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Abstract: In this paper we propose an event-triggered communication protocol with 
dynamic priority setting for high-integrity systems. The dynamic priority scheduling 
involves two components: a component based on node transmission history, and a static 
node identifier. In order to investigate the characteristics of the proposed protocol, the 
worst-case performance is analysed and simulation experiments are conducted. The 
results show that an upper bound on the message delay time can be established with this 
approach. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Computers and computer networks have become an 
integral part of our daily lives. The most famous 
network is of course the Internet. Its development 
dates back to 1969 when the ARPAnet was first 
operational. Today the Internet remains the most 
easily identifiable computer network, but other 
networks are springing up all around us. These 
smaller networks are evident as embedded systems, 
and are playing an increasing but hidden role. 
Consumer products such as printers, answering 
machines, ATMs, refrigerators, thermostats, and 
even wristwatches are all equipped with networking 
capability to increase their functionality and 
intelligence (Moschovitis, 1999). Safety concerns 
arise when these embedded systems are used in 
safety-critical applications such as automobiles, 
trains, aircraft, medical equipment, and industrial 
machinery. 
 
The suitability of a specific protocol for safety-
critical applications must consider a wide range of 
issues. Many existing protocols are already being 
used in safety-critical applications. In this paper, we 
begin with a brief review of the main safety-critical 

protocols (TTCAN, FTT-CAN, TTP/C, Byteflight, 
and FlexRay) along with a summary of some of the 
safety techniques implemented in these protocols. 
Common issues in safety such as redundancy, data 
validation, fault isolation, and timing aspects are 
found in existing protocols.  
 
In Section 3, an analogy is given outlining common 
assumptions that are made about the deterministic 
nature of event-based and time-triggered systems, 
and a new protocol is suggested that challenges some 
of the commonly accepted ideas regarding 
determinism and event-based protocols.  
 
Next, we investigate the characteristics of this new 
protocol in Section 4. We begin with an analytical 
investigation into the worst-case performance of the 
protocol then test our results with a set of discrete-
event simulation experiments. This paper concludes 
with an overview of our work on exploring the 
potential for this new protocol. 
 
2. REAL-TIME COMMUNICATION PROTOCOLS 
 
A variety of communication protocols are currently 
being used in safety-critical applications that fall into 



 

     

two main categories: event-triggered and time-
triggered protocols. In this section, we briefly 
summarise the main protocols used in industry. 
 
Currently, the main communication protocols used 
for real-time embedded systems are TTCAN (Marsh, 
2003), FTT-CAN (Ferreira et al., 2001), TTP/C 
(Marsh, 2003), Byteflight (Kopetz, 2001), and 
FlexRay (Kopetz, 2001). 
 
Closely related to each of these recent protocols is 
the Control Area Network (CAN) protocol, 
developed by Bosch (1991). CAN is an event-
triggered protocol that does not guarantee message 
delivery times. Driven by the need for a deterministic 
protocol for use in safety-critical systems, Bosch 
developed Time Triggered CAN (TTCAN) (Marsh, 
2003). TTCAN extends CAN by implementing a 
dual scheduling window system. In this scheme, time 
windows for both periodic and spontaneous 
messages are created allowing both time-triggered 
and event-triggered messages to coexist on the same 
network (Shaheen et al., 2003).  
 
FTTCAN was proposed by Joaquim Ferreira, Paulo 
Pedreiras, and Luís Almeida from the Universidade 
de Aveiro, Portugal in 2002 (Ferreira et al., 2001; 
Almeida et al., 2002). FTTCAN extends the dual 
scheduling window to a new level. The newly 
defined time windows are not only able to handle 
both time-triggered and event-triggered messages, 
but are dynamically resizable. This allows the 
protocol to adapt to the present traffic conditions on 
the bus.  
 
TTP/C uses TDMA (Time Division Multiple Access) 
scheme for bus access (Marsh, 2003). Each node is 
assigned a window during which they have exclusive 
broadcast rights. Currently, this protocol does not 
define support for event-triggered messages. In order 
to support event-triggered messaging, an additional 
protocol such as CAN must be implemented within 
TTP/C (Kopetz, 2001).  
 
The Byteflight protocol was developed by BMW 
together with several semiconductor companies for 
safety-critical applications in automotive vehicles 
(Kopetz, 2001). This protocol is not a true time-
triggered protocol because it does not rely on global 
timing synchronization (Shaheen et al., 2003). 
Instead, Byteflight provides access to the bus in a 
FTDMA (flexible time division multiple access) 
scheme.  
 
