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Abstract: This paper addresses the problem of path following for wheeled mobile robots
(WMRs) by utilizing a novel guidance-based approach. The guidance laws are developed
at an ideal, dynamics-independent level, entailing generically valid laws not influenced by
particular peculiarities relating to any given dynamics case. Hence, the resulting guidance-
based framework is equally applicable to any planar dynamic system. A nonlinear model-
based controller is then designed for an underactuated WMR to enable it to comply
with the guidance commands, yielding a UGAS/ULES closed loop system. Simulation
results demonstrating the capability of the proposed guidance and control scheme are
successfully carried out for a unicycle-type WMR. Copyright c° 2005 IFAC
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1. INTRODUCTION

When considering the task of traversing a given geo-
metric path, traditional trajectory tracking schemes
mix the positional and temporal requirements into
one single assignment even in the cases where the
geometric path is specified by a path planner and, as
such, is completely known in advance. In this con-
text, two weaknesses are apparent. Firstly, most of
these schemes do not take advantage of geometric
information in the sense that they lapse into plain ser-
vosystem tracking of the position. This fact degrades
the transient convergence behaviour of the position
significantly, and makes it unnatural. Secondly, if the
original time parametrization of the path for some rea-
son becomes dynamically infeasible, it must be awk-
wardly reparametrized to avoid an unstable system as
a result of growing positional errors.
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As an alternative to using traditional trajectory track-
ing for solving such problems, this paper presents a
guidance-based path following scheme which takes
advantage of geometric information of the path when-
ever available. The approach also separates the posi-
tional and temporal requirements into two indepen-
dent assignments. Specifically, the proposed approach
is illustrated through the task of forcing wheeled mo-
bile robots to follow a desired geometric path at land.

1.1 Previous Work

A lot of research has been carried out in the field
of path following, especially in the field of wheeled
mobile robots (WMRs). Relevant results are reported
in (Samson 1992), (Aicardi et al. 1995), (Fierro and
Lewis 1995), (Aguilar et al. 1998), (del Río et al.
1999) and (Soetanto et al. 2003). A treatment of one of
the most frequently used path following schemes can
be found in a paper by Claude Samson (Samson 1992).



The author considers a strategy of projecting the posi-
tion of the actual WMR onto the desired geometric
path, effectively ensuring that an imagined, virtual ve-
hicle exists on the position of the path which is closest
to the real WMR at all times. This is achieved by ap-
plying the so-called Serret-Frenet equations, yielding
the kinematics associated with the Serret-Frenet (SF)
frame, which is the path tangential frame at the exact
point of projection. The path following problem is
then solved in the error space of this frame. However,
there is a catch to this approach. Consider a path para-
metrized by its arc length s along the path. For every
point along such a path, there exists an associated
tangent circle with radius r(s) = 1/c(s) where c(s)
is the curvature of the path. This circle is known as the
osculating circle. If at any time the WMR is located
at the origin of the osculating circle, the projected
point on the path will move infinitely fast. Hence, the
SF kinematics contain a singularity at such a point.
Samson solves this by restricting the position of the
WMR to be contained inside a tube surrounding the
path, with radius less than a minimum radius derived
from the maximum path curvature. Such a restriction
is obstructing, especially from a theoretical point-of-
view, and effectively excludes the derivation of any
global path following results. Also, due to the way in
which the guidance laws are chosen, only a conver-
gence result can be concluded since Barbalat’s lemma
has to be applied.

In (Soetanto et al. 2003), a substantial improvement
to the path following scheme from (Samson 1992) is
made. Instead of considering a SF frame attached to
the exact point on the path which is closest to the
WMR at all times, the origin of the SF frame is made
to dynamically evolve according to a suitably defined
function of time, thus removing the singularity pre-
viously associated with the SF kinematic equations.
Consequently, a global result can be claimed. How-
ever, since the authors have to resort to Barbalat’s
lemma in the stability analysis, only a convergence
result can be concluded. In addition, the approach is
restricted to arc-length parametrized paths, which are
generally not trivial to deduce.

1.2 Main Contribution

This paper presents a guidance-based path follow-
ing scheme which is singularity-free for all regu-
lar paths. Furthermore, the paths are not required to
be arc-length parametrized as in (Samson 1992) and
(Soetanto et al. 2003). The proposed scheme is lu-
cidly exposed, and has an intuitive physical interpre-
tation. Finally, a closed loop system represented by a
guided and controlled unicycle-typeWMR is rendered
UGAS/ULES by applying a nonlinear model-based
backstepping-type control law.

