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Abstract: This paper describes the application of a model reduction technique based on
proper orthogonal decomposition for the modelling of the dynamics of an industrial glass
feeder. A technique of missing point estimation is proposed to enhance the computational
speed. For a rather complex change of operating conditions, it is shown that the method
infers low complexity models of high accuracy.Copyright©2005 IFAC
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1. INTRODUCTION

Among many glass products, the quality and spec-
ifications of container glass mainly depends on the
operating conditions of glass melts in industrial glass
furnaces. A schematic figure of a glass furnace is given
in Figure 1. A typical furnace consists of a melting
tank, a working end and a feeder section. The feeder is
located between the refiner, where bubbles in molten
glass are released and the spout or the glass outlet point,
which consists of a dosing mechanism. In the glass melt
feeder, the temperature of the glass melt is controlled
before the glass exits at the spout where a uniform tem-
perature distribution is desired for the forming process
of the glass products. Industrial glass melt feeders are
designed to produce glass of different colors, different
weights and different viscosity. Among many physical
variables, especially the temperature in the melt need
to be controlled very tightly both in time as well as in
each position of the feeder.

A most critical change of operating conditions of
industrial glass feeders involves a color change in
the glass melt. Indeed, such a change effects density,
viscosity, redox values, conductivity and absorption
coefficients, to mention only a few physical parameters.

The control of such a change of operating conditions
is a difficult task, especially because the dynamical
response of control variables is not, or only partly,
understood and because the large transient behavior of
such changes have a prolonged effect on the overall
performance of the system. A better understanding
of the process dynamics for this kind of changes is
therefore necessary.

In this paper we consider the reduced order modelling
of the temperature changes during color changes in
a glass melt feeder. For this we apply the method
of proper orthogonal decomposition (POD) which re-
ceives increasing interest for industrial applications.
The focus on POD techniques for obtaining low com-
plexity models for highly complex dynamic operating
conditions of processes is motivated by a number of ar-
guments. Firstly, the POD method is largely application
independent. Secondly, the method results in reduced
order models that are highly accurate and of very
low complexity. Thirdly, unlike many other methods
of model approximation the POD technique captures
relevant dynamics of the system in a small number of
basis functions by explicitly using observed time series
or simulated responses of the system. As such, the
method is data dependent. Fourthly, the separation of



spatial and temporal dynamics in reduced order models
allows a perfect basis for control system design.

In this paper we will apply the POD reduction tech-
nique to an industrial glass feeder in describing the
dynamics of a setpoint change of a glass feeder from a
melt for green container glass to a flint (uncolored) con-
tainer glass melt. In Section 2 we discuss the model of
the feeder. The POD technique is explained in Section
3. Section 4 provides the results of the data acquisition,
and reduced order modelling. Conclusions are deferred
to Section 6.
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Fig. 1. Glass furnace containing combustion chamber
(com), refiner (refi), feeder (feed), and throat (thr)

2. THE MODEL

A schematic view of a glass melt feeder is given in
Figure 2. The spatial configuration of the feeder is
captured in a subsetXof a three dimensional coordinate
system. Here, we consider an industrial feeder for
whichX = [0, 8.5] × [0,0.55] × [0, 2] (in meters).

Fig. 2. Schematic view of a glass feeder

In general, the glass melt flow in the feeder can be
considered as an incompressible and laminar flow.
The governing equations for the feeder are Navier-
Stokes equations that describe the velocity field in each
direction as well as the pressure fieldp and the energy
equations for the temperature fieldT (Bird et al., 1960).
The Navier-Stokes equations are solved for the glass
media only, while the energy equations are solved for
heat transfer in the glass melt media, through the feeder
walls, and heat transfer from the crown to the melt
surface.

The temperature distributionT(x, t) in the feeder is
described by the following PDE:

∂
(
ρcpT

)

∂t
= −div

(
ρcpTu

)+ div (κgradT)+ q (1)

whereρ is the density, which is temperature depen-
dent for glass,cp is the heat-capacity,κ is the heat
conductivity which is also temperature dependent for
glass, andq is the external energy sources applied to
the feeder. A complete dynamical model of the feeder
is based on Navier Stokes equations for incompressible
and laminar flows (Versteeg and Malalasekera, 1995)
and includes energy conservation equations, momen-
tum equations, and mass balance equations.

The physical properties (TNO Institute of Applied
Physics, 2003) of the green and flint glass are summa-
rized in Table 1 and Table 2. Most physical parameters
of the glass melt are functions of temperature. See also
(Stanek, 1977), (Beerkenset al., 1997) and (Günther
and Currie, 1980).

