. Class
constructors should accept initialization values for
such attributes;

• When applied to class methods, the RT-UML
stereotypes correspond to methods implemented in
the generated class or in one of its attributes.

The current work follows the same approach
(although the target system is completely different).
More concrete examples on the proposed mapping
are shown in section 4.

3. RELATED TOOLS

A key tool in the proposed design flow is the
Sashimi environment (Ito, 2001). Therewith,
designers develop their application directly in Java,
although they must follow some programming
restrictions in order to fulfill the environment
constraints. For example, they must use only APIs
provided by the Sashimi environment rather than the
standard Java-API. Once application programming is
finished, the source code is compiled using the
standard Java compiler. The generated classes can be
tested using libraries that emulate the Sashimi API in
the development host. Afterwards the application can
be deployed into the FemtoJava processor, which is a
stack-based microcontroller that natively executes
Java bytecodes. It is designed specifically for the
embedded system market. Therefore, the Java
bytecodes of the application are analyzed, and a

customized control unit for the FemtoJava processor
is generated, supporting only the opcodes used by
that application. The size of its control unit is directly
proportional to the number of different opcodes
utilized by the application software.

Another related component is an API developed to
fulfill the problems related to using the scheduling
mechanism in the Sashimi environment (avoiding
low-level system calls) and also to facilitate the
definition of timing constraints within the embedded
application. This API is based in the RTSJ. It adopts
the concept of schedulable objects, which are
instances of classes that implement the Schedulable
interface, like the RealtimeThread. It also specifies a
set of classes to store parameters that represent a
particular resource demand from one or more
schedulable objects. For example, the
ReleaseParameters class (super class from
AperiodicParameters and PeriodicParameters)
includes several useful parameters for the
specification of real-time requirements. Moreover, it
supports the expression of the following elements:
time values (absolute and relative time), timers,
periodic and aperiodic tasks, and scheduling policies.
The term ‘task’ derives from the scheduling
literature, representing a schedulable element within
the system context. It is also a synonym for
schedulable object. The class diagram of the
developed API is shown in Figure 1. Follows a brief
description from the available classes:
• RealtimeThread: extends the default class

java.lang.Thread and represents a real-time task in
the embedded system. The task can be periodic or
aperiodic, depending on the given release
parameter object. If it receives a
PeriodicParameters object then the task is
periodic, otherwise if the object is an instance of
AperiodicParameters or SporadicParameters class
then the task is aperiodic.

• ReleaseParameters: base class for all release
parameters of a real-time task. It has attributes like
cost (required CPU processing time), task deadline,
and others. Its subclasses are PeriodicParameters
and AperiodicParameters, which represent release
parameters for, respectively, periodic and aperiodic
tasks. PeriodicParameters has attributes like the
start and end time for the task, and the task
execution period. The SporadicParameters class is
a subclass from AperiodicParameters class and, as
the name suggests, represents a sporadic task that
may occur at any time after a minimum interval
between two occurrences.

• SchedulingParametes: base class from all
scheduling parameters that are used by the
Scheduler object. PriorityParameters is a class that
represents the task priority and that can be used by
scheduling mechanisms like the PriorityScheduler.

• Scheduler: abstract class that represents the
scheduler itself. In the API, the sub-classes
PriorityScheduler, RateMonotonicScheduler, and
EDFScheduler represent, respectively, fixed
priority, rate monotonic and earliest deadline first
scheduling algorithms.

• HighResolutionTime: base class from all classes
that represent a time value. It has three 32 bits
integer attributes that represents days, milliseconds
and nanoseconds. The subclass AbsoluteTime
represent an absolute instant of time which is
based in the same date/time reference as specified
in java.util.Date class (01/01/1970 00:00:00) (Sun,
2004). The subclass RelativeTime represents a time
relative to other instant of time that is given as
parameter. The days, milliseconds and
nanoseconds attributes represent, respectively, the
quantity of days, milliseconds and nanoseconds
relative to a given time instant.

• Clock: represents a global clock reference. This
class returns an AbsoluteTime object that
represents the current date and time of the system.

• Timer: abstract class that represents a system
timer. The derived class OneShotTimer represents
a single occurrence timer, and the derived class
PeriodicTimer represents a periodic one.

