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Abstract: This paper presents a new way to solve the inverse problem of 
electrocardiography in terms of heart model parameters. The developed event 
estimation and recognition method is based on an optimization system of heart model 
parameters. An ANN-based preliminary ECG analyser system has been created to 
reduce the searching space of the optimization algorithm. The optimal model 
parameters were determined by minimizing the objective functions, as relations of 
the observed and model-generated body surface ECGs. The final evaluation results, 
validated by physicians were about 86% correct. Starting from the fact that input 
ECGs contained various malfunction cases, such as Wolff-Parkinson-White (WPW) 
syndrome, atrial and ventricular fibrillation, these results suggest that this approach 
provides a robust inverse solution, circumventing most of the difficulties of the ECG 
inverse problem. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
The most important health problem affecting large 
groups of people is related to the malfunction of the 
heart, usually caused by heart attack, rhythm 
disturbances and pathological degenerations. One of 
the main goals of health study is to predict these kind 
of tragic events, and by identifying the patients 
situated in the most dangerous states, it is possible to 
apply a preventing therapy. 
 
Computerized ECG analysing systems, most of 
which are based on recognition and clustering 
algorithms, have to recognize any potentially 
dangerous arrhythmia with at most a few seconds 
delay. Recent signal processing techniques apply the 
mixture of time-frequency analysis (Fourier, wavelet, 
cosine transforms), sample-based (neural networks) 
and parameter estimation (regressive models). 
 
The application of large databases can cause the 
improvement of the precision, but the following 
disadvantages are still held: 
1. It is impossible to store all possible wave forms; 

2. If the size of the database grows, the clustering 
algorithm becomes more and more complicated, it 
will be hard to develop and maintain; 
3. Real-time learning is impossible during the 
clinical practice at the moment (PC’s are still too 
slow). The algorithm might take wrong decisions in 
case of unknown waveforms. 
 
These disadvantages lead to the idea, that the 
development of a heart-model-based system is 
necessary. 
 
Creating a heart model is basically practical, (Thaker, 
et al., 1998) because the computer, when applying 
traditional signal processing algorithms, recognizes 
lots of waves, but it does not really “understand” 
what is happening. This can be avoided only if the 
computer knows the origin, the formation of the ECG 
signal (MacLeod and Brooks, 1998). During the 
signal processing, if the traditional algorithm finds an 
unrecognisable waveform, the model-based approach 
is activated, which tries to estimate the causes of the 
encountered phenomenon (e.g. quick recognition of 
ventricular fibrillation) (Szilágyi, 1998).  



     

The main goal of the inverse problem of ECG is to 
characterize and reconstruct cardiac electrical events 
from measurements. In contrast to the forward 
problem of the electrocardiography, the inverse 
problem does not possess a mathematically unique 
solution. Another not easily by-passable problem is 
its ill-posed nature whereby the desired inverse 
solution is unstable and may oscillate widely with the 
slightest perturbation.   
 
Several approaches have been explored to handle the 
problem of multiple solutions by using equivalent 
cardiac generators (such as equivalent dipole and 
multi-pole), heart surface isochrones (Cuppen, et al., 
1984), or epicardial potential (Guanglin, et al., 
2001). The high sensitivity of solutions to the 
different disturbances forced the investigators to 
explore regularization techniques (Shahidi, et al., 
1994). These methods allow a significant progress, 
but the different uncertainty elements of the 
processing hinder the potentially beneficial ECG 
inverse solutions from becoming a routine clinical 
tool at present. 
 
Body surface potential mapping (BSPM) was 
developed to allow an almost complete data 
acquisition from the body surface. BSPM may have a 
great advantage over the standard 12-lead system in 
different situations due to deeper accessible 
information. Mirvis has shown some cases of BSPM 
recordings that clearly demonstrate the inadequacies 
of the standard ECG lead sets in a variety of 
pathologies (Mirvis, 1988). As we know more about 
the depolarization – repolarization mechanism, we 
can understand in a better way the internal function 
of the heart. 
 
This paper presents an event recognition study 
performed with ECG signal analysis and 3D heart 
model. The main purpose is to evaluate the strength 
and weakness of each method, and to analyze the 
cooperation efficiency in malfunction diagnosis.   
 
 

2. MATERIALS AND METHODS 
 
2.1. Study records 
 
The first signal resource was a 32-electrode 
measurement (BSPM) database (sampled at 1000 Hz 
with 12-bit resolution) obtained from the Research 
Institute for Technical Physics and Materials Science 
(MTA-MFA) of Budapest. These registrations 
contain various malfunction cases as WPW 
syndrome, atrial and ventricular fibrillation, flutter. 
These measurements were collected using Lux-32a 
(Lux, et al., 1978) electrode placement, as presented 
in Fig. 1.  
 
