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Abstract: A computational scheme is proposed to estimate a state-space representation
of MIMO transfer functions from frequency response measurements. The approach can
constrain the phase curve of selected elements of the transfer function matrix to certain
regions. Poles of the system are determined using a frequency domain subspace approach.
The phase constraint is enforced by an LMI formulation based on the positive real lemma
when the zeros of the system are estimated. The successful application of the algorithm
to measurements from a cantilever beam with three collocated piezoelectric actuator/sensor
pairs is demonstrated. Copyright©2005 IFAC
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1. INTRODUCTION

Experimental modeling of dynamical systems is often
used to obtain simple and accurate models of complex
structures. Finite dimensional models play a particu-
larly important role for many successful applications
of model-based signal processing and model-based
control design. In this paper we will present a system
identification method which estimates linear dynam-
ical MIMO systems from either frequency response
function (FRF) data or samples of the Fourier trans-
form of the input and output signals.

The main contribution of the paper is to demonstrate
how phase constraints of certain transfer function ele-
ments, dictated by the physical system which is mod-
eled, can be enforced directly in the identification
procedure. Flexible structures with collocated sensors
and actuators have the particular property that the
(ideal) transfer function between the actuator and sen-
sor is positive-real. A square transfer function Ψ(ω)
is positive-real if for ω ∈ R

Ψ(ω)+Ψ(ω)∗ ≥ 0 (1)

However, depending on the nature of the signals mea-
sured by the sensors, or actuation mechanism, the ac-
tual transfer function may include a derivative or an
integral of the “physical” transfer function. This will
add or subtract 90 degrees of the phase curve, which
renders the positive real transfer function (for ω ≥ 0)
positive imaginary or negative imaginary respectively.

In this paper we will identify state-space models of the
form

ẋ = Ax+Bu
y = Cx+Du

(2)

where u ∈ R
m is vector of inputs while y ∈ R

p is
the vector of outputs and x ∈ R

n is the state-vector.
Furthermore, we will assume that certain elements of
the frequency function matrix

G(ω) = D+C( jωI −A)−1B (3)

have phase curves which are constrained to certain
regions of the complex plane. That is, we assume a
set of p = 1, . . . ,nc index pairs ip, jp where each of the
nc transfer function elements

Gip, jp(ω) = Dip, jp +Cip( jωI −A)−1B jp (4)



satisfy the phase constraint

∠Gip, jp(ω) ∈ Pp, ∀ω > 0. (5)

where Pp is one of the four sets

P
PR = [−π

2
,

π
2

], P
NR = [

π
2

,
3π
2

],

P
PI = [0,π], P

NI = [π,2π]
(6)

where the superscripts P and N stand for positive and
negative and R and I denote real and imaginary respec-
tively. Note that within the formulation above, con-
straints representing the phase of the four quadrants of
the complex plane, can be constructed by combining
two half-plane constraints for the same transfer func-
tion element. For example the constraint [0,π/2] is
obtained by combining PPR and PPI. Hence, a total
of 8 meaningful phase constraints can be represented.

The proposed scheme for estimating this class of
models consists of the following two main steps:

(i) An estimate of the A and C matrices of the state-
space model (2) is calculated using a subspace
based approach.

(ii) Estimates of the B and D matrices are found
by minimizing a least-squares criterion subject
to the set of phase constraints dictated by the
system structure.

The division in two separate steps facilitates the
task of estimation and makes it possible to calculate
the estimate without the need for applying Newton-
type nonlinear programming with constraints. Further-
more, from a mechanical structural dynamics point of
view the division is also natural. The eigenvalues of
the A matrix are the poles of the system which dictates
the global dynamics in the overall structure and are not
dependent on the actual placement of the actuators and
sensors. Hence, the location of the eigenvalues is com-
pletely decoupled with the issue of phase constraints
since the shape of the phase curve is directly related to
the zeros of the transfer function elements.

The proposed approach makes use of the well known
Positive Real Lemma e.g. (Rantzer, 1996) to formu-
late the phase constraints. Similar techniques have
been used in (Stoica et al., 2000; Mari et al., 2000;
Van Overschee et al., 1997) for the estimation of spec-
tral models and in (Jesse et al., 2004) for identifica-
tion of continuous time positive real models operat-
ing under zero-order hold conditions. In (Goethals et
al., 2003) a regularization approach for identification
of positive real models have been suggested.