2. PROBLEM STATEMENT

The primary objective in guidance-based path follow-
ing is to ensure that a vehicle converges to and follows
a desired geometric path, without any temporal re-
quirements. The secondary objective is to ensure that
the vehicle complies with a desired dynamic behav-
iour while traversing the path. By using the convenient
task classification scheme of (Skjetne 2005), the path
following problem can thus be expressed by the fol-
lowing two task objectives:

Geometric Task: Make the position of the vehicle
converge to and follow a desired geometric path.

Dynamic Task: Make the speed of the vehicle con-
verge to and track a desired speed assignment.

The ability to accurately maneuver a vehicle along a
given path is of primary importance for most applica-
tions, and the path following concept ensures such a
prioritization.

3. GUIDANCE SYSTEM DESIGN

The main purpose of this section is to develop the nec-
essary guidance laws required for solving the planar
guidance-based path following problem in question.
Throughout the section we will consistently employ
the notion of an ideal particle, which is to be inter-
preted as a planar position variable that has no dynam-
ics, i.e. it can instantly attain any assigned motion be-
haviour. The guidance laws developed for this particle
can subsequently be extended to any desirable dynam-
ics case at a later stage since they are generically valid.

3.1 Assumptions

The following assumptions are made throughout the
paper:

A.1 The desired geometric path is regularly parame-
trized, i.e. pd(θ) ∈ C1 ∀θ ∈ R.

A.2 The speed of the ideal particle is lower-bounded,
i.e. Ud(t) ∈ [Ud,min,∞i ∀t ≥ 0. Note that it is
non-negative by definition.

A.3 The guidance variable is positive and upper-
bounded, i.e.4(t) ∈ h0,4max] ∀t ≥ 0.

3.2 Principles of Guidance in the Plane

Denote the inertial position and velocity vectors of the
ideal particle by p = [x, y]> ∈ R2 and v = ṗ =

[ẋ, ẏ]> ∈ R2, respectively. The velocity vector has
two characteristics; size and orientation. Denote the
size by U = |v|2 = (v>v)

1
2 (the speed) and the

orientation by χ = arctan( ẏẋ) (the azimuth angle).
Since it it is assumed that both U and χ can attain
any desirable value instantaneously, they are rewritten



as Ud and χd. The inertial position of a point be-
longing to the geometric path, which is continuosly
parametrized by a scalar variable θ ∈ R, is denoted by
pd(θ) ∈ R2. The desired geometric path can conse-
quently be expressed by the set:

P = ©p ∈ R2 | p = pd(θ) ∀θ ∈ Rª , (1)

where P ⊂ R2. For a given θ, define a local reference
frame at pd(θ) and name it the Path Parallel (PP)
frame. The PP frame is rotated an angle:

χt(θ) = arctan

µ
y0d(θ)
x0d(θ)

¶
(2)

relative to the inertial frame, where the notation
x0d(θ) =

dxd
dθ (θ) has been utilized. Consequently, the

x-axis of the PP frame is aligned with the tangent
vector to the path at pd(θ). The error vector between
p and pd(θ) expressed in the PP frame is given by:

ε = R>
t (p− pd(θ)), (3)

where:
Rt(χt) =

∙
cosχt − sinχt
sinχt cosχt

¸
(4)

is the rotation matrix from the inertial frame to the PP
frame, Rt ∈ SO(2). The error vector ε = [s, e]

> ∈
R2 consists of the along-track error s and the cross-
track error e, see Figure 1. The along-track error
represents the longitudinal distance to pd(θ) along the
tangent vector at pd(θ), while the cross-track error
represents the lateral distance to the tangent vector
at pd(θ). A most convenient error space in which to
operate is thus represented by ε. Also, recognize the
concept of the off-track error, represented by |ε|2 =√
ε>ε =

√
s2 + e2.