Figure 1. Class diagram of the proposed API

The implementations from some of the proposed API
classes have slightly differences in comparison to the
RTSJ. This is due to constraints in the FemtoJava
architecture and also for clarity matters. An example
of such differences appears in the RealtimeThread
class. In the proposed implementation it has two
abstract methods that have to be implemented in the
derived subclasses: mainTask() and exceptionTask().
They represent, respectively, the task body –
equivalent to the run() method from a normal Java
thread – and the exception handling code applied for
deadlines misses. The latter substitute the use of an
AsyncEventHandler object, which should be passed
to the ReleaseParameters object, as specified in the
RTSJ. If the task deadline is missed, the task
execution flow deviates to the exceptionTask() code.
After the exception handling code execution, the
execution flow may deviate to the run() method or
even terminated, depending on the real-time task
characteristic. If the task is periodic, than the run()
method should be restarted. This difference was
proposed to provide support to scheduling algorithms
that use the concept of task-pairs, like the Time-
Aware Fault-Tolerant (TAFT) scheduler (Nett,
2001), and also to enhance the entire task source

code readability providing more legibility to source
code of the entire task code.

Other class that has a different implementation is the
Timer class. It has a abstract method named
runTimer() that must to be implemented in the
subclass and represents the code executed as the
timer expires. Note that this method appears both in
OneShotTimer and PeriodicTimer classes.

To support the utilization of the proposed API, some
development tools must be modified and extended.
For example, the Sashimi tool and the analysis of the
Java class files were adapted to support the synthesis
of objects. Moreover, four new opcodes were added
in the FemtoJava microprocessor to provide support
to objects.

4. MAPPING FROM RT-UML TO EMBEDDED
JAVA

This section illustrates the mapping from a RT-UML
specification to Java source code using the proposed
API. Thereby, it presents the RT-UML model of a
real-time embedded automation and control system
for an “intelligent” wheelchair, used to support
people with special needs. The main functions of the
system are: movement control, collision avoidance,
navigation, target pursuit, battery control, system
supervision, task scheduling, automatic movement,
driver’s health supervision, and self testing. It also
includes calendar-based activation of tasks (for
instance, every day at 6 p.m. wheelchair user has to
be brought to a specific place to get some medicine.
Hard-real time requirements must be accomplished
for safety reasons.

Our design starts with the construction of a high-
level object modelling using UML together with the
profile for Schedulability, Performance and Time
(SPT) (OMG, 2003), also known as RT-UML. The
most important UML diagrams used in the model
are: Use Cases, Collaboration, and Class Diagrams.
Specially the last two diagrams are decorated with
the stereotypes and tag-values coming from the SPT
profile. Due to space limitations, the discussions in
this paper concentrate in the wheelchair movement
control, which is essential to the system and
incorporates critical hard real-time constraints. The
wheelchair movement control functionality is
presented in the use case diagram of Figure 2.

Figure 2. Use Case diagram for the wheelchair

movement control

Figure 3 presents the object collaboration diagram
that refines the behavior from the ‘movement
actuation’ use case. This diagram contains three
classes representing, respectively, the interface class
for the joystick used in the wheelchair control, the
interface class for the motor activation drive, and the
class that represents the movement controller itself.
Readers should attempt to the stereotypes derived
from the SPT profile that are used to decorate this
diagram. For example, the stereotype «SAtrigger» in
A.1 is used to represent a periodic activation for the
joystick data sampling. Moreover, «SAresponse» in
A.1.2 is used to assign a deadline for the execution
of wheelchair motors control. The complete set of
classes that constitute the wheelchair movement
control are depicted in the class diagram of Figure 4.

Figure 3. Movement control collaboration diagram.

Figure 4. Wheelchair movement control class
diagram

Figure 5 represents the source code of the main class
from the wheelchair system. In this code one can
observe that the system has two real-time concurrent
objects, which are represented in the RT-UML
diagram by the «SAscheRes» stereotype. These
objects are instance from JoystickDriver and
MovementDriver classes. As it can be observed in the
code, the objects activation is triggered by the start()
method call.

public class Wheelchair {
 // Application objects allocation:
 public static MovementController

movementCtrl = new MovementController();

 // periodic tasks
 public static JoystickDriver
 joystickDriver = new JoystickDriver();
 public static MovementDriver
 movementDriver = new MovementDriver();
 ... //allocates remaining objects

 public static void initSystem() {
 ... //initializes remaining objects

 // Real-time tasks startup:
 Wheelchair.joystickDriver.start();
 Wheelchair.movementDriver.start();
 ... //startup remaining tasks

 while (true) {
 FemtoJava.sleep();
 }
};
Figure 5. Source code from the main class of the

wheelchair system.