BMW, DaimlerChrysler, Motorola, Philips, GM and 
Bosch are currently working together on yet another 
protocol aimed at the automotive industry (Kopetz, 
2001). Like TTCAN and FTT-CAN, FlexRay uses 
the dual time window approach. This protocol 
however uses two different bus access methods for 
the different windows. Asynchronous messages are 
handled by the FTDMA Byteflight protocol and the 
synchronous messages are handled by a TDMA 
scheme (Shaheen, 2003).  
 

3. EVENT-TRIGGERED AND TIME-TRIGGERED 
COMMUNICATION PROTOCOLS 

 
Much of the discussion about choosing a protocol 
begins with the assumption that time-triggered 
protocols are the only ones suited to safety-critical 
applications. This assumption is based on the belief 
that time-triggered schemes are deterministic (higher 
degree of predictability) and event-triggered schemes 
are not (Claesson et al., 2003). The following 
comparison will illustrate why this assumption may 
not be the right one to take when approaching safety-
critical systems. 
 
One of the first things to clarify is determinism. 
Determinism can be defined as: 
 

• The ability for a system to respond with a 
consistent, predictable time delay between 
input and response (Taylor, 2003). 

• A system whose time evolution can be 
predicted exactly. 

• A system in which the output can be 
predicted with 100 percent certainty. 

 
These definitions have three things in common. They 
all deal with a system, they all attempt to predict the 
outcome, and they all do so with a degree of 
certainty. For safety-critical systems message latency 
must be predictable. 
 
In time-triggered systems deterministic latency is 
achieved by avoiding collisions all together. In doing 
so, time-triggered systems are able to guarantee the 
transmission of a message at a given point in time. 
This ability to guarantee or predict message delivery 
makes time-triggered systems suitable for safety 
critical applications. 
 
In the case of event-triggered systems, the latency 
depends on the frequency of collisions, and on the 
arbitration technique used to resolve these collisions. 
Some argue that it is not possible to predict the 
latency of event-triggered systems because of the 
uncertainties involved with arbitration. Another way 
to state this is that in an event-triggered system, the 
message latency depends on the volume of network 
traffic. As network traffic increases, the latency also 
increases. This variation introduces a sense of 
uncertainty that some claim cannot be tolerated in a 
safety-critical environment. On the other hand, a 
purely time-triggered system will always be able to 
guarantee message latency independent of the traffic 
level (within capacity limits), bringing a sense of 
predictability to the network. This seems quite 
logical, but the following example illustrates why 
this should not be the sole basis of describing a safety 
critical system. 
 
Compare the transportation option available to a 
commuter in large city. Let us assume that the 
commuter has two options available for the daily 
commute; a car or public rail transport. During light 
traffic times of the day, the commuter is likely to opt 
for the car because of the shorter commute time (all 



 

     

other things being equal). During heavy traffic times 
of the day, the commuter is likely to opt for the rail 
transport system because of the shorter commute 
time. This is quite similar to the choice between 
event-triggered (car) and time-triggered (rail) 
systems. For periods with low volume of traffic an 
event-triggered system will outperform a time-
triggered system. During the periods of high volume 
traffic, the event-triggered (car) system will result in 
potentially greater delay (commute) time than the 
time-triggered system. At this point many have 
concluded (prematurely) that the time-triggered 
approach is best for safety-critical applications 
because its performance is more predictable. 
 
We ask then, if the commuter has a medical 
emergency (safety-critical) which transportation 
system will they rely on?  In reality they would rely 
on a special type of event-triggered transport that 
could be describes as having a higher priority while 
on the roadways (i.e. an ambulance). This ensures a 
quick transport time, and improves the degree of 
uncertainty in the transport time even during periods 
of high volume. 
 
Traditionally, the uncertainty in message delivery 
makes time-triggered the preferred option. But 
clearly, in the analogy, introducing a priority to an 
event-triggered system may be able to address the 
issue of uncertainty. Current safety-critical 
communication protocols do not include an event-
triggered protocol that employs dynamic message 
priorities to deterministically describe the messaging 
delays. 
 

