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Abstract: In this paper, the main objective is to provide an overview of a new class of
research problems for the area which is broadly termed smart structures control. To
this end, we describe electroactive smart materials and focus on control issues which
naturally arise. Such materials, typically nano and micro-polymers, have mechanical
properties controlled by an electric field. Unlike existing approaches to control such
as those based on piezoelectric actuation, the electroactive materials described here
do not require electromechanical apparatus for actuation; i.e., they are self-actuating.
Within this setting, in addition to basic modelling issues, a paradigm control problem
is also formulated: the so-called sustained oscillation problem for an electroactive
mass-spring-damper system. For a given electric field E, this formulation leads to a
simple nonlinearity involving the product of the modulus of elasticity κ(E) and the
displacement y. Subsequently, we obtain a bilinear state equation ẋ = A(u)x whose
control, we conjecture, is highly non-trivial. Within this context, we consider the use
of feedback to vary the electric field so as to assure that the desired oscillation is
guaranteed with the least possible actuation effort. Copyright c©2005 IFAC

1. Introduction

This paper is part of an emerging area of research
on dynamics and control of smart structures. Tra-
ditionally, in a smart material or structure, the ac-
tive elements are typically embedded or attached
to conventional materials. In contrast, this paper
introduces electroactive smart materials, describes
their self-sensing and self-actuating properties and
formulates a first paradigm problem for consid-
eration. Generally speaking, the area of smart
structures and materials involves the application
of multi-functional capabilities to materials which
can sense or respond to external stimuli. That
is, these materials exhibit self-sensing or self-
actuation. In addition, such materials or struc-
tures respond to stimuli in a manner which is

directed towards satisfaction of some prescribed
performance specification.

It is only quite recently that the control field has
started to pay attention to smart structures and
smart materials. In this regard, the reader is re-
ferred to the recent special issue of IEEE Control
Systems Technology, see [1] , where an overview of
the area is provided; see also [2] where a survey
is provided for active noise and vibration control
problems. More generally, the area of smart ma-
terials research has already received considerable
attention in a number of disciplines. This includes
polymer science, materials research and engineer-
ing efforts involving various applications such as
active noise suppression; for example, see [3]-[5]
and [7]. To add to the existing literature in the



control area, this paper concentrates on smart
materials with self-actuation properties which can
function in diverse environments such as biological
solutions; e.g., see [6]. These materials, typically
new classes of micro or nano composite polymers,
are characterized by the fact that their mechanical
properties are controlled by an applied electric
field. For example, as depicted in Figure 1, materi-
als can be locally tailored to enhance electroactive
response needed for active damping or sustenance
of vibrations.

Figure 1: Field-Aided Micro-Tailoring (FAiMTA)

technology enables multi-functional materials hav-

ing variable micro-structure. This enhances self-

sensing and self-actuation.

In this paper, we demonstrate that this research
area motivates novel and challenging nonlinear
control problems. To this end, we introduce a sim-
ple paradigm control problem which is quite easy
to state but we believe complicated to solve: Given
a classical second order mass-spring-damper sys-
tem with adjustable elastic modulus κ serving as
the control variable, the problem is to find the
“minimum actuator” required so that sustained
oscillations can be guaranteed at the undamped
natural frequency of the system? Interestingly,
even for this simple second order system, we be-
lieve the solution of this problem is quite chal-
lenging. In the sequel, this so-called sustained os-
cillation problem is formally defined noting that
our intent in this paper is not to claim that this
problem should necessarily be a focal point of this
new research area; our objective is to use this
simple example to motivate the many challenging
problems which this area has to offer.

While not covered in this paper, it is also pos-
sible to consider material optimization problems
concurrently with the control problem. That is,
how should the material design parameters be
optimized so that the ensuing control algorithms
are maximally efficacious? Given the laboratory
facilities which we have available, our plan is to
focus future work in this closely related topic area.
Consideration of such concurrent design problems
might lead to an entirely new area of research
which might appropriately be called material-
oriented control.