In Figure 6 it is presented the source code for the
real-time class JoystickDriver, which represents
objects responsible to read periodically the joystick
hardware and, if necessary, to notify the
MovementController about the necessity of acting in
the movement. The period and deadline information
derive from tags related, respectively, to the
«SAscheRes» and «SAscheRes» stereotypes of the
RT-UML diagram.

import saito.sashimi.realtime.*;

public class JoystickDriver extends

RealtimeThread {
 private static RelativeTime
 _100_us = new RelativeTime(0,0,100000);
 private static PeriodicParameters
 schedParams = new PeriodicParameters(
 null, // start time
 null, // end time
 _100_us, // period
 null, // cost
 _100_us);// deadline
 // Attributes
 private int m_angle;
 private int m_intensity;
 ... // other attributes
 public JoystickDriver() {
 super(null, schedParams);
 // do other initializations
 }
 ... //continues
};

Figure 6. JoystickDriver class

Figure 7 depicts the remaining parts from the
JoystickDriver class. It contains two important

methods: mainTask() and exceptionTask(). The
former represents the task body, that is, the code
executed when the task is activated by calling the
start() method. Since this task is periodic, there must
be a loop which denotes the periodic execution. The
loop execution frequency is controlled by calling the
waitForNextPeriod() method. This method uses the
tasks release parameters to interact with the
scheduler and control the correct execution for the
method. The exceptionTask() method represents the
exception handling code that is triggered in case of
deadline miss, that is, if the mainTask() method does
not finish up to the established deadline.

public class JoystickDriver extends
 RealtimeThread {
 ... //continuation
 public void mainTask() {

 while(isRunning == true){//periodic loop
 // read analogic joystick commands
 this.readValuesFromHardware();

 Wheelchair.movementCtrl.notify(
 this.m_angle,
 this.m_intensity);

 this.waitForNextPeriod();
 }
 }

 private void readValuesFromHardware(); {
 ... // reading hardware
 }

 public void exceptionTask() {
 // handle deadline missing
 }
};

Figure 7. JoystickDriver class continuation

The sporadic task that is responsible to control the
motor activation of the wheelchair is depicted in
Figure 8. As showed in Figure 2, the task
representing the motor driver will be executed each
time joystick is used.

import saito.sashimi.realtime.*;

public class MovementDriver extends
 RealtimeThread {
 private static RelativeTime
 _50_us = new RelativeTime(0,0,50000);
 private static SporadicParameters
 schedParams = new SporadicParameters(
 null, // min. interarrival time
 null, // cost
 _50_us);// deadline

 // Attributes
 private int m_angle;
 private int m_intensity;
 private int speed;
 ... // other attributes

 public MovementDriver() {
 super(null, schedParams);
 // do other initializations
 }

 ... //continues
};

Figure 8. MovementDriver class

The code structure for the maiTtask() and
exceptionTask() is similar to the JoystickDriver class.
Note that this approach (two methods representing a
task) is a difference in comparison with the RTSJ.
The mainTask() and the exceptionTask() represent,
respectively, the task body – equivalent to the run()
method from a normal Java thread – and the
exception handling code applied for deadlines
misses. The latter substitute the use of an
AsyncEventHandler object, which should be passed
to the ReleaseParameters object, as specified in the
RTSJ. If the task deadline is missed, the task
execution flow deviates to the exceptionTask() code.
After the exception handling code execution, the
execution flow may deviate to the run() method or
even terminated, depending on the real-time task
characteristic. If the task is periodic, than the run()
method should be restarted. This difference was
proposed to provide support to scheduling algorithms
that use the concept of task-pairs, like the Time-
Aware Fault-Tolerant (TAFT) scheduler (Nett, et al.
2001), and also to enhance the entire task source
code readability.

