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Abstract: Multiple spacecraft formation control about the 2L  libration point is 
investigated in this paper. The circular restricted three-body problem with Sun and Earth 
as the two primaries is utilized as a framework of study. The idea of virtual structure is 
considered as the architecture of multiple spacecraft formation. The center of the virtual 
rigid body follows a nominal orbit around the 2L  libration point. The individual 
spacecraft is controlled so as to keep a constant relative distance from the center of the 
virtual structure. A nonlinear model is developed that describes the relative formation 
dynamics. This nonlinear control problem was addressed by employing a relatively new 
nonlinear control approach, called the θ - D  technique. This method is based on a series 
solution to the Hamilton_Jacobi_Bellman equation and gives a closed-form suboptimal 
feedback solution. Simulation results demonstrate that this controller is able to provide 
millimeter-level formation flying accuracy. Copyright © 2005 IFAC 
 
Keywords: Formation Control, Libration Point, Optimal Control, Nonlinear Systems 

 
 
 
 

 
1. INTRODUCTION 

 
Spacecraft formation flying has been identified by 
NASA and the U.S. Air Force as a key technology 
for future deep-space missions. Formation flying is a 
concept that a group of satellites fly in formation to 
function as one whole system. It can offer many 
advantages for which using single spacecraft are 
difficult to achieve (Leitner, et al., 2001). The 
development of a reliable, autonomous, and highly 
accurate formation keeping strategy is required to 
deploy multiple spacecraft for space missions such as 
a high accuracy large space interferometer or a large 
synthetic aperture radar in which a single satellite is 
not able to realize.  
These deep-space missions with high resolution and 
precision requirements necessitate that a new 
formation control strategy be developed. There have 
been a number of studies dealing with formation 
flying control in the past. Most designs adopt 
simplifying modeling assumptions such as local 
linearization about some reference trajectory (Kapila, 
et al., 2000). 

However, the simplified linear control strategy may 
not meet the future deep-space missions’ stringent 
relative position accuracies. A few studies involving 
nonlinear control of formation flying were 
investigated in the past: Queiroz et al. (2000) 
developed an adaptive nonlinear control law based on 
the full nonlinear dynamics using Lyapunov control 
design and stability analysis. Gurfil et al. (2003) 
employed a novel neural adaptive controller to 
address the deep-space spacecraft formation flying. 
The controller incorporated an approximate dynamic 
model inversion, LQR for the ideal feedback 
linearized model and an adaptive neural-network 
controller to compensate the model inversion errors. 
This method demonstrated excellent tracking and 
achieved submillimeter formation accuracy. 
In this paper, we propose a new method, the Dθ −  
technique (Xin and Balakrishnan, 2005), to design a 
deep-space formation flying strategy based upon 
optimal control theory. This strategy uses nonlinear 
equations of motion of spacecraft in the scenario of 
the circular restricted three-body problem (CR3BP) 
with the Sun and the Earth as the primary 
gravitational bodies. Four-satellite formation flying is 
considered using the virtual structure (VS) 
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architecture (Scharf, et al., 2004). In the VS, the 
entire formation is treated as a single rigid body. The 
overall motion of the virtual structure and the 
constant, specified positions and orientations of 
spacecraft within it are used to generate reference 
trajectories for the spacecraft to track by using 
individual spacecraft controllers. Ren and Beard 
(2004) demonstrated the potential of the VS 
approach by employing a decentralized scheme for 
spacecraft formation flying. In this paper, the center 
of the VS is assumed to follow a reference Lissajous 
orbit around the 2L  libration point. The relative 
nonlinear dynamics between the center of VS and 
spacecraft are derived and a suboptimal closed-form 
feedback controller is then designed using the Dθ −  
technique. Numerical results are presented to 
demonstrate the effectiveness of this method. 
 
 

2. PROBLEM STATEMENT 
 

The nonlinear equations of motion characterizing 
spacecraft dynamics are described here in the 
restricted three-body problem framework. Figure 1 
shows the geometry of the restricted three-body 
problem used in this study.  Denote the inertial frame 
by 垐 �( , ),X Y Z  and the rotating frame by 垐 �( , , )x y z . Both 
frames have their origins at the barycenter of the 
two-body system.  The x̂  unit vector is directed from 
the larger primary toward the smaller primary.  The 
ŷ  unit vector is defined normal to the x̂  vector, 
within the plane of the primaries’ orbit, and along the 
prograde rotational direction.  The ẑ  unit vector then 
completes the right-handed frame and is thus normal 
to the plane of the primaries’ orbit. Mass 1m  
represents the larger primary and 2m  represents the 
smaller primary. The nondimensional equations of 
motion describing the center of the VS for Circular 
Restricted Three Body Problem are given by 
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where ( , , )c c cx y z  is position of the center of VS in 
the rotating frame; µ is the ratio of the smaller 
primary mass to the sum of the masses of both 
primaries; 1r and 2r  are the distances from the larger 
and smaller primary to the center of VS, respectively; 
and ,x yu u  and zu are control inputs. 
The distance R between the two primaries is defined 
as the unit of length and time is in units of 1/n, where 
n is the mean motion. For the Sun-Earth system 

