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1. INTRODUCTION

Nonlinear stochastic control has long been an
important research field that has attracted many
researchers, and enormous results have been pub-
lished in the literature. In particular, the fun-
damental nonlinear stochastic stabilization issue
has received considerable research interests, and
has found successful applications in control and
communication problems, such as attitude control
of satellites and missile control, macroeconomic
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system control, chemical process control, etc., see
McEneaney et al. (1999) for a survey.

Recently, there have appeared many methods
to tackle different kinds of nonlinear stochastic
systems. For example, in Charalambous (2003),
a minimax dynamic game approach has been
developed for the controller design problem of
the nonlinear stochastic systems that employ
risk-sensitive performance criteria. The stabiliza-
tion problem has been investigated in Deng et
al. (2001) for nonlinear stochastic systems, and a
stochastic counterpart of the input-to-state sta-
bilization results has been provided. In Liu et
al. (2003), under an infinite-horizon risk-sensitive
cost criterion, the problem of output feedback
control design has been studied for a class of
strict feedback stochastic nonlinear systems. In
Xie and Xie (2000), the decentralized global sta-
bilization problem has been dealt with by using a
Lyapunov-based recursive design method. On the



other hand, the dual nonlinear stochastic filtering
problem has also been an active area for three
decades.

It is now a recognized fact that the time delay is
frequently a source of instability and encountered
in various engineering systems such as chemical
processes, long transmission lines in pneumatic
systems, and so on. Recently, increasing attention
has been focused on robust and/or H∞ control
problems for linear systems with certain types
of time-delays, see Boukas and Liu (2002) for
a survey. As for nonlinear stochastic time-delay
systems, the related results have been scattered,
and most of the results have been concerned with
the stability analysis issue, see e.g. Mao (1997). So
far, the stabilization problem for general nonlinear
time-delay systems has not been fully investigated
and remains important.

In this paper, we will consider the stabiliza-
tion problem for a class of nonlinear continuous
stochastic systems with state delays. Such a class
of systems have been intensively investigated in
Wang and Ho (2003), Wang et al. (2003), Yaz
and Azemi (1993) for the nonlinear filtering prob-
lems. An effective algebraic matrix inequality ap-
proach is proposed to design the state feedback
controllers, such that the closed-loop system is
stochastically exponentially stable (or exponen-
tially ultimately bounded) in the mean square, for
all admissible nonlinearities and time-delays. We
first investigate the sufficient conditions for the
nonlinear stochastic systems to be exponentially
stable (or exponentially ultimately bounded), and
then derive the explicit expression of the desired
controller gains. A numerical simulation example
is provided to show the usefulness and effective-
ness of the proposed design method.

2. PROBLEM FORMULATION AND
ASSUMPTIONS

Consider the following nonlinear continuous-time
state delayed stochastic system in a fixed complete
probability space (Ω,F , {Ft}t≥0, P ):

dx(t) =[f(x(t), u(t)) + g(x(t− τ))]dt

+ Dx(t)dw(t), (1)
x(t) =ϕ(t), t ∈ [−τ, 0], (2)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is
the deterministic input, and f(·, ·) ∈ Rn and
g(·) ∈ Rn are nonlinear vector functions. τ > 0
denotes the state delay and ϕ(t) is a continu-
ous vector valued initial function. Here, w(t) :=
[w1(t)w2(t) · · ·wm(t)]T ∈ Rm is an m-dimensional
Brownian motion. The initial state x(0) has the
mean x̄(0) and covariance P (0), and is uncorre-
lated with w(t). D is a known constant matrices
with appropriate dimensions.

Assumption 1. The nonlinear vector functions
f(·, ·) and g(·) satisfy f(0, 0) = 0, g(0) = 0 and∣∣∣∣f(x(t), u(t))− [

A B
] [

x(t)
u(t)

] ∣∣∣∣

≤ a11

∣∣∣∣
[

x(t)
u(t)

] ∣∣∣∣ + a12, (3)

|g(x(t− τ))−Adx(t− τ)|
≤ a21|x(t− τ)|+ a22, (4)

where A ∈ Rn×n, B ∈ Rn×m, Ad ∈ Rn×n are
known constant matrices, and a11 > 0, a12 ≥ 0,
a21 > 0 and a22 ≥ 0 are known scalars.

Remark 1. The system (1)-(2) can be used to rep-
resent many important physical nonlinear systems
subject to inherent state delays and stochastic
exogenous noises with known statistics. Similar
to Wang and Ho (2003), Wang et al. (2003), Yaz
and Azemi (1993), the nonlinear descriptions (3)-
(4) quantify the maximum possible derivations
from a linear model with (A,B, Ad) as its system
parameter matrices.