The last discussion of the section relates to the
ConsoleInterface class, which is not present in the
presented UML diagram, but incorporates important
features. This class is responsible for controlling the
interaction between the wheelchair-user and the
control system. It was chosen because it exemplifies
the timer usage. The scenario exposed in this sample
relates to an operation parameter change. The user
chooses the parameter to change and, afterwards, has
up to 15 seconds to save the new value. If he does
not save the new value until the time limit, then the
crane user interface will be restarted. In Figure 7 one
can observe the ParameterTimeOut class that is
responsible to signal the timeout. Note that the
ParameterTimeOut extends the OneShotTimer, in
other words, the timer will be executed just once per
activation.

public class ParameterTimeOut extends
OneShotTimer {
 private ConsoleInterface m_owner;

 public ParameterTimeOut(ConsoleInterface
owner, HighResolutionTime timeout) {
 super(timeout);
 m_owner = owner;
 }

 protected void runTimer() {
 owner.abortUserInput();
 }
};

Figure 9. ParameterTimeOut class

The ConsoleInterface class can be analyzed in Figure
8. Note that in the getParameterFromInterface()
method the timer will be started and the routine will
remain in loop until the user saves the new value or
until the operation is aborted because the timeout
occurrence.

public class ConsoleInterface extends
RealtimeThread {
 // 15 seconds
 private RelativeTime _15_s = new
RelativeTime(0, 15000, 0);
 private ParameterTimeOut paramTimeOut =
new ParameterTimeOut(this, _15_s);
 private m_UserInputOK = false;
 private m_Abort = false;

 ... // continuation

 public void getParameterFromInterface() {
..// Print user interface and wait the input

 m_UserInputOK = false;
 m_Abort = false;

 paramTimeOut.start();
 while ((!m_UserInputOK) || (!m_Abort))
 FemtoJava.sleep();

 ... // make apropriate finalizations
 }

 public void abortUserInput() {
 m_Abort = true;
 }
};

Figure 10. ConsoleInterface class

5. CONCLUSIONS

The current work presented an API based on the
RTSJ that optimizes real-time embedded systems
development. Moreover, it discusses how RT-UML
specifications can be mapped to the API elements.
Using the proposed mapping it is possible to
generate the embedded application directly from the
UML level.

It is important to mention that the mapping process is
not unique and other APIs offer different alternatives
to implement a given specified timing requirement.
The mapping process presented in this paper focused
on the simplest constructors in order to increase
readability by generating a modular and maintainable
code. These features are obtained from the adequate
structure of the proposed API.

For future work authors intend to implement the
proposed mapping scheme into a case tool,
increasing the automation level from embedded
systems design-flow.

ACKNOWLEDGMENTS

This work has been partly supported by the Brazilian
research agency CNPq within the scope of the SEEP
research project. Thanks are also given to all
researchers involved in the SEEP project for their
valuable discussions, in special to Profs. Flavio
Wagner and Luigi Carro, and also to Julio Mattos.

REFERENCES

Becker, L.B., Höltz, R., and Pereira, C.E. (2002).

"On Mapping RT-UML Specifications to RT-
Java API: Bridging the Gap”. In prof. of
International Symposium on Object-Oriented
Distributed Real-Time Systems, Washington,
USA. pp. 348-355.

Booch, I. Jacobson, and J. Rumbaugh (1999). The
Unified Modeling Language User Guide.
Addison-Wesley.

Bollela, G., et.al. (2001) The Real-Time
Specification for Java. Addison-Wesley.

Graff, B., M. Lormans and H. Toetenel (2003).
Embedded Software Engineering: The State of
the Practice. IEEE Software. pp. 61-69.

Ito, S. A., L. Carro and R. P. Jacobi (2001). “Making
Java Work for Microcontroller Applications”.
IEEE Design & Test of Computers, vol. 18, n. 5,
pp. 100-110.

Nett E., Gergeleit M., and Mock M. (2001)
“Enhancing OO Middleware to become Time-
Awere”, Special Issue on Real-Time Middleware
in Real-Time Systems, pp. 211-228. Kluwer
Academic Publisher.

OMG (2003). UML Profile for Performance,
Schedulability, and Time. OMG document in.
http://www.omg.org/technology/documents/form
al/schedulability.htm.

Sun Microsystems (2004). Java 2 Platform Api
Specification. Sun document in
http://java.sun.com/j2se/1.5.0/index.jsp