Define the positive definite and radially unbounded
Lyapunov function candidate (LFC):

Vε =
1

2
ε>ε =

1

2
(s2 + e2), (5)

and differentiate it with respect to time along the
trajectories of ε to obtain:

V̇ε = s(Ud cos(χd−χt)−UPP )+ eUd sin(χd−χt).
(6)

We can clearly consider the path tangential speedUPP
as a virtual input for stabilizing s. Consequently, by
choosing UPP as:

UPP = Ud cos(χd − χt) + γs, (7)

where γ > 0 becomes a constant gain parameter in the
guidance law, we achieve:

V̇ε = −γs2 + eUd sin(χd − χt). (8)

From (8) we see that (χd − χt) can be considered
a virtual input for stabilizing e. Denote this angular
difference by χr = χd − χt, i.e. the relative angle
between the desired azimuth angle and the azimuth
angle of the path tangential. Obviously, such a variable
should depend on the cross-track error itself, such that

χt

χd

χr

pd(θ)

p

e

XPP
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Fig. 1. The geometric relationship between all the
relevant parameters and variables utilized in the
proposed guidance-based path following scheme.

χr = χr(e). An attractive choice for χr(e) could be
the physically motivated:

χr(e) = arctan

µ
− e

4
¶
, (9)

where 4 > 0 becomes a time-varying guidance vari-
able utilized to shape the convergence behaviour to-
wards the path tangential, i.e. 4 = 4(t) satisfying
A.3. It is often referred to as the lookahead distance
in literature dealing with path following along straight
lines (Papoulias 1991), and the physical interpretation
can be derived from Figure 1. Note that other sig-
moidal shaping functions are also possible candidates
for χr(e), for instance the tanh function. The desired
azimuth angle is thus given by:

χd(θ, e) = χt(θ) + χr(e) (10)

with χt(θ) as in (2) and χr(e) as in (9). Also, since
θ is the actual path parametrization variable that we
control for guidance purposes, we need to state the
relationship between θ and UPP :

θ̇=
UPPp
x02d + y02d

=
Ud cosχr + γsp

x02d + y02d
, (11)

which is non-singular for all paths satisfying assump-
tion A.1. Hence, the derivative of the LFC finally
becomes:

V̇ε =−γs2 + eUd sinχr

=−γs2 − Ud
e2p

e2 +42
, (12)

which is negative definite under assumptions A.2 and
A.3, hence the LFC is a Lyapunov function. The last
transition is made by utilizing trigonometric relation-
ships from Figure 1. Note that the speed by definition
cannot be negative.



Elaborating on these results, we find that the er-
ror system can be represented by the states ε and
θ. Moreover, it is non-autonomous since Ud and 4
can be time-varying. However, it can be rendered
autonomous by reformulating its time dependence
through the introduction of an extra state:

l̇ = 1, l0 = t0 ≥ 0, (13)

see e.g. (Teel et al. 2002). Hence, the new and ex-
tended system can be represented by the state vector
x =

£
ε>, θ, l

¤> ∈ R2×R×R≥0, with the dynamics:
ẋ = f(x). (14)

The time variable for this new system is denoted twith
initial time t = 0, such that l(t) = t+ t0. We can now
utilize set-stability analysis for time-invariant systems
in order to be able to conclude on the task objectives
in the problem statement. Hence, define the closed, but
non-compact set:

G = ©x ∈ R2 ×R×R≥0 | ε = 0ª , (15)

which represents the dynamics of the extended system
when the ideal particle has converged to the path.
Also, let:

|x|G = inf {x− y | y ∈ G} (16)
= |(ε, 0, 0)|2 (17)

= (ε>ε)
1
2 (18)

represent a function measuring the distance from x to
the set G, i.e. the previously mentioned off-track error.
As can be seen from (16), it is apparent that |x|G →
0 ⇔ |ε|2 → 0 ⇔ |p− pd(θ)|2 → 0, since Rt ∈
SO(2) ⇔ R>

t Rt = 1. The goal is consequently
to make |x|G converge to zero since it is equivalent
to solving the geometric task of the guidance-based
path following problem. The following proposition
can now be stated:

Proposition 1. The error set G is rendered uniformly
globally asymptotically and locally exponentially sta-
ble (UGAS/ULES) under assumptions A.1-A.3 if χr
is equal to (9) and θ is updated by (11).