When a state feedback control law u(t) = Kx(t)
is applied to the system (1)-(2), the closed-loop
system is governed by

dx(t) =[f(x(t),Kx(t)) + g(x(t− τ))]dt

+ Dx(t)dw(t) (5)

For notation convenience, we define:

Ac = A + BK (6)

p(t) = f(x(t),Kx(t))−Acx(t), (7)

q(t) = g(x(t− τ))−Adx(t− τ), (8)

and then obtain from (5) that

dx(t) = [Acx(t) + Adx(t− τ) + p(t) + q(t)]dt

+Dx(t)dw(t). (9)

Now, let x(t; ξ) denote the state trajectory from
the initial data x(θ) = ξ(θ) on −τ ≤ θ ≤ 0
in L2

F0
([−τ, 0];Rn). It is clear from Assumption

1 that the system (9) admits a trivial solution
x(t; 0) ≡ 0 corresponding to the initial data ξ = 0.

Definition 1. Consider the system (9) and let E
denote the mathematical expection operator. For
every ξ ∈ L2

F0
([−τ, 0];Rn),

• the trivial solution is exponentially stable
in the mean square if there exist constants
α > 0 and β > 0 such that

E|x(t; ξ)|2 ≤ αx−βt sup
−τ≤θ≤0

E|ξ(θ)|2; (10)

• the trivial solution is exponentially ulti-
mately bounded in the mean square if there
exist constants α > 0, β > 0, γ > 0 such that



E|x(t; ξ)|2 ≤ αx−βt sup
−τ≤θ≤0

E|ξ(θ)|2 + γ.

(11)

The objective of this paper is to design a controller
for the nonlinear time-delay system (1)-(2), such
that the closed-loop systems is exponentially sta-
ble (or exponentially ultimately bounded) in the
mean square. More specifically, we are interested
in designing a controller parameter K such that:

• in the case of a12 = 0 and a22 = 0 (i.e., there
are no bounded nonlinearities and uncertain
disturbances), the solution of the system (9)
is guaranteed to be exponentially stable;

• in the case of a12 6= 0 or a22 6= 0 (i.e.,
there are bounded nonlinearities or uncertain
disturbances), the solution of the system (9)
is guaranteed to be exponentially ultimately
bounded in the mean square.

3. MAIN RESULTS AND PROOFS

The following theorem will play an essential role
in the design of the expected controllers. It reveals
that the exponential stability (or exponential ul-
timate boundedness) of the controlled nonlinear
time-delay stochastic system (9) can be guaran-
teed if a positive definite solution to a modified
algebraic Riccati-like matrix inequality (quadratic
matrix inequality) is known to exist.

Theorem 1. Let the controller parameter K be
given. If there exist positive scalars ε1, ε2 such
that the following matrix inequality

AT
c P + PAc + DT PD + (ε1 + ε2)P 2

+4ε−1
2 a2

11(I + KT K) + Q < 0 (12)

where
Q := ε−1

1 AT
d Ad + 4ε−1

2 a2
21I (13)

has a solution P > 0, then in the mean square,
the system (9) is

(i) exponentially stable in the case of a12 = 0
and a22 = 0;

(ii) exponentially ultimately bounded in the case
of a12 6= 0 or a22 6= 0.

Proof. Fix ξ ∈ L2
F0

([−τ, 0];Rn) arbitrarily and
write x(t; ξ) = x(t). For (x(t), t) ∈ Rn × R+, we
define the Lyapunov function candidate

V (x(t), t) = xT (t)Px(t) +
∫ t

t−τ

xT (s)Qx(s)ds

(14)
where P is the positive definite solution to the
matrix inequality (12) and Q > 0 is defined in
(13).

By Itô’s formula (see, e.g. Mao, 1997), the stochas-
tic derivative of V along a given trajectory is
obtained as

dV (x(t), t)

=
{
xT (t)P [Acx(t) + Adx(t− τ) + p(t) + q(t)]

+ [Acx(t) + Adx(t− τ) + p(t) + q(t)]T Px(t)

+ xT (t)Qx(t)− xT (t− τ)Qx(t− τ)

+ xT (t)DT PDx(t)
}
dt + 2xT (t)PDx(t)dw(t)

=
{
xT (t)[AT

c P + PAc + DT PD + Q]x(t)

+ xT (t)PAdx(t− τ) + xT (t− τ)AT
d Px(t)

+ xT (t)P [p(t) + q(t)] + [p(t) + q(t)]T Px(t)

− xT (t− τ)Qx(t− τ)
}
dt

+2xT (t)PDx(t)dw(t). (15)

Let ε1 > 0, ε2 > 0. It is easy to have

xT (t)PAdx(t− τ) + xT (t− τ)AT
d Px(t)

≤ ε1x
T (t)P 2x(t)

+ε−1
1 xT (t− τ)AT

d Adx(t− τ). (16)

In the sequel, we will use several times the follow-
ing simple inequality

(u + v)T (u + v) ≤ 2uT u + 2vT v,

where u ∈ Rn and v ∈ Rn.