8 -71.4959787066 10  km, =1.990986606 10R n= × ×                                             
It is assumed that the center of the VS follows a 
nominal Lissajous trajectory about the Sun-
Earth/Moon L2 libration point and is shown in Fig. 2 
in a three-view orthographic projection.  This orbit 
has approximate amplitudes 300, 000yA ≅  km and 

200,000zA ≅ km.  The 533 day trajectory was 

numerically integrated in the CR3BP using the 
method developed by Howell and Pernicka (1988). 
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Fig. 1: Basic geometry of the restricted three-body problem 

 
Fig. 2:  Nominal Lissajous Orbit about L2 Libration Point 

The relative position vector between the center of the 
VS and spacecraft can be easily derived as follows 
(Gurfil et al., 2003): 
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where ( , , )x y zρ  is the relative position vector 
between the center of VS and the spacecraft; 

s cx x xu u u= − , 
s cy y yu u u= − , 

s cz z zu u u= −  and 
sxu , 

syu  and 
szu  are control inputs of the spacecraft. 

In the next section, a new nonlinear optimal control 
technique is presented as a formation flying strategy. 
 
 
3.  SUMMARY of Dθ −  CONTROL TECHNIQUE 

 
The class of nonlinear time-invariant systems this 
paper is addressing can be described by  
                            ( )= + gx f x u                 (7) 
with the quadratic cost function:                                                               
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where , , ,n n n m m×∈ ∈ ∈ ∈R R g R Rx f u , ,n n m m× ×∈ ∈Q R R R . 
Assume that nR∈ Ω ⊂x  where Ω  is a compact set 
in nR ; ( )f x  is continuously differentiable in x  
and g is a constant matrix; The condition ( )f =0 0  is 
assumed in order to have the system at equilibrium 
when it is at the origin. Q is assumed to be a positive 
semi-definite constant matrix and R is assumed to be 
a positive-definite constant matrix.  
The optimal solution of the infinite-horizon nonlinear 
regulator problem can be obtained by solving the 
Hamilton-Jacobi-Bellman (HJB) partial differential 
equation (Bryson and Ho, 1975): 
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where ( )V x  is the optimal cost , i.e.        
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It is assumed that ( )V x  is continuously 
differentiable and ( ) 0V >x  with ( ) 0V =0 . 
The necessary condition for optimality leads to 
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The HJB equation is very difficult to get the closed-
form solution. In this paper, a suboptimal control 
synthesis technique that will solve the HJB equation 
approximately is presented. 
Now consider perturbations added to the cost 
function:  
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These perturbations are used to modulate the system 
transient response and their computations are 
discussed later.  
Rewrite the original state equation as: 

= θ
θ

  + = + + +    
0

A( )( ) g ( ) g A gxx f x u F x x u= x u  (13)                                                    

where θ  is an intermediate scalar variable; A0 is a 
constant coefficient matrix such that (A0,g) is a 
stabilizable pair and [ ]0A + A( ),gx  is pointwise 
controllable.         
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By using (14) in (9) and using the perturbed cost 
function, the perturbed HJB equation becomes 

  1

1

1 1( ) ( ) 0
2 2

T T T T i

i
θ

∞
−

=

− + + =∑ igR g Q Dλ f x λ λ x x        (15) 

Assume a power series expansion of λ  as 
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where iT  are to be determined and assumed to be 
symmetric. 
Substitute equation (16) into equation (15) and 
equate the coefficients of powers of θ  to zero to get 
the following equations: 
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Since the right hand side of equations (18)-(19) 
involve x  and θ ,  iT  would be the function of x   
and θ . Thus it is denoted as ( , )i θT x . 
Control can be obtained in terms of the power series 
for λ  as                                                                   

       1 1

0
( , )T T i

i
i

θ θ
∞

− −

=

= − = − ∑R g R g Tu x xλ           (20) 

Construct the following expression for iD  :      
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where ik  and 0, 1,il i n> =  are adjustable design 
parameters. 