PROOF. Since the set G is closed, but not bounded,
we initially have to make sure that the system (14)
is forward complete (Teel et al. 2002), i.e. that for
each x0 the solution x(t,x0) is defined on [0,∞i.
This means that the solution cannot escape to infinity
in finite time. We already know that l by definition
cannot escape in finite time. Also, (5) and (12) shows
that neither can ε. Consequently, (11) tells us that
θ cannot escape in finite time either, under assump-
tions A.1 and A.2. The system is therefore forward
complete. We also know that ∀x0 ∈ G the solution
x(t,x0) ∈ G ∀t ≥ 0 because ε0 = 0 ⇒ ε̇ = 0.
This renders G forward invariant for (14) since the
system is already shown to be forward complete. Hav-
ing established that (14) is forward complete and that

G is forward invariant, and considering the fact that
Vε =

1
2ε
>ε = 1

2 |x|2G , we can derive our stability
results simply by considering the properties of Vε,
see e.g. (Skjetne 2005). Hence, by standard Lyapunov
arguments the error set G is rendered UGAS since
the Lyapunov function (5) is positive definite and
radially unbounded, while its derivative with respect
to time (12) is negative definite under assumptions
A.1-A.3 when (9) and (11) are satisfied. Furthermore,
V̇ε = −γs2 − Ud

4 e2 ≤ −γs2 − Ud,min
4max

e2 for the error
dynamics at ε = 0, which proves ULES.

By stabilizing the error set G, we have achieved the
geometric task. The dynamic task is fulfilled by as-
signing a desired speed which satisfies assumption A.2
to the ideal particle. In total, we have now solved the
guidance-based path following problem for the planar
case of interest.

Note that by choosing the speed of the ideal particle
equal to:

Ud = κ
p
e2 +42, (19)

where κ > 0 is a constant gain parameter, we obtain:

V̇ε = −γs2 − κe2, (20)

which results in the following proposition:

Proposition 2. The error set G is rendered uniformly
globally exponentially stable (UGES) under assump-
tions A.1 and A.3 if χr is equal to (9), θ is updated by
(11) and Ud satisfies (19).

PROOF. The first part of the proof is identical to
that of Proposition 1. Hence, we conclude by standard
Lyapunov arguments that the error set G is rendered
UGES.

Although very powerful, this result is clearly not
achievable by physical systems since these exhibit nat-
ural limitations on their maximum attainable speed. In
this regard, Proposition 1 states the best possible sta-
bility property a planar physical system like a wheeled
mobile robot can hold.

4. CONTROL SYSTEM DESIGN

The kinematic model of an underactuated WMR is
given by:

ẋ= u cos(ψ)

ẏ= u sin(ψ) (21)
ψ̇= r

where p = [x, y]> ∈ R2 denotes the position of
the center of mass of the WMR relative to an inertial
reference frame, ψ ∈ R denotes the yaw angle (head-
ing angle) of the vehicle, u ∈ R denotes the surge



speed (longitudinal speed), and r ∈ R denotes the
yaw rate. The WMR is considered to be underactuated
in the sway direction (lateral direction), i.e. it has no
actuator capability to generate a force in this direction.
Furthermore, the vehicle travels on a surface without
slipping. Consequently, it experiences no sway speed
(lateral speed).

A simplified kinetic model of the underactuatedWMR
under consideration can be expressed as:

Mξ̇ = τ (22)

where M = diag(m, Iz) ∈ R2×2 represents the
inertia matrix of a vehicle with mass m and moment
of inertia Iz. ξ = [u, r]

> ∈ R2 is the body-fixed
vector composed of the surge speed u and yaw rate
r, and τ = [τ1, τ2]

> represents the body-fixed force
and moment input vector.

Define the projection vector h:

h = [0, 1]
> , (23)

then the error variables z1 ∈ R and z2 ∈ R2 according
to:

z1 =ψ − ψd (24)
z2 = [z2,1, z2,2]

> = ξ −α (25)

where α = [α1, α2]
> ∈ R2 is a vector of stabilizing

functions to be specified later. Hence, the error system
for the controlled WMR can be represented by the
state z =

£
z1, z

>
2

¤> ∈ R3.
Define the positive definite and radially unbounded
Control Lyapunov Function (CLF):

Vz =
1

2
k1z

2
1 +

1

2
z>2Mz2, (26)

where k1 > 0 andM =M> > 0. Differentiating Vz
with respect to time along the z-dynamics yields:

V̇z = k1z1ż1 + z
>
2Mż2

= k1z1(h
>ξ − ψ̇d) + z

>
2 (τ −Mα̇)

= k1z1(α2 − ψ̇d) + z
>
2 (hk1z1 + τ −Mα̇),

which motivates the choice of the stabilizing function
α2 as:

α2 = ψ̇d − z1, (27)
and the control law τ as:

τ =Mα̇− hk1z1 −K2z2, (28)

whereK2 = diag(k2,1, k2,2) > 0, giving:

V̇z = −k1z21 − z>2 K2z2, (29)

which is negative definite, hence the CLF is a Lya-
punov function. Since we want the surge speed of the
WMR to track a given speed assignment, we choose
α1 = ud. The main result of the control design is then
summarized by the following proposition:

Proposition 3. For continous reference signals ψd,
ψ̇d, ψ̈d ∈ L∞ and ud, u̇d ∈ L∞, the origin z =
0 becomes uniformly globally exponentially stable
(UGES) by choosing the control input as (28).