The paper is organized as follows. In the next section
we show how the phase constraints can be formulated
as the feasibility of a linear matrix equality (LMI). In
the section that follows we show how the poles of the
system are identified using a frequency domain sub-
space method. In Section 4 we show how to solve the
least-squares problem for estimating B and D matrices
subject to the phase constraint by coupling the LMI
formulation with second order cone programming. An
example is then presented where a 3 x 3 linear model
of a cantilever beam is estimated from measurement

data. The concluding section then summarizes the
contributions.

2. PHASE CONSTRAINTS AND THE POSITIVE
REAL LEMMA

In this section we will explain how the phase con-
straints in (6) can be formulated as the feasibility of
a set of linear matrix inequalities. A key result in the
derivations is the well known Positive Real Lemma.

Lemma 1. (PR). Given A ∈ R
n×n, B,CT ∈ R

n×m, D ∈
R

m×m, with det( jωI −A) 6= 0 for ω ∈ R, (A,B) con-
trollable and Ψ(ω) = D+C( jωI−A)−1B, the follow-
ing two statements are equivalent:

i For ω ∈ R

Ψ∗(ω)+Ψ(ω) ≥ 0 (7)

ii There exists P = PT ∈ R
n×n such that

[

PA+AT P PB+CT

BT P+C D+DT

]

≥ 0 (8)

A proof of the result can be found in many publica-
tions, e.g. (Rantzer, 1996). A dual of this result can
be obtained by finding the Hermitian transpose of the
transfer function.

Lemma 2. (PR dual). Given A ∈ R
n×n, B,CT ∈ R

n×m,
D ∈ R

m×m, with det( jωI −A) 6= 0 and (A,C) observ-
able and Ψ(ω) = D +C( jωI −A)−1B, the following
two statements are equivalent:

i For ω ∈ R

Ψ∗(ω)+Ψ(ω) ≥ 0 (9)

ii There exists a P = PT ∈ R
n×n such that

[

PAT +AP B+PCT

BT +CP D+DT

]

≥ 0 (10)

In the remainder of the paper we will restrict the dis-
cussion to scalar transfer functions. Hence the inequal-
ity (7) equals the PPR (positive real) phase constraint.
A scalar transfer function is thus guaranteed to be pos-
itive real if the LMI (10) (or (8)) is feasible, i.e. there
exists a P such that the matrix expression is positive
semidefinite. Note that the LMI is an affine function
of the P,B and D (or P,C and D) matrices. This obser-
vation is important when we wish to couple the LMI
feasibility problem with the least-squares estimation
of the B and D (or C and D) matrices. We will return to
the computational issues later on. To this end, we point
out that if Ψ(ω) is positive real then obviously −Ψ(ω)
is negative real. Consequently, for the PNR (negative
real) phase constraint, the LMI (10) can be used by
substituting D →−D and B →−B (or D →−D and
C →−C for (8)).

Formulating LMI feasibility tests for the PPI and
PNI constraints requires a few manipulations. We
have the following new result.



Lemma 3. (PI-NI Lemma). Given A ∈ R
n×n, B,CT ∈

R
n, D ∈ R, with det( jωI − A) 6= 0 and (A,C) ob-

servable, Ψ(ω) = D +C( jωI −A)−1B and ΦR(ω) =
CA−1( jωI −A)−1B. Then for ∀ω > 0

i Im[Ψ(ω)] ≥ 0 if and only if Re[ΦR(ω)] ≥ 0.
ii Im[Ψ(ω)] ≤ 0 if and only if Re[ΦR(ω)] ≤ 0.

Proof: First notice that for ω > 0, Im[Ψ(ω)] ≥ (≤)0
⇔ Re[( jω)−1Ψ(ω)] ≥ (≤)0. Now using the series
expansion of Ψ(ω) we obtain

Re[( jω)−1Ψ(ω)] =

Re[( jω)−1D+( jω)−2CB+( jω)−3CAB+ . . .] =

Re[( jω)−1CA−1B+( jω)−2CA−1AB+ . . .] =

Re[ΦR(ω)]

where the substitution of ( jω)−1D with ( jω)−1CA−1B
above is valid since

Re[( jω)−1D] = Re[( jω)−1CA−1B] = 0

2

We now summarize the the results as a theorem con-
necting the four different phase constraints with the
feasibility of four different LMIs.

Theorem 1. Given A ∈R
n×n, B,CT ∈ R

n, D ∈R, with
det( jωI−A) 6= 0 and (A,C) observable, Ψ(ω) = D+
C( jωI −A)−1B.