In the second stage of the study we used 12-lead 
ECG registrations from our database. These signals 
were sampled at 500-1000 Hz with 12-bit resolution. 
 

 
Fig. 1. Lux-32a electrode placement. 
 
2.2. The approach of ECG inverse problem  
 
In contrast to methods that directly solve the matrix 
equation linking electrical sources with electrical 
potential fields to estimate ECG inverse solution, our 
approach indirectly obtains the solvent in terms of 
heart model parameters. The schematic diagram of 
the method is presented in Fig. 2. 

 
Fig. 2. The schematic diagram of the heart-model-

based ECG analyzer method. 
 
The preliminary ECG analyzer system (PAS) is 
based on detailed human anatomical and functional a 
priori knowledge, developed using an ANN, tested 
and validated by physicians in clinical environment. 
In this study the PAS was used to obtain initial 
information on the site of origin of cardiac activation. 
The output of the ANN provides the initial heart 
model parameters. Then the BSPMs or 12-lead ECGs 
were simulated by the ECG generator unit, and the 
objective functions that assess the similarity between 
the measured and simulated signals were determined. 
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The heart model parameters are adjusted with the aid 
of optimization algorithms or eventually physicians. 
The simulation procedure is performed until the 
objective functions satisfy the given convergence 
criteria. Finally the parameters are validated. 
 
2.3. ANN-based preliminary ECG analyzer system 
 
Application of a priori knowledge to reduce the 
searching space of heart model parameters is quite 
important. The PAS was developed to determine 
roughly the cardiac status and state, which was than 
used to initialize the model parameters and decrease 
the searching space for the optimization system. 
 
2.4. The structure of the combined heart model 
 
Based on a simulation and a measured ECG signal, 
the estimation of the internal state of the human body 
is a considerably complicated task, requires the 
solution of several theoretical and practical problems. 
Theoretically the model should contain all those 
factors that should be handled considerately during 
implementation, but that is practically impossible. If 
the required information is not available, the values 
of the unknown parameters should be determined 
empirically. As the amount of available information 
grows, the model can become more and more 
sophisticated. The theoretical model determines the 
internal structure of the human body on three levels. 
 
Level of the myocardial cell. The ion channels (Na+, 
K+, Ca++, Mg++, etc.), pumps, and transporters are 
included in this model-layer as they determine the 
function of each cell. Unfortunately, the precise 
mechanism of these units is not known (Thaker, et 
al., 1998). When we study the behaviour of a simple 
myocardial cell, it is likely to consider the character 
of the currents, which appear during depolarisation. 
 
Let mI  be the sum of the currents that flow through 
the cell membrane of unitary surface. Then 
 

∑∑ +++

+⋅=++=

envpumptranspch

mmextioncapm

IIII

dtdVCIIII

)(

/
      (1), 

 
where capI  is the capacitive (due to potential 

difference from the cell membrane surfaces), ionI  the 
ionic (sum of currents generated by channels, pumps 
and transporters), and extI  the current coming from 
the external environment. mC  is the electrical capa-
city of a cell membrane with unitary surface, mV  is 
the potential difference between the two sides of the 
membrane (Huiskamp, 1998; Quan, et al., 1998). 
 
Anatomy of the heart and torso. There are many 
possible different heart structures (Quan, et al., 
1998). To describe various representative cases we 
studied our breast MRI records (42 examples) and 
some CT images. These samples allowed us to 

construct a morphological heart structure for 
simulation. 
 
The geometry model of the heart and torso was 
constructed by tetra meshes. The torso, lung, endo- 
and epicardial surfaces were divided into 2344, 3834, 
7780 and 8942 tetrahedrons. The heart model could 
have a spatial resolution of 0.5 mm that means more 
than one million individual compartments at highest 
decomposition. For a better simulation result we 
choose a time-slice between 0.1ms and 2ms over the 
whole ventricular excitation cycle. 
 
Position of the surface electrodes. The structure of 
the chest, its position in space, the relative position 
and distance of the compartments with respect to the 
electrodes, and the electrical behaviour of the chest’s 
contents must be known (Ramon, et al., 1998). 
 
As the model has to take in consideration extremely 
numerous parameter values, the problem cannot be 
solved in a deterministical way (we have much more 
unknown values then known equations). That is why 
a stochastical method (genetic algorithm, adaptive 
neural networks and fuzzy systems) should be 
applied to determine the values of the parameters 
(Szilágyi, 1998). 
 
2.5. Mathematical description of the model 
 
Let us consider that the basic element of the structure 
of the heart is the compartment that according to the 
model is the largest homogenous unit. We considered 
each compartment having the same type of 
connections with adjacent units. The type of cells 
determines the electrical propagation properties, but 
no additional considerations were taken in, such as 
tissue fiber torsion and so on.   
 