Noticing the Assumption 1 and (6)-(8), we have

pT (t)p(t) = |f(x(t),Kx(t))−Acx(t)|2

≤
{

a11

∣∣∣∣
[

x(t)
Kx(t)

] ∣∣∣∣ + a12

}2

≤ 2a2
11

∣∣∣∣
[

x(t)
Kx(t)

] ∣∣∣∣
2

+ 2a2
12

≤ 2a2
11x

T (t)
(
I + KT K

)
x(t) + 2a2

12,(17)

qT (t)q(t) = |g(x(t− τ))−Adx(t− τ)|2
≤ {

a21|x(t− τ)|+ a22

}2

≤ 2a2
21x

T (t− τ)x(t− τ) + 2a2
22. (18)

Then, it follows from (17), (18) and

Ψ1 := ε
1/2
2 xT (t)P−ε

−1/2
2 [p(t)+q(t)]T , Ψ1ΨT

1 ≥ 0

that

xT (t)P [p(t) + q(t)] + [p(t) + q(t)]T Px(t)

≤ ε2x
T (t)P 2x(t) + ε−1

2 [p(t) + q(t)]T [p(t) + q(t)]

≤ ε2x
T (t)P 2x(t) + 2ε−1

2 [pT (t)p(t) + qT (t)q(t)]

= xT (t)[ε2P
2 + 4ε−1

2 a2
11(I + KT K)]x(t)

+4ε−1
2 a2

21x
T (t− τ)x(t− τ)

+4ε−1
2 (a2

12 + a2
22). (19)



For simplicity, we denote

Π := AT
c P + PAc + DT PD + (ε1 + ε2)P 2

+4ε−1
2 a2

11(I + KT K) + ε−1
1 AT

d Ad + 4ε−1
2 a2

21I,
(20)

and then (12) and (13) indicate that Π < 0.

Substituting (13), (16) and (19) into (15) gives

dV (x(t), t)≤ [
xT (t)Πx(t) + 4ε−1

2 (a2
12 + a2

22)
]
dt

+2xT (t)PDx(t)dw(t). (21)

Let β > 0 be the unique root of the equation

λmin(−Π)−βλmax(P )−βτλmax(Q)xβτ = 0 (22)

where Π and Q are defined, respectively, in (20)
and (13), P is the positive definite solution to (12),
and τ is the time-delay.

We can obtain from (21) that

d
[
xβtV (x(t), t)

]
= xβt

[
βV (x(t), t)dt + dV (x(t), t)

]

≤ xβt
(
− [

λmin(−Π)− βλmax(P )
]|x(t)|2

+βλmax(Q)
∫ t

t−τ

|x(s)|2ds
)
dt

+ 4ε−1
2 (a2

12 + a2
22)x

βtdt + 2xβtxT (t)PDx(t)w(t)dt.

Then, integrating both sides from 0 to T > 0 and
taking the expectation result in

xβTEV (x(T ), T )

≤ [
λmax(P ) + τλmax(Q)

]
sup

−τ≤θ≤0
E|ξ(θ)|2

− [
λmin(−Π)− βλmax(P )

]
E

∫ T

0

xβt|x(t)|2dt

+ βλmax(Q)E
∫ T

0

xβt

∫ t

t−τ

|x(s)|2dsdt

+4ε−1
2 (a2

12 + a2
22)β

−1(xβT − 1).

Note that

∫ T

0

xβt

∫ t

t−τ

|x(s)|2dsdt

≤
∫ T

−τ

(∫ min(s+τ,T )

max(s,0)

xβtdt
)
|x(s)|2ds

≤
∫ T

−τ

τxβ(s+τ)|x(s)|2ds

≤ τxβτ

∫ T

0

xβt|x(t)|2dt + τxβτ

∫ 0

−τ

|ξ(θ)|2dθ.