1) ∀ω > 0, ∠Ψ(ω) ∈ PPR iff there exists a P =
PT ∈ R

n×n such that
[

PAT +AP B+PCT

BT +CP D+DT

]

≥ 0 (11)

2) ∀ω > 0, ∠Ψ(ω) ∈ PNR iff there exists a P =
PT ∈ R

n×n such that
[

PAT +AP B−PCT

BT −CP −D−DT

]

≥ 0 (12)

3) ∀ω > 0, ∠Ψ(ω) ∈ PPI iff there exists a P =
PT ∈ R

n×n such that
[

PAT +AP B+P(CA−1)T

BT +CA−1P 0

]

≥ 0 (13)

4) ∀ω > 0, ∠Ψ(ω) ∈ PNI iff there exists a P =
PT ∈ R

n×n such that
[

PAT +AP B−P(CA−1)T

BT −CA−1P 0

]

≥ 0 (14)

3. SUBSPACE ESTIMATE OF A AND C

It is known that the frequency domain subspace tech-
niques formulated directly for continuous-time sys-
tem are numerically ill-conditioned (McKelvey et al.,
1996; Van Overschee and De Moor, 1996). Hence, a
reformulation of the problem is required. Here we use
the technique described in (McKelvey et al., 1996)
which solves the identical identification problem in
the discrete time domain. The method is based on the
following properties of the bilinear transformation.

• The McMillan degree is unchanged by the trans-
formation.

• Let the continuous-time frequency response be
G(ω) and let Ḡ(ω̄) denote the discrete-time ver-
sion. Then for T > 0,

G(ω) = Ḡ(ω̄), when ω = 2tan(ω̄/2)/T

• If (Ā, B̄,C̄, D̄) is the discrete-time state-space re-
alization for Ḡ(ω̄) then a continuous time real-
ization for G(ω) is

A =
2
T

(I + Ā)−1(Ā− I), B =
2√
T

(I + Ā)−1B̄

C =
2√
T

C̄(I + Ā)−1, D = D̄−C̄(I + Ā)−1B̄.

(15)

Using the properties stated above the following tech-
nique is used. Assume input/output data samples are
given at the continuous-time frequencies ωk. The nec-
essary steps for the identification of a continuous-time
transfer function are:

(1) Select an appropriate value of T , the frequency
scaling. As a rule of thumb a value of T =
5/maxk ωk can be used.

(2) Associate the given frequency response at fre-
quency ωk with the discrete-time frequency

ω̄k = 2atan(T ωk/2) (16)

(3) From the frequency response data and frequen-
cies ω̄k estimate a discrete-time state-space model.

(4) Use the transform (15) to obtain the final continuous-
time state-space realization.

It should be noted that the conversion to the discrete-
time domain, and back is exact and hence do not
introduce any systematic errors or approximations.

3.1 Frequency data

Frequency data in the form of input output pairs Y (ω̄k)
and U(ω̄k) can in principle be obtained in two differ-
ent ways.

(i) Through a frequency testing procedure which
produces samples of the frequency response
function (FRF), so called FRF-data.

(ii) By directly recording time domain samples of
the input and output and subsequently using the
discrete Fourier transform (DFT) to convert them
to the frequency domain.

From the estimated FRF matrices Ĝr an input-output
data set is formed as follows: For each FRF frequency
sample r = 0, . . . ,N−1 and for each input l = 1, . . . ,m
let Yr∗m+l be column l of matrix Gr and let Ur∗m+l = el
where el is column l of the m × m identity matrix.
Hence, a set of N FRF-data matrices yields a total
of M = N ∗m input-output data pairs. Each frequency
and column in Ĝk thus contributes to one input-output
pair {Yk,Uk}. The reason for re-shaping the data is to
facilitate the use of the same algorithms for both FRF
data, as well as directly measured input-output data.



A second alternative to obtain the raw DFT of
the recorded input and output data sequences, see
(McKelvey, 2000; McKelvey, 2004) for more details.

3.2 Finding the subspace estimate

Let us start this section by defining the the extended
observability matrix with q ≥ n block rows

O =











C̄
C̄Ā

...
C̄Āq−1











(17)

and the lower block-triangular Toeplitz matrix

Γ =











D̄ 0 . . . 0
C̄B̄ D̄ . . . 0

...
...

. . .
...