1.1 Limitations of Traditional Sensing and
Actuation: To illustrate limitations which one
may encounter in traditional sensing and actu-
ation, we consider the problem of sensing small
variations of mass in a fluid. In such a case, a
traditional approach for sensing, based on res-
onance frequency shifts of an oscillating micro
or nano-cantilever, has one deficiency: While the
quality factor Q, of an oscillating micro-cantilever
vibrating in air is approximately in the 30 to 100
range, this value drops dramatically in a liquid
environment. In addition, in this setting, the clas-
sical approach to sensing suffers from the problem
that electrodes can be screened by ions in the
liquid. In view of the above, traditional methods
for actuation of cantilever beams have very limited
application at the micro and nano levels.

Traditional sensing and actuation methods in-
clude the use of piezoresistive transducers. For
small scale systems used in biomedical applica-
tions, heat dissipation, compounded with the elec-
tromechanical nature of actuation and associated
weight and cost considerations, renders this ap-
proach particularly problematic. Another tradi-
tional sensing approach requires thick piezoelec-
tric films, which are not compatible with nano-
scale technology. Finally, the so-called capaci-
tance method, while successfully used for nano-
cantilevers working in vacuum or inert gases is
not appropriate for an air or liquid environment.
In contrast, the use of smart self-sensing and
self-actuating electroactive materials presents few
obstacles. Multi-functional materials used for this
purpose have better weight and energy conversion
qualities than traditional systems with discrete
material, actuator and sensor elements.

Figure 2: If electric field is directed along a material

structure, then the shear elastic modulus is pro-

portional to the applied field; this is called electro-

rheology. If the electric field causes compressive

stress and material deformation in the vertical

direction, this effect is called electrostriction.

1.2 Example (Mass Detection in Biological
Solutions): Within a control setting, a typical
question is: Using feedback, how does one vary
the applied electric field E so that the material’s
dynamic response meets specifications? For exam-
ple, in the case of a cantilever sensor immersed in



a biological solution as depicted in Figure 3, a
typical specification is that the control algorithm
assures a sustained frequency of vibration.

Figure 3: In this illustrative example of bio-

sensing, a multi-functional nano-cantilever uses

inter-digited electrodes for actuation and/or sens-

ing. These electrodes are isolated from the sur-

rounding ionic solution and utilize electro-active

response of the beam material. Species of interest

attach to the modified cantilever tip changing its

mass and natural frequency.

When the DNA strands adhere to the sensor,
a change in mass results. In turn, this leads
change in the natural frequency of vibration. Sub-
sequently, in this context, a fundamental control
problem involves varying the electric field E so as
to “cancel” the damping; i.e., we seek to obtain
a system which is oscillating at the undamped
natural frequency ω0 of the “mass augmented”
system. Alternatively, a less restrictive version on
this problem allows for a time-varying frequency
of oscillation whose average is ω0. By comparing
the frequency of this mass augmented system with
that of the “zero mass” system, it is possible to
obtain an estimate of the DNA mass. A similar
concept can be applied to chemical and pollution
sensing and a wide range of other environmental
applications. In Section 3, we formally describe
the so-called sustained oscillations problem — a
fundamental control problem which captures a
number of the issues described above.

1.3 Idealizing Assumptions: In the sequel,
whenever convenient, we introduce some simplify-
ing assumptions. In addition to making the expo-
sition more transparent, there are two additional
reasons for imposition of these assumptions: First
in a simplified framework, it is easy to demon-
strate how smart materials give rise to funda-
mental control problems without all details of the
full fledged application. That is, we describe basic
issues in control science which are of interest in
their own right. Second, it is felt that once the
basic problems are formulated, their more general
counterparts are rather obvious. In summary, our
objective here is to motivate new problems — not
solve them.

Indeed, we henceforth assume that the mass-
spring-damper system under consideration de-
scribes a cantilever with all its effective mass lo-
calized at the tip of the beam. Hence, a classical
second order ordinary differential equation is used
in lieu of a more general distributed parameter
model. Second, we assume perfect sensors pro-
viding the beam displacement and velocity. In a
more general setting, one might entertain noisy
sensors which provide the beam kinematics with
different degrees of the accuracy. Finally, we also
neglect disturbances such as variation in friction
of the surrounding environment and variation of
the mass which is attached to the beam.