iD  is chosen such that  
1
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where ( ) 1 il t
i it k eε −= −  is a small number. ( )i tε  is 

chosen to satisfy some conditions required in the 
proof of convergence and stability of the above 
algorithm (Xin and Balakrishnan, 2005). On the other 
hand, the exponential term il te−  with 0il >  is used to 
let the perturbation terms in the cost function and 
HJB equation diminish as time evolves. In 
addition, ( )i tε  can be used to suppress the initial 
large control from happening in equations (17) 
through (19). ik  and il  in the iD  are design 
parameters which allow flexibility to modulate the 
system transient performance. 
Since Eqs. (18), (19) are linear equations in terms of 

2 , , nT T  and the coefficient matrices of these 
equations are constant matrices, closed-form 
solutions for 2 , , nT T  can be obtained with just one 
matrix inverse operation. The expressions of the right 
hand side of the equations are already known and 
needs only simple matrix multiplications and 
additions. 

Remark: θ  is just an intermediate variable. The 
introduction of θ  is for the convenience of writing 
λ  as a power series expansion. θ  turns out to be 
cancelled when ( , )i θT x  multiplies iθ  in the final 
control calculations, i.e. Eq. (20).  
As can be seen, the Dθ −  controller is a closed-form 
suboptimal feedback solution to the nonlinear 
optimal regulator problem if a finite number of terms 
in control are taken. It can also achieve semi-global 
asymptotic stability. For detailed proof of stability 
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reader is referred to Xin and Balakrishnan, 2005. 
Also in this reference, some benchmark nonlinear 
control problems are investigated to show how close 
to the optimal control solution the Dθ −  method can 
achieve. The Dθ −  method provides a closed-form 
feedback controller for the nonlinear optimal control 
problem and therefore, is a candidate for real time 
implementation. In the next section, this new 
technique is employed to solve the nonlinear 
formation control problem. 
 
 
4. FORMATION CONTROL EMPLOYING Dθ −  

TECHNIQUE  
 

The controller design for each spacecraft in the 
formation follows the same procedure as described in 
the last section. Hence, only one spacecraft is 
considered in the following development. To 
synthesize the control law, it is convenient to use the 
state-space representation. To this end, we define the 
state vector for the center of the VS and the relative 
state vector between the center of the VS and the 
spacecraft: 

[ ]T
c c c c c c cx x y y z zx , [ ]Tx x y y z zsx (24) 

where cx  and sx  satisfy the dynamic equations (1)-
(3) and (4)-(6) respectively. They can be written in a 
general form: 
                           ( )c c= +c cx f x u                          (25) 
                           ( , )s c= +s sx f x x u                     (26) 
As seen from Eqs. (25) and (26), the controller 
design for the center of the VS and the spacecraft can 
be carried out separately. cx  can be considered as 
independent variables to the equations of the relative 
dynamics. An expression for relative control will be 
developed in this section. The control of the center of 
the VS  follows a similar procedure. 
The cost function is chosen to be a quadratic function 
of the state and control 
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The weighting functions are chosen to be: 
11 22 33 44 55 66{ , , , , , }diag q q q q q q=Q , 11 22 33{ , , }diag r r r=R   (28) 

In order to employ the Dθ −  method, the condition 
( )f =0 0  has to be satisfied. However, the terms 
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(6) are bias terms which will not go to zero when the 
states are zero. Therefore, an additional state ‘s’ with 
stable dynamics is added to the state space in order to 
absorb the biases (Xin and Balakrishnan, 2004) 
                                    ss sλ= −                  (29) 
Note that this new variable will not alter the basic 
dynamics since those bias terms are treated by 
multiplying and dividing them by s. It is reset to its 

initial value at each integration step in the simulation. 
The augmented state variable is defined as 

[ ]Ts=s sx x . 
To apply the Dθ −  control design, it is required to 
write the original nonlinear equations into a linear-
like structure: 
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where                                   
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In the Dθ −  formulation, the factorization of the 
nonlinear equation (13) is chosen to be:    
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The advantage of choosing this factorization is that in 
the Dθ −  formulation 0T  is solved from 0A  and g 
in (17) and 0T  would have a good starting point if 

0A  is chosen to be 0 0( ( ))t=A sF x  since 0( ( ))tA sx  
retains much more system information than an 
arbitrary choice of 0A  would. 
The final feedback controller takes the form of  
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where [ ]0 T
r r r r r rx x y y z z=rx  is the 

reference relative trajectory. This trajectory could be 
a predefined time-varying relative trajectory or 
simply a constant offset.  
 