C̄Āq−2B̄ C̄Āq−3B̄ . . . D̄











. (18)

An application of the discrete time Fourier transform
to the state equations results in the vector relation
(McKelvey et al., 1996)










Y (ω̄)
Y (ω̄)e jω̄

...
Y (ω̄)e jω̄(q−1)











= OX(ω̄)+Γ











U(ω̄)
U(ω̄)e jω̄

...
U(ω̄)e jω̄(q−1)











(19)
which holds for all ω̄ . Using all data samples at the
frequencies ω̄k for k = 0, . . . ,M−1, we can merge all
the M vector relations into

Y = OX+ΓU (20)

where column k in (20) corresponds to (19) for ω̄ =
ω̄k. The number of block-rows in Y is controlled by
the auxiliary order q. Since the realization is assumed
minimal, the matrix O defined in (17) has full rank
n whenever q ≥ n, see (Kailath, 1980). Hence, the
matrix product OX has at most rank n. The output Y
is thus composed of the sum of a low-rank matrix and
(in general) a full rank matrix ΓU. Since the number
of columns in (20) equals the number of data, the ma-
trices become wider as M increases. Let us introduce
the notation Yre , [ReY, ImY]. Since the state-space
realization (A,B,C,D) has real-valued matrices, the
complex matrix expression (20) can equivalently be
formulated as

Yre = OXre +ΓUre (21)

which is the basic equation many subspace-based sys-
tem identification methods use, see e.g. (Viberg, 1995;
Liu et al., 1994; McKelvey et al., 1996). In (21) note
that only the matrices Yre and Ure are known.

Let us denote by Π⊥ a matrix which projects onto the
null space of Ure and then multiply this matrix from
the right in (21). Since UreΠ⊥ = 0 we directly obtain
YreΠ⊥ = OXreΠ⊥. A numerically efficient and stable

way to perform this step is by using QR-factorization
(Golub and Van Loan, 1989)

[

UreT YreT ]

=
[

Q1 Q2
]

[

R11 R12
0 R22

]

(22)

and noting that YreΠ⊥ = RT
22QT

2 . In the next step
a basis of the range space of O is estimated. The
singular value decomposition (SVD) is used for this
purpose (Golub and Van Loan, 1989)

RT
22 =

[

Us Uo
]

[

Σs 0
0 Σo

][

V T
s

V T
o

]

. (23)

where [Us, Uo] and [Vs, Vo] are two square orthonormal
matrices and Σs and Σo are diagonal matrices with
non-negative singular values sorted such that all di-
agonal entries in Σs are larger than the ones in Σo
and the dimension of Σs is selected to be n × n. In
our case rank(R22) = rank(YreΠ⊥)≤ rankO = n, i.e.,
the rank can at most be n. This implies that Σo = 0.
It can be shown that the projection does not decrease
the rank any further (McKelvey et al., 1996) so in fact
rank(R22) = n and hence all n singular values in Σn are
positive. Therefore, RT

22 = UsΣsV T
s and as an estimate

of the extended observability matrix we use Ô = Us.
If we set T = XreΠ⊥Q2VsΣ−1

s it is straightforward to
verify that Ô = Us = OT . Here it is important to point
out that only the range space of O has been calculated.
The range space information is, however, enough to
recover the transfer function in some realization.

The estimates of Â and Ĉ are now immediate. Firstly
Ĉ is taken as the first p rows of Ô . Secondly, if we
define Ô as the matrix obtained from Ô by removing
the top p rows and defining Ô as the matrix obtained
by removing the bottom p rows, it is clear from (17)
that ÔÂ = Ô , see (Kung, 1978). The matrix Ô has
q− 1 ≥ n block rows and has, as argued previously,
full rank. The state-transition matrix is then obtained
by

Â = Ô
+
Ô (24)

where the notation (·)+ denotes the pseudo-inverse of
a matrix (Golub and Van Loan, 1989).

With the discrete time estimates at hand we now pro-
ceed by using the bilinear transform (15) to calculate
the continuous-time matrices A and C.

4. SOLVING FOR B AND D

We are now in a position that we can obtain estimates
of the B and D matrices using a constrained least
squares technique, which results in a convex quadratic
program.

For each frequency, let us define the error as

Ek = Y (ωk)−
(

D+C( jωkI −A)−1B
)

U(ωk). (25)

The constrained least-squares problem can now be
formulated as



min
B,D,P1,...,Pnc

M

∑
k=1

‖WkEk‖2

subject to
∠Gip, jp(ω) ∈ Pp, ∀ω ≥ 0 p = 1, . . . ,nc

(26)

where Wk is a weighting matrix which can be chosen
in order to shape the modeling error. Each of the nc
phase constraints in (26) results in an LMI of the forms
(11)-(14), where each of the LMI’s has an individual
P matrix, Pp, p = 1, . . . ,nc, associated with it. Notice
that all the LMI’s are affine in the free variables
B,D,P1, . . . ,Pnc and form a convex problem. The least-
squares part is a quadratic function of B and D and
is identical to a second order cone program. Hence,
the constrained problem is convex and is efficiently
solved by an interior point method. For the numerical
examples in this paper we have used the MATLAB
package SeDuMi (Sturm, 1999) together with the LMI
parser Yalmip (Löfberg, 2004).