Considering the definition of β in (22), we have

xβTEV (x(T ), T )

≤ [
λmax(P ) + τλmax(Q)

]
sup

−τ≤θ≤0
E|ξ(θ)|2

+ βλmax(Q)τ2xβτ sup
−τ≤θ≤0

E|ξ(θ)|2

+4ε−1
2 (a2

12 + a2
22)β

−1(xβT − 1),

and

E|x(T )|2 ≤ λ−1
min(P )

([
λmax(P ) + τλmax(Q)

]

· sup
−τ≤θ≤0

E|ξ(θ)|2 + βλmax(Q)τ2xβτ

· sup
−τ≤θ≤0

E|ξ(θ)|2
)
x−βT

+4ε−1
2 (a2

12 + a2
22)β

−1λ−1
min(P )

·(xβT − 1)x−βT .

Notice that (xβT − 1)x−βT < 1 and let

α := λ−1
min(P )

[
λmax(P ) + τλmax(Q)(1 + βτxβτ )

]
,

γ := 4ε−1
2 (a2

12 + a2
22)β

−1λ−1
min(P ).

Since T > 0 is arbitrary, the definition of exponen-
tial ultimate boundedness in (11) is then satisfied
if a12 6= 0 or a22 6= 0. If a12 = a12 = 0, it is obvious
that the definition of exponential stability in (10)
is met. This completes the proof of Theorem 1.

Next, let us focus on deriving the explicit ex-
pression of expected controller gains by using an
algebraic matrix inequality approach. It is worth
mentioning that, in most literature concerning
nonlinear stochastic stabilization problems, the
solution has not been given as an explicit repre-
sentation.

Based on Theorem 1, we can see that the con-
troller design problem can be transformed into the
following two-step problem: (i) find a necessary
and sufficient condition for the existence of the
positive definite matrix P such that there exists
a controller gain K satisfying (12); and (ii) if the
controller gain K exists, give the characterization
of the set of expected controller gains in terms of
the positive definite matrix P and some other free
parameters.

For presentation convenience, we define

Γ(ε1, ε2, P ) := AT P + PA + DT PD

+ (ε1 + ε2)P 2 + 4ε−1
2 a2

11I + Q,(23)

Ξ(ε1, ε2, P ) := AT P + PA + DT PD

+ P [(ε1 + ε2)I − 0.25ε2a
−2
11 BBT ]P

+ 4ε−1
2 (a2

11 + a2
21)I

+ ε−1
1 AT

d Ad, (24)

where Q is defined in (13).

The aforementioned two-step problem is solved in
the following theorem.



Theorem 2. There exist positive scalars ε1, ε2

and a positive definite matrix P such that the
matrix inequality (12) has a solution K if and only
if the following quadratic matrix inequality

Ξ(ε1, ε2, P ) < 0 (25)

holds, where Ξ(ε1, ε2, P ) is defined in (24). Fur-
thermore, if (25) is true, all gain matrices K
satisfying the matrix inequality (12) can be pa-
rameterized by

K = (0.5a−1
11 ε

1/2
2 ΛU − 0.25a−2

11 ε2PB)T (26)

where Λ ∈ Rn×m is any matrix satisfying

ΛΛT < −Ξ(ε1, ε2, P ) (27)

and U ∈ Rm×m is arbitrary orthogonal matrix
(i.e., UUT = I).

Proof. Rewrite the matrix inequality (12) as

KT BT P + PBK + 4ε−1
2 a2

11K
T K

+Γ(ε1, ε2, P ) < 0, (28)

where Γ(ε1, ε2, P ) is defined in (23).

In terms of the definition of Ξ(ε1, ε2, P ) in (24),
we can rearrange (28) as

(2ε
−1/2
2 a11K

T + 0.5ε
1/2
2 a−1

11 PB)

·(2ε
−1/2
2 a11K

T + 0.5ε
1/2
2 a−1

11 PB)T

< −Ξ(ε1, ε2, P ). (29)

Obviously, there exists a controller gain matrix K
such that the inequality (12) (or equivalently (29))
holds for some positive scalars ε1, ε2 and positive
definite matrix P if and only if the right-hand side
of (29) is positive definite, i.e., −Ξ(ε1, ε2, P ) > 0
or (25) holds. The first part of this theorem is
proved.