4. AN EVENT-TRIGGERED PROTOCOL WITH 
DYNAMIC PRIORITIES 

 
Event-triggered protocols have the advantage of 
potentially fast response times. These response times 
are however linked to the level of traffic on the 
network. What we seek is a method to decouple these 
two characteristics from each other. Additionally, we 
understand that under maximum loading the time-
triggered method appears to be the optimal solution 
since it maintains deterministic message delays. Note 
that we have not considered the effects of exceeding 
network capacity. 
 
The protocol suggested here is meant to illustrate that 
the traditional view, that an event-triggered system 
cannot be deterministic, is false. This false 
conclusion has in turn lead to the false conclusion 
that event-triggered systems should not be used for 
safety-critical systems. 
 
The basic idea is to constrain the system in such a 
way that every node is guaranteed an opportunity to 
transmit at least one message in a given period of 
time. This period of time is essentially equal to the 
time-cycle defined in time-triggered protocols. In 
doing this, the protocol is able to guarantee 
performance (i.e., maximum message delay) equal to 
a similar time-triggered protocol. 
 

4.1 Fixed priority scheduling. 
 
Collisions in an event-triggered protocol such as 
CAN are dealt with using bit-wise arbitration. 
Essentially this allows the message with the highest 
priority to continue it’s transmission without delay 
during a collision. All other colliding messages must 
try again at a later time. With CAN, the message 
priority is assigned based on the originating node’s 
priority. These node priorities are determined pre-
run-time and are static. This use of static message 
(node) priorities prevents delay times from being 
predicted deterministically. 
 
For example, if two messages collide, the losing 
message must wait until the winning message is 
finished it’s transmission before trying to retransmit. 
When the winning message is finished, the losing 
message may try again only to find that it is 
competing with another message of higher priority. It 
is clear to see that the lower priority message has a 
distinct disadvantage. During times of high traffic 
volume, the lower priority message(s) will see 
increased average delay times greater that that of 
higher priority messages. These delay times are 
deterministically unbounded. 
 
One very interesting point to note is that the node 
with the highest priority will always win arbitration. 
This means when the highest priority node wishes to 
transmit a message, it will have to wait, only until the 
current message transmission is complete. In this 
way the maximum message delay is equal to that of 
the longest message and is deterministic. 
 
4.2 Dynamic priority scheduling. 
 
Dynamic priority scheduling allows the maximum 
delay time to be deterministically predicted. In order 
to achieve this, the priority setting scheme must 
guarantee that each node will not have to wait longer 
than one cycle to broadcast. This maximum delay 
time is equivalent to the delay time a time-triggered 
protocol can guarantee. 
 
The dynamic priority scheduling proposed here 
involves two components. The first component is a 
calculation based on the message history within the 
node. The second component is a unique static 
identifier like the one used in the fixed priority 
scheduling method. Together these two components 
make up a dynamic priority code that is computed by 
each node. 
 
The calculated component is used to increase a 
node’s priority the longer it waits and is based on the 
time since the node last sent a message. An important 
feature of this is that no clock synchronization is 
required between the nodes as is the case with time-
triggered systems. 
 
The static component is assigned pre run-time as a 
unique identifier for each node. It is required when 
two messages collide that have the same time 
priority. This happens only when two nodes that have 



 

     

not transmitted for greater than the cycle time 
attempt to transmit at the same time. In this case both 
nodes would have the highest time priority, and the 
static component would then be used to settle the 
arbitration. In the next section, we look at this 
protocol in more detail and determine its worst-case 
performance. 
 
4.3 The worst-case scenario. 
 
For simplicity constraints are made on the system’s 
messaging abilities. All messages have the same 
worst-case transmission time: 
 
Cn = C ∀ N (1) 
 
where N is the total number of nodes in the system. 
 
The system period, Tsystem, is defined as the total time 
it takes if each node was to transmit once: 
 
Tsystem = N·C (2) 
 
This definition is derived from a time-triggered 
system where each node is given one time slot during 
a transmission cycle. 
 
Next, we define the node idle time, Ln, which is 
calculated based on the difference between the 
current time, Tnow, and the time that a node’s last 
message transmission ended, TLn. 
 
Ln = Tnow – TLn (3) 
 
As noted in the previous section, a node’s dynamic 
priority, DPn, is based on the node message history 
and a static identifier. The first component, the time 
priority, TPn, represents the dynamic portion of DPn. 
By definition, the TPn is equal to N immediately after 
a node transmittes a message. The more time that 
passes, the higher the time priority becomes until it 
reaches a value of 1. The second component is the 
static node priority, NPn. 
 