1.4 Mechanical Parameters: In this paper,
the fundamental control problem involves time-
variation of the electric field E so as to change
the elastic modulus κ(E) and the damping c(E) of
the cantilever beam. That is, using state feedback,
the problem is to vary the field E so as to satisfy
a given performance specification. Since these
mechanical parameters can only be varied by a
limited amount, this leads to questions about the
size of the actuator needed to assure satisfaction
of system performance specifications; see Section 3
for details.

1.5 Plan for Paper: The plan for the remainder
of this paper is as follows: In Section 2, we formu-
late a simple nonlinear state equation model based
on the considerations discussed above. To this
end, we model the relationship between applied
electric field E and resultant properties of the ma-
terial. Subsequently, taking these considerations
into account, we arrive at an “idealized” scenario
involving a second order system. In Section 3,
we formulate the paradigm problem of sustained
oscillation in this smart materials context. In Sec-
tion 4, exploiting the bilinear structure of the
nonlinear system, we outline two approaches to
control. Surprisingly, even for the simple second
order system model which we consider, a solu-
tion to the sustained oscillation problem is not
straightforward to obtain. Finally in Section 5,
conclusions are drawn and future research direc-
tions are discussed.

2. Nonlinear State Space Modelling

To consider a cantilever beam with effective mass
assumed to be concentrated at the tip, we begin by
modelling small deflections y with a simple second
order mass-spring-damper equation. However, in
contrast to classical control theoretic formulations
for such a system, considerations of self-actuation
dictate that we treat the beam stiffness κ as time



varying; i.e., it is determined by the applied elec-
tric field E which serves as the control variable.
In addition, our model includes a time-varying
load f(E). Assuming for simplicity an effective
beam mass M = 1, we arrive at the second order
system equation

d2y

dt2
+ c(E)

dy

dt
+ κ(E)y = f(E).

where c(E) and κ(E) are respectively nonlinear
functions representing the damping and elastic
modulus of the beam.

2.1 Saturation Effects: For the mechanical pa-
rameters above, an increasing electric field E leads
to increasing values of κ(E) and c(E) until a
limit is reached; i.e., at high electric fields, these
parameters reach saturation values and hardly
change. Accordingly, the variation of these param-
eters, consistent with their observed behavior, is
modelled as

κ(E) = κ0(1 + γ(E));

and
c(E) = c0(1 + δ(E))

where γ(E) and δ(E) are non-negative monoton-
ically increasing functions defined for E ≥ 0. In
addition, these functions satisfy the zero electric
field condition

γ(0) = δ(0) = 0

and the saturation condition

lim
E→∞

γ(E) = γmax; lim
E→∞

δ = δmax

where γmax and δmax are finite. Finally, it is
noted that γ(E) and δ(E) above correspond to
percentage increases of the elastic modulus and
damping respectively. A typical example of such
a γ-function satisfying the conditions above would
be

γ(E) = γmax(1− e−E2
).

Notice that the saturation of γ(E) above trans-
lates into a saturation constraint on the controller.

2.2 Damping and Crosstalk: For most ma-
terials of practical interest, it is often the case
that the electric field can have large effect on
the elastic modulus and little or no effect on
the damping. Therefore, in the sequel, for sim-
plicity, we take δmax = 0 which results in fixed
damping c(E) ≡ c0 for all levels of the applied
electric field E. While not considered here, a more
general setting involves inclusion of parameter un-
certainty in c0.