PROOF. We conclude by standard Lyapunov argu-
ments that the origin z = 0 is UGES since the Lya-
punov function (26) is positive definite and radially
unbounded, while its time derivative (29) becomes
quadratically negative definite when adhering to (28).

5. CLOSED LOOP BEHAVIOUR

Since we consider a WMR that travels forward and
does not slip, the interpretation of the yaw angle ψ
from the control section becomes the same as for the
azimuth angle χ from the guidance section. Hence, we
will proceed by only employing the symbol ψ.

The ε-dynamics of a controlled WMR is given by:

ṡ = −ψ̇te− γs (30)

and:

ė= ψ̇ts+ U sin(ψ − ψt)

= ψ̇ts+ U

Ã
4 sin z1 − e cos z1p

e2 +42

!
, (31)

since ψ − ψt = z1 + ψr, and where U = u = z2,1 +
ud ≥ 0 is the speed of the WMR. The θ-dynamics is
given by:

θ̇ =
U cos(z1 + ψr) + γsp

x02d + y02d
. (32)

Hence, the closed loop system of a guided and con-
trolled WMR can be considered as the cascaded in-
terconnection of the undisturbed control subsystem
perturbing the guidance subsystem. The following the-
orem can now be stated:

Theorem 4. The control and guidance cascade is ren-
dered UGAS/ULES under assumptions A.1-A.3 if the
desired yaw angle ψd is given by (10), the control
law is chosen as (28), and the path parametrization
variable θ is updated by (32).

PROOF. [Indication] The undisturbed control sub-
system was shown to be UGES in Proposition 3 by
standard Lyapunov analysis, while the unperturbed
guidance subsystem was shown to be UGAS/ULES
by set-stability analysis in Proposition 1. It is then
straightforward to carry out the rest of the proof by
resorting to cascade theory as in e.g. (Loría 2004),
however the details are omitted due to space limita-
tions.



6. CASE STUDY: A UNICYCLE-TYPE WMR

Consider a unicycle-type WMR which employs two
fore-mounted driving wheels as active actuators, with
an aft-mounted and passive free-rotating support wheel.
The interaction between the wheels and the ground
is assumed to be purely of a rolling nature, i.e. slip-
ping never occurs. This corresponds to the under-
actuated WMR considered in this paper. A numeri-
cal simulation is performed to illustrate the perfor-
mance of the proposed guidance and control scheme
applied to the unicycle-type WMR. The model pa-
rameters are chosen as m = 5 kg and Iz = 2.5
kgm2. The desired path is a circle with a radius of
5 m located at the origin of the inertial reference
frame. The initial states of the WMR are chosen to
be p0 = [3 (m), 8 (m), 0.785 (rad)]> and ξ0 =

[0.5 (m/s), 0 (rad/s)]
>. Hence, the vehicle starts out

with a heading of 45 degrees, i.e. moving away from
the desired path. The initial cross-track error is ap-
proximately 3.5m. The WMR is supposed to keep its
surge speed constant at 0.5 m/s during the run. The
controller gains are chosen as k1 = k2,1 = k2,2 = 1.
The gain parameter is set to γ = 100, while the
lookahead distance is chosen to be 4 = 1 m. Figure
2 shows that the WMR converges beautifully to the
path, while Figure 3 illustrates the behaviour of the
cross-track error.

7. CONCLUSIONS

This paper has presented a novel guidance-based
path following approach for wheeled mobile ro-
bots. The guidance laws have been developed at an
ideal, dynamics-independent level, entailing generi-
cally valid laws not influenced by particular pecu-
liarities relating to any given dynamics case. Hence,
the resulting guidance-based framework is equally ap-
plicable to any planar dynamic system. Also, a nonlin-
ear model-based controller have been designed for an
underactuated WMR to enable it to comply with the
guidance commands, yielding a UGAS/ULES closed
loop system. Simulation results for a unicycle-type
WMR have successfully demonstrated the capability
of the proposed guidance and control scheme.
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