Assume now that (25) is true. Note that the
dimension of the controller gain K is m×n. From
(29) and the definition of Λ ∈ Rn×m in (27), we
could relate a Λ such that

(2ε
−1/2
2 a11K

T + 0.5ε
1/2
2 a−1

11 PB)

·(2ε
−1/2
2 a11K

T + 0.5ε
1/2
2 a−1

11 PB)T = ΛΛT .

It then follows that (3) holds if and only if

2ε
−1/2
2 a11K

T + 0.5ε
1/2
2 a−1

11 PB = ΛU, (30)

where U ∈ Rm×m is an arbitrary orthogonal
matrix. Therefore, the expression (26) follows
immediately. This completes the proof of the
theorem.

Finally, our main results can be summarized in
the following corollary.

Corollary 1. Consider the nonlinear continuous-
time state delayed stochastic system (1)-(2) with
the state feedback controller u(t) = Kx(t). If

there exist positive scalars ε1, ε2, and a positive
definite matrix P such that the matrix inequality
(25) holds, then the state feedback controller with
its gain given in (26) will be such that the system
(9) is exponentially stable in the case of a12 = 0
and a22 = 0; or exponentially ultimately bounded
in the case of a12 6= 0 or a22 6= 0, both in the mean
square.

Remark 2. Corollary 1 solves the addressed sta-
bilization problem for the class of nonlinear time-
delay stochastic systems in this paper. In imple-
mentation, we could first solve the quadratic ma-
trix inequality (25), and then obtain the expected
control parameters from (26) easily. Firstly, based
on the algorithms provided in Xie and Soh (1994)
and references therein, we may select appropriate
positive scalar parameters ε1 and ε2 so as to
reduce the conservatism that may have resulted
from the inequalities (16) and (19). Then, (25)
will be a standard quadratic matrix inequality
(QMI) for P . For details concerning the general
QMIs and relevant algorithms, we refer the reader
to Saberi et al. (1995). It can also be noticed
that, there exists a lot of design freedom in our
proposed procedure, such as the choices of ma-
trices Λ and U , which could be used to achieve
other expected performance specifications, e.g.,
reliability constraints.

4. NUMERICAL SIMULATION

In this section, for the purpose of illustrating the
usefulness and flexibility of the theory developed
in this paper, we present a simulation example.

Assume that the nonlinear continuous-time stochas-
tic state delayed system (1)-(2) is given by

dx1(t) = [−2x1(t)− 0.1x2(t) + 0.2 cos(x1(t) + x2(t))

+0.1x1(t− 0.1) + 0.16 sinx2(t)

+2.9u1(t) + 0.2u2(t)]dt + 0.2x1dw(t)

dx2(t) = [−0.1x1(t) + x2(t) + 0.15 sin x2(t)

+0.1x2(t− 0.1) + 0.15 cos x1(t)

+0.1u1(t)− 2.1u2(t)]dt + 0.2x2dw(t).

Considering the system (1)-(2) with the con-
straints (3)-(4), we can obtain that

A =
[ −2 −0.1
−0.1 1

]
, B =

[
2.9 0.2
0.1 −2.1

]
,

Ad = 0.1I2, D = 0.2I2

τ = 0.1, a11 = 0.25; a12 = 0.12;
a21 = 0; a22 = 0.

We choose ε1 = 4.8, ε1 = 8.2, and solve (25) to
obtain



P =
[

0.1287 0.0013
0.0013 0.2003

]
.

Then, setting Λ = 2I2 which meets (27) and
considering two cases of U = I2 and U = −I2,
we have two desired gain matrices as follows:

Case 1 : K1 =
[−0.7938 −0.7764
−0.7580 25.2439

]
,

Case 2 : K2 =
[−23.7023 −0.7764
−0.7580 2.3354

]
.

The responses of closed-loop system dynamics to
initial conditions are shown in Fig. 1 and Fig. 2.
The simulation results imply that the desired goal
is well achieved, i.e., the closed-loop system is
exponentially stable in the mean square.
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Fig. 1. x1 (solid), x2 (dashed).
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Fig. 2. x1 (solid), x2 (dashed).

5. CONCLUSIONS

In this paper, we have studied the stabilization
problem for a class of nonlinear stochastic time-
delay systems. The nonlinearities are assumed to
have the similar form as those in Wang and Ho
(2003), Wang et al. (2003), Yaz and Azemi (1993).
We have developed an effective algebraic matrix
inequality approach to designing the state feed-
back controllers, such that the closed-loop system
is stochastically exponentially stable (or exponen-
tially ultimately bounded) in the mean square, for

all admissible nonlinearities and time-delays. We
have investigated the sufficient conditions for the
nonlinear stochastic systems to be exponentially
stable (or exponentially ultimately bounded), and
have derived the explicit expression of the desired
controller gains. A numerical simulation example
has been provided to show the usefulness and
effectiveness of the proposed design method.
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