To complete the modelling for the case at hand,
we refer to Figure 4 where both the mass-spring-
damper with corresponding self-actuating smart

material is shown. For the so-called zero crosstalk
case depicted in the figure, the decoupling be-
tween κ(E) and f(E) leads to our imposition of
the assumption that f(E) = 0. In future work, it
would be desirable to consider the more general
case when f(E) 6= 0 and the issue of robustness
with respect to parametric uncertainty in c0. In
this regard, smart materials there many problems
one can formulate involving the optimization of
structure and geometry.
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Figure 4: Depiction of classical mass-spring-

damper with corresponding smart material actua-

tion. In the figure, (a) corresponds to field control-

lable stiffness κ(E), often called electro-rheology,

and (b) corresponds to a field controllable forcing

function, often called electrostriction. In this exam-

ple, the two activation mechanisms are decoupled.

More generally, coupled mechanisms and their con-

trol implications could be studied.

2.3 Controller Simplification: Since the ap-
plied electric field enters the system via the in-
vertible function γ(E), without loss of generality,
we take u = γ as the control with the con-
straint 0 ≤ u(t) ≤ γmax. As far as physical
realization is concerned, for control value γ = γ0,
the corresponding applied voltage is

E = γ−1(γ0).

2.4 State Space Reformulation: As a first
step, we reformulate the model using the state
variables x1 = y; x2 = dy/dt. We now obtain
the nonlinear state equations ẋ = A(u)x where

A(u) .=
[

0 1
−κ0(1 + u)) −c0

]
.

In turn, we decompose the system above into a
linear and nonlinear part by writing ẋ = (A0 +
A1u)x with

A0
.=

[
0 1
−κ0 −c0

]
; A1(u) .=

[
0 0
−κ0 0

]
u.

In the sequel, the objective is to develop a feed-
back control law u = γ(x) noting that it is de-
sirable to have the control either independent of



κ0 or insensitive to variations in κ0 about some
nominal value.

3. Sustained Oscillation Problem

As indicated earlier, we now describe a paradigm
problem to demonstrate typical nonlinear control
issues which may arise in the smart materials
context of this paper. Our objective is to find the
smallest possible actuator bound, denoted it by

γmax = γ∗max,

having the following property: For this bound,
there exists a corresponding feedback control law

u∗ = γ∗(x)

such that for every initial condition x(0), the
corresponding state trajectory x(t) is periodic
with period

T =
2π

ω0

where
ω0 =

√
κ0

is the undamped natural frequency corresponding
to zero electric field. That is, with control given
by u = γ(0) = 0, the resulting zero-field transfer
function

H(s) .=
1

s2 + c0s + κ0

has natural frequency ω0 =
√

κ0. A simpler
version of the sustained oscillation problem is
obtained when the control bound γmax is fixed.
In this case, if γmax is large enough to assure
oscillation, we say that the system is oscillable.

3.1 Remarks: Before proceeding towards solu-
tion of the problems above, it is worth noting that
with E = 0, the output y(t), being the classical
mass-spring-damper solution, is damped. Roughly
speaking, we note that a system is oscillable if
the damping can be “cancelled” using the time-
varying electric field E(t). From a smart materials
point of view, the attainment of a periodic solu-
tion for the state is of particular importance for
systems with a high Q factor. Without keeping
the state at a significant level, the attenuation
of ||x(t)|| can be so rapid as to preclude accurate
estimation of the frequency of oscillation.

4. Two Approaches to Solution

In this section, we outline two approaches to
the solution of the sustained oscillation problem
above. For typical smart materials one can obtain
nominal values c0 and κ0 for the damping and

stiffness by consideration of the classical second
order transfer function

H(s) =
1

s2 + 2ζω0s + ω2
0

corresponding to E = 0. Noting that κ0 = ω2
0

and that c0 = 2ζω0, for typical smart materials
under consideration, we work with damping in
the range 0.050 ≤ ζ ≤ 0.125. This corresponds
to regular cantilever beam sensing.

4.1 Damping Cancellation Approach: Con-
sidering a fixed actuator bound γmax, this ap-
proach proceeds by common sense in that we try
to select a feedback γ(x) so that the term c0x2

in the state equation is cancelled by the γ(x)κ0x1

term. Intuitively, the argument proceeds as fol-
lows: At states for which damping cancellation
is achievable, the system reduces to a pure har-
monic oscillator at frequency ω0. Noting that this
cancellation is only possible if and only if c0x2 +
γκ0x1 = 0 for some γ ∈ [0, γmax], we obtain the
equivalent condition

−γmax ≤
c0x2

κ0x1
≤ 0.