TPn = Max {RoundUp [(Tsystem – Ln)/C], 1} (4) 
NPn = n (5) 
DPn = Concatenate (TPn, NPn) (6) 
 
In order to determine the maximum delay time, we 
consider the worst potential delay time of a message. 
For the worst-case scenario we choose the node that 
has been assigned the lowest node priority of N. In 
choosing this node, we ensure that this node will be 
the last to transmit during a tie (i.e., of two nodes 
with equivalent time priorities, the node with a node 
priority of N is guaranteed to lose). We also choose 
the node to have the lowest time priority at the 
current time. This is equivalent to saying that the 
node has just finished transmitting a message. 
 
To ensure the maximum amount of delay to our 
node, we choose the network loading to be as high as 
possible. To do this, two things are required. Firstly, 
all other nodes must currently have a message 
waiting. And secondly, all of the other nodes have a 
time priority of 1. This results in a network where, all 

the nodes with a node priority between 1 and N-1 
have a message waiting and a time priority of 1. 
 
Since the worst-case node has the lowest time 
priority, it follows that all of the other nodes will win 
arbitration, and continue to win arbitration even 
when the worst case node has a time priority of 1 
(remember that the worst case node has a node 
priority of N and hence it loses all ties). Since there 
are N-1 nodes with a higher time priority than the 
worst case node, the worst case node will not be 
allowed to transmit during the first (N-1)C time units. 
 
If the worst case scenario described above occurs at 
an initial time of 0, the current time is after N-1 
nodes have transmitted their messages, then the first 
transmission completes after C time units and the idle 
time of the first node to send a message given by (3) 
is: 
 
L1 = Tnow – TL1 = (N – 1)C – C = (N – 2)C 
 
Since all of the remaining nodes transmitted after this 
first node, their idle time must be less than the first 
transmitting node’s idle time. Therefore, for all nodes 
except the worst case node, 
 
L1,…N-1 ≤ L1  
L1,…N-1 ≤ (N – 2)C 
 
Calculating the time priority using (4) and (2) for 
these nodes gives: 
 
TP1,…N-1 = Max {RoundUp [(Tsystem – L1,…N-1)/C], 1} 
TP1,…N-1 ≥ Max {RoundUp [(Tsystem – (N – 2)C)/C], 1} 
TP1,…N-1 ≥ Max {RoundUp [Tsystem/C – N + 2], 1} 
TP1,…N-1 ≥ Max {RoundUp [N·C/C – N + 2], 1} 
TP1,…N-1 ≥ Max {RoundUp [2], 1} 
TP1,…N-1 ≥ 2 
 
Calculating the idle time using (3) and time priority 
using (4) and (2) for the ‘worst case node’ gives: 
 
LW = Tnow – TLW = (N – 1)C – 0 = (N – 1)C 
 
TPW = Max {RoundUp [(Tsystem – LW)/C], 1} 
TPW = Max {RoundUp [(Tsystem – (N – 1)C)/C], 1} 
TPW = Max {RoundUp [Tsystem/C – N + 1], 1} 
TPW = Max {RoundUp [N·C/C – N + 1], 1} 
TPW = Max {RoundUp [1], 1} 
TPW = 1 
 
Since TPW is higher than TP1,…N-1 at T = (N - 1)C, the 
‘worst case node’ is guaranteed to transmit at N·C 
time units (i.e., there is a maximum period of (N – 
1)·C between messages). 
 
For a system with 5 nodes, Table 1 depicts the 
scheduling of messages in the worst-case scenario.  
At time equal to 0, the worst-case node (node 5) has 
just completed transmitting a message. Immediately 
following, all 5 nodes are waiting to send a message. 
The first four nodes have a time priority of 1 while 
the worst-case node has a time priority of 5. This 
results in the first four nodes being scheduled in the 
next four time slots followed by the worst-case node 



 

     

in the fifth time slot. The total time delay between 
the beginning of successive messages from the 
worst-case node is shown as 5C. 
 
Table 1 Worst case scheduling for a 5 node system. 