 

5. NUMERICAL RESULTS AND ANALYSIS 
 

Problem of keeping a constellation of four spacecraft 
in a square formation in the rotational frame is 
considered in this paper. This can be easily 
generalized to any formation in an inertial frame. A 
square formation is arbitrarily selected to 
demonstrate the control technique. As a benchmark 
formation flying study, the required formation 
accuracy is less than 1 centimeter. The center of the 
VS follows the nominal Lissajous trajectory about 



the 2L  libration point which is shown in Fig. 2.  The 
initial conditions of the center of the VS reference 
trajectory computed in Section 2 are given by 

0 087028.508409273 km, y -24739.512629980 km, x = =

0z -229951.974656271 km= , 0 -8.985877859 m/s,x =  

0 0y -121.605674977 m/s, z 9.457952755 m/s= =  
The above data are measured with respect to the 2L  
libration point. 
The simulation scenario is assumed such that the 
formation is initialized at 
[ ] [ ](0) (0) (0) (0) (0) (0) 0.05 0 0.05 0 0.05 0T Tx x y y z z =
 km. The spacecraft is commanded to keep a constant 
distance of 1c km=ρ . These numbers were chosen 
arbitrarily to demonstrate the ability of the proposed 
controller to provide precise formation flying under 
such stringent requirements. The reference relative 
trajectory is chosen to be a constant offset. That is, 

0.5 2, 0.5 2, 0r r rx y z= = = for the upper right 

spacecraft, 0.5 2, 0.5 2, 0r r rx y z=− = =  for the upper left, 

0.5 2, 0.5 2, 0r r rx y z=− =− =  for the lower left and 

0.5 2, 0.5 2, 0r r rx y z= =− =  for the lower right. It is 
assumed that the mass of the follower spacecraft is 
500 kg. 
 
In the Dθ −  optimal control design, Q and R are 
tuned to give a satisfactory performance. The values 
of Q and R are chosen to be 
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A systematic way of selecting the parameters in 1D  
and 2D  matrices is given in Xin and Balakrishnan, 
2004. 
Figure 3 and Fig. 4 show the tracking errors for the 
upper right spacecraft where 

( ) ( ), ,x y z r s r s r se e e x x y y z z− − −  and 2 2 2
r x y ze e e e+ + . 

In order to present the error transient responses 
clearly, the error histories in the first day is shown in 
Fig. 3. As can be seen, the errors drop down very 
quickly to near zero in one day. The control 
components are shown in Fig. 4. The formation 
control starts from a relative high value of 100 mN in 
order to drive the relative position error to zero. Then 
the control drops down quickly to the very small 
level in one day to maintain the relative position 
requirement. After one day, the errors are brought 
down to a magnitude below 1 millimeter as shown in 
Fig. 5. The three formation control force components 
and the total control history at the steady states are 
presented in Fig. 6. As shown in Fig. 6, the steady 
state control level is about 0.3 Nµ  on average.  
Figures 7-9 show the steady state errors for the 
spacecraft in the upper left, lower left and lower right 
locations respectively. As can be seen, all the 
formation errors are driven below 1 millimeter. 

Control responses are similar to those of the upper 
right spacecraft and are not shown in the paper for 
lack of space. 
 

6. CONCLUSIONS 
 

High accuracy control of multiple spacecraft 
formation flying in deep-space was investigated 
using a relatively new suboptimal nonlinear control 
method. The nonlinear relative dynamics were 
formulated in the framework of the circular restricted 
three-body problem. Four spacecraft forming a 
square in the rotational frame were investigated using 
a virtual structure approach.  The center of the VS 
follows a reference Lissajous trajectory about the 2L  
libration point. The Dθ −  controller was applied to 
each of the four spacecraft. This approach provides 
an approximate closed-form suboptimal feedback 
controller and is consequently easy to implement. 
Numerical results demonstrated that the proposed 
method yields excellent formation keeping accuracy, 
maintaining millimeter-level precision in this study. 
Further studies will be performed by adding 
disturbances such as solar radiation pressure and 
measurement noise.  
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Fig. 3: Upper-right spacecraft formation errors in the 1st day 

 
Fig. 4: Upper-right spacecraft formation errors in the 1st day 

 
Fig. 5: Upper-right spacecraft steady state errors  

 
Fig. 6: Upper-right spacecraft steady state control force  

 
Fig. 7: Upper left spacecraft steady state error 

 
Fig. 8: Lower left spacecraft steady state error 

 
Fig. 9: Lower right spacecraft steady state error 

 