For the case when
c0x2

κ0x1
< −γmax,

applying control

γ(x) = γmax

produces a partial cancellation of the damping.
The final possibility is that

c0x2

κ0x1
> 0.

Now, the use of γ(x) ≥ 0 makes matters worse. To
make up for undesired damping in this case and
the partial cancellation case, it would be natural
to “overcompensate” with the controller in the
exact cancellation regime. Based on these argu-
ments, if the system is oscillable, we conjecture
that there exists a pure gain ρ ≥ 1 such that use
of the modified control

γ(x) .= −ργmax
c0x2

κ0x1

in the cancellation regime and either γ(x) = γmax

or γ(x) = 0 in the other regimes, we conjecture
that achieve the desired result is obtained.

It is interesting to note that this intuitive con-
troller construction leads to a result which is
consistent with a more formal analysis of this
system via the Poincare-Bendixson Theorem. By
way of review, for second order nonlinear system
ẋ = f(x) with f(x) satisfying mild regularity
conditions, a necessary condition for existence of



a limit cycle in some region X of the state space
is that

div f =
∂f1

∂x1
+

∂f2

∂x2

either vanishes for some (x1, x2) pairs in X or
changes sign. Therefore, to satisfy the necessary
condition for oscillation, we calculate

div f = −c0 − κ0
∂γ

∂x2
x1

and force violation of the Poincare-Bendixson
requirement by requiring that

∂γ

∂x2
= − c0

κ0x1

for some region of the state space. Then by in-
tegrating above and continuing the analysis, one
can reach conclusion which are identical to those
obtained via the common sense approach above.
By way of future research, a natural conjecture
presents itself: Noting that the region in state
space over which damping cancellation is possible
is a cone in the second and fourth quadrants, we
conjecture the the “size” of this cone, parameter-
ized in (c0, κ0), indicates whether the system is
oscillable or not.

4.2 Lyapunov Function Approach: Viewing a
quadratic Lyapunov function V (x)) as a measure
of energy in the system, we use the controller
to try and “cancel” decay terms in the time
derivative of V (x). More specifically, we first select
a 2× 2 positive-definite symmetric matrix Q and
solve the Lyapunov equation

AT
0 P + PA0 = −Q

to obtain a positive-definite symmetric matrix
solution P . Now, with Lyapunov function V (x) =
xT Px, we look at the time rate of change of V (x)
along trajectories of the system. Letting

L(x, t) =
dV

dt

denote this so-called Lyapunov derivative, with
feedback control law u = γ(x), a straightforward
calculation yields

L(x, u, t) =∇[V (x)]T A(u)x

=−xT Qx + 2xT PA1xγ(x).

Hence, to cancel the effects of the decay term xT Qx
above, a natural choice is to take γ(x) > 0
when xT PA1x > 0 and γ(x) = 0 otherwise.
Accordingly, it is natural to conjecture the fol-
lowing: If the control bound γmax is large enough
to offset the damping, the system is oscillable at
frequency ω0 using a control of the form γ(x) =
ργmax with ρ ≤ 1 being a fixed gain when

xT PA1x > 0 Combining this with the γ(x) = 0
case, we obtain

γ(x) = ργmax max{sgn{xT PA1x}, 0}

as a hypothesized form for the controller.

5. Conclusion and Future Research

In addition to the approaches to sustained oscil-
lation outlined above, other methods of attack
are possible; e.g., methods based on Pontryagin’s
Minimum Principle or the Small Gain Theorem.
As indicated throughout the paper, several simpli-
fying assumptions have been made. Possible con-
tinuation of this research could involve more gen-
eral problem formulations which considers factors
such as distributed cantilever mass, noisy sensor
measurement, optimization of sensor and actuator
positions or even related application areas such
as the control of two dimensional film-mirrors in
space communications.
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