Each compartment was considered homogenous, 
constructed by only one type of tissue with well-
defined properties, such as: cell type, cell state, cell 
activation potential (AP) function. The 
environmental parameters such as 4D position (x, y, z 
spatial coordinates and time), conduction speed of 
stimulus, weight and connection with neighbor 
structures, localize each unit. 
 
The heart behavior was characterized by the 
following parameters: 
a. Type of cells: T. The main possible categories are: 
sinoatrial node, Bachmann’s bundle, atrial muscle, 
atrio-ventricular node, bundles of His, Purkinje 
fibers, ventricular muscle;  
b. State (time varying): S. Possible cell states are: 
normal function, ischemia, lesion, necrosis, ectopic 
node, etc. 
c. Function of activation potential variation: 
AP(T,S,t), it depends on the type and the state. 
Different activation potential functions were assigned 
to different states of all cell types. The shapes of 
those functions vary according to the values of the 
main parameters of the cell model. Although the ion 



     

concentrations determine the AP function shape, we 
had no realistic concentration data for all cases, so 
we had to use various empirical approximations. This 
fact can seriously disturb the simulation results; 
d. Space position in time: ( )tzyx ,,,PosK , the 
geometrical position in time of the gravity center of 
the compartment. Unfortunately these values are 
valid only for a static object, however the heart 
moves all the time. Often the time parameters 
approve essential to deal with some situations; 
e. Conduction speed of the stimulus: CS(T,S), it 
mainly depends on the cell type and state; 
f. Weight of the contents of the compartment: M; 
g. Connections with other compartments: according 
to the cubic model, each compartment can be directly 
connected to its 26 neighbors; 
h. The position of the electrode: ( )tzyx ,,,PosE . The 
problem of heart and torso motion was introduced in 
point d); 
i. The relative resistance of the electrode: 

( )EKKE PosPosR ,, . 
 
Because the main ion channels situated inside the 
cells have a quite complicated behavior (with lot of 
unknown parameters), the activation potential 
function of the compartment was considered as basic 
input parameter (we determine an AP function with 
static shape for each cell type and state). Due to 
contractions of the heart, respiration, and other 
disturbing phenomena, the position of compartments 
was considered time-varying. The following 
mathematical expressions that describe compartment 
behavior will vary in time. 
 
Let VK be the potential of an arbitrary compartment 
K: ( ) ( )KK tSTAPtV τ−= ,, , where Kτ  is the time 
the stimulus needs to reach the compartment K. The 
activation potential function that varies from cell 
type T and state S, has a short delay Kτ  due to 
activation propagation until compartment K. These 
AP potentials for normal functioning cells are 
presented in Fig. 3.  

 
If we study the measured potential jE , generated by 

compartment iK  then: 

( ) ( ) ( ) ( )tEtRtVtE
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where, )(, tR
iKE  represents in time the resistance 

from compartment iK  to electrode jE . Using 
bipolar electrodes, the value measured on the 
reference electrode GNDE  will be subtracted. As all 
compartments have an accession to the measured 
potential on each electrode, the measured voltage on 
electrode jE  will become the sum of each )(, tE

iKE  
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where N is the number of compartments. 
  
These equations determine the measured electrical 
potentials and the inner mechanism in the heart. 
During the simulation, these voltages were 
determined for each compartment and electrode for 
every time-slice (especially between 0.1ms and 2ms). 
In the following it is presented, how simulations 
were antagonized from different environmental 
factors (muscle fiber elasticity, distortion, different 
structural abnormalities, etc.). Although these 
disturbing factors limit the overall performance of 
the simulation, with pragmatic algorithm 
organization these effects could be minimized. 
 

 
 
Fig. 3. The AP shapes of different cell types for 

normal case 
 
2.6. Applied tools and mathematical methods 
 
At the moment, testing the theoretical model is 
possible only if the values of unknown variables are 
determined empirically. This compromise must be 
taken in all cases, where the estimation error is 
greater then the statistical error occurring when the 
empirically determined values are applied.  
  
The cell motions caused by the motion of the heart 
are neglected, so the transfer functions of the 
compartment-electrode ensemble is not time varying. 
The simulation program performs a genetic 
algorithm to determine the values of the unknown 
parameters. As the estimation of the parameters of 
this simplified model still requires an adaptive 
regressive model of 1500 terms, the simulation is 
extremely slow. 
 
The algorithm was accelerated by coding the main 
cycle in machine code using MMX, SSE2 
(multimedia instruction set with single instruction 
multiple data structure for processors Intel Pentium3, 
4 and AMD Athlon processor family). 