 
 Node Dynamic Message Priority 
 1 - 11 51 41 31 21 
 2 - 12 12 52 42 32 
 3 - 13 13 13 53 43 
 4 - 14 14 14 14 54 
 5 15 55 45 35 25 15 
 Broadcasting Node 5 1 2 3 4 5 
Transmsn. End Time 0 C 2C 3C 4C 5C 
 
4.4 Experiments. 
 
For simulation purposes the system is modelled 
consisting of five nodes with equal exponentially 
distributed mean interarrival times. Message length 
is constant for all nodes and is set to one time unit. 
Scheduling of the bus is handled by one of three 
methods: time-triggered (TTCAN), event-triggered 
(CAN), and dynamic priority event-triggered 
scheduling. 
 
Initial simulation results for time-triggered and 
event-triggered scheduling methods are consistent 
with the expected outcome. In each case the nature of 
the simulation delay time is consistent with the 
commonly expected nature of the scheduling 
method.  
 
Figure 1 shows the simulation results for the time-
triggered method. Specifically, the maximum delay 
time experienced by any message from any node is 
five time units. It can also bee seen that each node 
performs equally. 
 
In contrast, static event-triggered scheduling (Figure 
2) shows that each node does not perform equally 
well. Nodes with higher static priorities perform 
better. In fact, the node with the highest static 
priority demonstrates its dominance with a maximum 
delay time that never exceeds one time unit (seen as 
the single nearly horizontal line). The non-
deterministic nature is also evident by the increasing 
delay time as message interarrival times decrease. 
For these simulations, the maximum delay time for 
the lowest priority node was 170 time units. 
 
As illustrated in Figure 3, the dynamic priority 
scheduling method achieves its primary goal. The 
figure shows that the maximum delay time never 
exceeds five time units, and hence can be described 
deterministically. Unlike the static priority method, 
the delay times for the dynamic priority method 
appear to be ‘clipped’ as the message interarrival 
time decrease. This is precisely the behaviour we 
desire. Two other benefits are also seen. Firstly, the 
average delay times are now more consistent 
between the different nodes meaning that no node is 
‘outperforming’ any of the other nodes. Secondly, 
the average delay time is better than those shown by 
the time-triggered method. 

0

1

2

3

4

5

6

0 10 20 30 40 50
Message Interarrival Time

(arbitrary time units)

D
el

ay
 T

im
e 

(a
rb

itr
ar

y 
tim

e 
un

its
)

Maximum Delay Time

Average Delay Time

 
 
Fig. 1. Time-triggered performance. 
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Fig. 2. Event-triggered performance. 
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Fig. 3. Event-triggered, dynamic priority 

performance. 



 

     

5. CONCLUSIONS 
 
The proposed protocol assigns each node a priority 
that is used to arbitrate collisions (as in CAN bit-
wise arbitration). Unlike the protocols described 
previously however, these priorities change 
dynamically. Once a node transmits a message, the 
node lowers its priority for a specified amount of 
time. In doing this, the node guarantees that it is not 
able to monopolize the bus because other nodes now 
have a higher priority than it does. This in turn 
guarantees that every node will not have to wait any 
longer than one cycle to broadcast. 
 
A side benefit of this method is that it automatically 
provides a method to control babbling idiot failures. 
This could be accomplished for example by 
implementing a bus guardian of the loosely coupled 
or close coupled type described in (Broster and 
Burns, 1998).  Implementing the bus guardian in this 
way could prevent a node from attempting to 
transmit multiple successive messages of the highest 
priority.  The bus guardian would effectively limit 
the node by allowing it to only send a message with 
the lowest priority immediately after a higher priority 
message has been sent. The second message would 
then be transmitted immediately only if the bus is 
idle. The architecture of a bus guardian is one of the 
remaining issues to be researched further. 
 
Another issue related to bus guardians is the potential 
for including the dynamic message priority setting 
intelligence solely within the bus guardian itself. In 
effect the bus guardian would be responsible for 
setting the message priority. 
 
In this paper, we compared the proposed event- 
triggered dynamic priority protocol with existing 
protocols using a discrete-event simulation model 
(implemented in Arena (Kelton et al., 1998)). Initial 
analysis has shown that a fundamental assumption 
about event-triggered protocols is flawed. 
Specifically, with dynamic priorities we are able to 
set an upper bound on the delay time of the first 
message in queue at each node. This makes the 
proposed dynamic priority event- triggered system 
deterministic. 
 
Future work will focus on evaluating the 
performance of the system with variable message 
lengths and transmission errors. 
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