5. IDENTIFICATION OF A CANTILEVER BEAM

5.1 Experimental testbed

Experiments were performed on a cantilever beam
with two collocated piezoelectric pairs. One pair was
located close to the clamped end and the other closer
to the free end of the beam. For each collocated
pair, one piezoelectric patch was used as an actu-
ator, and was driven by a charge amplifier, while
the voltage induced in the other patch was used as
the measurement. Another piezoelectric actuator was
bonded to the beam, somewhere between the two actu-
ating patches. This transducer was driven by a voltage
source to apply a disturbance to the beam. The trans-
ducer collocated with this actuator was short circuited
so that it would not add any loading on the structure. A
Schematic of the experimental testbed is demonstrated
in Figure 1, a picture of the actual beam is shown in
Figure 2.

The purpose of the experiment was to generate fre-
quency domain data to identify a three-input-three-
output model as illustrated in Figure 3. The first input
corresponds to the disturbance voltage (w) applied to
the middle patch. The second and third inputs are the
charges (q1 and q2) applied to the first and second
actuators respectively. The first output corresponds to
the displacement measured at the tip of the cantilever
(Ytip). The second and third outputs are the voltages
(Vp1 and Vp2) measured at the first and second piezo-
electric transducers, respectively.

To model the plant we measured all nine frequency
responses for each input-output combination. These
frequency responses were obtained by applying a si-
nusoidal chirp signal of varying frequency (from 5 to
250 Hz) to the piezoelectric actuators and measuring
the corresponding output signals of interest (namely
the output voltages Vp from the collocated sensors
and the displacement at the tip of the beam Ytip). The
input/output data was processed in real time by the
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Fig. 1. Beam Arrangement

Fig. 2. Picture of the Cantilever Beam

Polytec laser scanning vibrometer (PSV-300) software
to obtain the desired frequency responses.

w Ytip

q2 Vp2

q1 Vp1G

Fig. 3. Augmented MIMO Plant

5.2 Estimation results

Data in the frequency range from 5 to 164 Hz is
used for the identification. The number of frequency
response samples are 2542 where each sample con-
sists of a three by three FRF matrix. The samples
are equidistantly spaced in frequency. The subspace
approach outlined above is used to calculate A and C
matrices of model order 7 from the frequency data.
The auxiliary model order q was selected to be 100.

As the second and third sensor-actuator pairs are col-
located, the phase curve is, for physical reasons, con-
strained to stay within a 180 degree range. Due to
the amplification equipment used the complex trans-
fer function of the second sensor-actuator pair should
be constrained to the positive imaginary half plane
(∠G2,2(ω)∈PPI) while the third sensor-actuator pair
should be constrained to the negative imaginary half
plane (∠G3,3(ω) ∈ PNI).

First a straightforward least-squares estimate is made
for the B and D matrices. However this unconstrained
estimate violates the phase constraints of the physical
system. A second B and D pair is then calculated by



solving the convex optimization problem (26) using
two LMIs to impose the constraints on the second and
third collocated sensor-actuator pairs.

The maximum singular values of the unconstrained
and constrained estimates are plotted in Figure 4 to-
gether with the singular values of the error between
the data and the models. The constrained estimate
has, as expected, marginally larger estimation error as
compared to the unconstrained estimate. In Figure 5 a
zoomed plot of the phase curve of the second sensor-
actuator pair is shown. Clearly the unconstrained esti-
mate violates the phase bounds.
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6. CONCLUSIONS

An estimation technique has been presented which
identifies continuous-time MIMO state-space models
from frequency response function data. Furthermore,
the technique includes a possibility to individually
constrain the complex transfer function elements to
have a phase curve which is bounded to either 180

degree or 90 degree segments. The method is a com-
bination of a subspace technique which is used to
identify the poles of the system while the zeros are
estimated with a constrained least-squares technique
which uses a combination of linear matrix inequali-
ties and second order cone programming to find the
optimal constrained estimate. The methodology has
successfully been applied to data from a cantilever
beam with three sensors and three actuators in which
two pairs are collocated.
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