 
 

3. RESULTS 
 
During the simulation, a parameter classification 
algorithm was applied to distinguish the normal QRS 
complexes from the abnormal ones, in order to 



     

determine the specific differences between the 
normal and abnormal parameter values. 

 
Fig. 4. The simulated ECG signal in normal and 

abnormal case 
 
For normal cases the detection ratio is practically 
100%. During the simulation by using the initial 
parameter set for a normal and abnormal situation, 
we obtained the signals presented in Fig. 4. 

 
Fig. 5. The simulated surface potentials  
 
Fig. 5. represents the simulated surface potentials 
t=41ms after the start moment of ventricular 
depolarization. 
 

Table 1 Simulation performance for various 
pathological and normal cases 

Pathological case Decision 
number 

Failed 
decisions 

Perfor-
mance 

Normal 44 1 97.72% 
Ectopic beat 21 4 80.95% 

WPW syndrome 14 2 85.71% 
Atrial flutter 22 2 90.90% 

Atrial fibrillation 18 2 88.88% 
Ventricular 
Fibrillation 

19 1 94.73% 

Re-entry 
mechanisms 

19 3 84.21% 

Triggered activity  36 5 86.11% 
Aberrant ventri-
cular conduction 

21 3 85.71% 

 
Table 1. shows the correctness of simulation for 
different cases. The evaluation of the simulated 
results was made by physicians. The performance 

was determined as the ratio of correct and total 
decisions. 
 
 

4. DISCUSSION 
 

As Table I. showed us, that the 3D heart simulation 
(Szilágyi, et al., 2003 a,b) could deal in most cases, 
such as WPW (Wolf Parkinson White) syndrome, 
pre-excitations, and tissue activation modeling. The 
cases of ectopic beats and triggered events represent 
the weak points of the simulation model. The 
application in practice of the model has several 
obstacles, which can be classified into the following 
groups: 
- Effects of internal and external perturbations (such 
as environment, sympathetic and parasympathetic 
despondence); 
- Lack of information on elements of the model; 
- Lack of technical background. 
 
4.1. The deficiencies of the model 
 
- The processes performed inside the cells are not 
well known, the behaviour of the studied components 
cannot be determined with an acceptable precision; 
- In critical cases, if a group of cells does not get the 
necessary food, it changes its behaviour. A model 
created to simulate the normal behaviour of the cell 
will not simulate it correctly in abnormal case; 
- Because the structure of the heart differs from 
patient to patient, this structure is not known a priori, 
it has to be determined in real-time, based on the 
available information; 
- The determination of the torso’s structure 
introduces the same problem. It is hard to determine 
the electrical conductivity and precise position of its 
elements. 
 
4.2. Perturbation phenomena 
 
- It is known, that respiration makes the heart change 
its shape and position. Although the motion of the 
heart can be tracked, it is not possible to determine 
from the ECG the amplitude of the motion; 
- The continuous motion and displacement involves 
very hard problems. Because the motion has an effect 
on the behaviour of all internal elements, the 
behaviour of the heart will also be modified. The 
model has to follow the changes of the cell 
properties. For example: a resting man suddenly 
jumps out of the bed. The controlling mechanisms 
start their adjustment, the values of model parameters 
will change; 
- Fever and respiration frequency can also cause 
alterations; 
- External events (the patient senses something 
annoying or pleasant) change the dependence 
between the previously measured signals, and the 
determined parameters. This is one of the causes why 
the perfect simulation of a human body is impossible. 
These factors strongly influence the behaviour of the 



     

SA node. As the mechanism is not precisely known, 
the values of the model parameters cannot be 
determined in a deductive way. 
 
4.3. Technical background 
 
Nowadays, the performance of personal computers 
does not make possible the real-time determination 
of parameter values. The practical application is 
possible only in case of strongly parallel systems. 
The simplified model can be applied in real-time, but 
its efficiency is reduced because of the neglected 
parameters. The waveform of the simulated ECG 
(Szilágyi, 2000) in normal cases can be considered 
acceptable. The shape and duration of basic waves 
have realistic values. In case of abnormal cases the 
obtained waveform is not acceptable and more 
simulations are needed. 
 

5. CONCLUSIONS 
 
Regarding the fact, that computerized ECG (Szilágyi, 
et al., 1996) diagnostics refer to several medical and 
technical problems, at the moment it cannot be 
applied as a standalone system. The short-term 
solution is the application of fuzzy systems and 
systems based on multi-agents that make possible, 
based on empirical information, to accomplish an 
adaptive advising system based on continuous 
transitions. 
 
If a hybrid system (neuro-fuzzy and model-based 
approach, simultaneously) is built, it may become 
possible to learn the model via the knowledge of the 
traditional advising system, which, after a suitable 
learning process, will be able to replace gradually the 
old system (Benyó and Czinege, 1997).  
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