Table 1. Physical parameters green con-
tainer glass (T is temperature in Kelvin)

Parameters Green container
Densityρ (kg/m3) 2540− 0.14T
Viscosityµ (Ns/m2) 10−2.592+ 4242.904

T−541.8413
Specific heatcp (J/kg.K) 1222+ 0.0957T
Heat conductivityκ (W/mK) 0.527+ 0.001T + 1.8× 10−9T3

Absorption coefficient 367.859
Surface emissivity 0.89

Table 2. Physical parameters flint container
glass (T is temperature in Kelvin)

Parameters Flint container
Densityρ (kg/m3) 2536− 0.14T
Viscosityµ (Ns/m2) 10−2.490+ 4094.950

T−553.2733
Specific heatcp (J/kg.K) 1220+ 0.0957T
Heat conductivityκ (W/mK) 0.527+ 0.001T + 2.54× 10−8T3

Absorption coefficient 26.029
Surface emissivity 0.89

To solve the equations numerically over the spatial
domainX and a finite discrete time domainT, the
feeder is divided into 7128 grid points. Some grid
points act as boundary points, where the Dirichlet
or Neumann boundary conditions are imposed. These
boundary points belong to the input terms. The number
of non-boundary points is 3800. Hence, the numerical
calculation involves the time evolution ofT(x, t) to be
computed simultaneously in 3800 positions.

3. MODEL REDUCTION BY PROPER
ORTHOGONAL DECOMPOSITION

3.1 Construction of basis functions

The method of proper orthogonal decomposition
(POD) amounts to choosing an optimal basis of the
space in which the physical variables reside. For the
application of this paper, we consider temperaturesT
defined on a spatial domainX and a temporal domain
T. It is assumed that for any timet ∈ T, the spa-
tial temperature distributionT(·, t) mappingX to R,
belongs to a known separable Hilbert spaceX. This
means that for some countable index setI (finite or



infinite) there exists a minimal basis{ϕi }i∈I ofX, that is
orthonormal in the sense that the inner product〈ϕi , ϕ j 〉
is 1 if i = j and 0 otherwise. In particular, for any such
basis the spatial temperature distributionT(·, t) ∈ X
(often referred to as thet th snapshot) admits a unique
expansion of the form

T(x, t) =
∑

i∈I
ai (t)ϕi (x) (2)

whereai (t) := 〈ϕi , T(·, t)〉 are the (Fourier) coeffi-
cients or themodal coefficientsof the expansion (2).
The existence and uniqueness of expansions (2) is
therefore the consequence of the assumption that the
snapshots belong to a space equipped with the mathe-
matical structure of an inner product. Atime averaging
operator is a linear function av: RT → R with the
property that mint∈T f (t) ≤ av( f ) ≤ maxt∈T f (t).
For discrete time setsT of finite cardinalityL one may
define, for instance,

av( f ) = 1

L

∑

t∈T
f (t). (3)

Now suppose that an ensemble of snapshotsT(x, t)
with x ∈ X and t ∈ T is observed, simulated or
obtained in an experimental way. The aim will be
to accurately approximateT by an expansion that
has considerably less terms than (2). An orthonormal
basis{ϕi }i∈I of X is said to be aPOD basiswith
respect to the observed dataT if the Fourier coefficients
ai (t) = 〈ϕi , T(·, t)〉 with i ∈ I andt ∈ T satisfy

av(a2
i (t)) ≥ av(a2

j (t)), wheneveri < j .

A POD basis then has the property that for anyn > 0
the partial sum

Tn(x, t) =
n∑

i=1

ai (t)ϕi (x) (4)

is an optimal approximation ofT in the sense that the
time-averaged approximation error

av(‖T(x, t)− Tn(x, t)‖2)
with ‖ · ‖ the norm induced by the inner product〈·, ·〉
is minimal among allnth order approximations of the
data and among all possible minimal orthonormal bases
of X. It is important to observe that a POD basis isdata
dependent. That is, different data yield different bases.
On the other hand, differentn do not require different
bases for (4) to be optimal (Holmeset al., 1996).

If both X and T have finite cardinality, sayK and
L, then a POD basis is easily constructed from a
singular value decomposition of theK × L data matrix
T whose entries Ti j = T(xi , t j ). Specifically, let
X = RK be the Hilbert space with inner product
〈x1, x2〉 := x>1 x2 and suppose that (3) defines the time
averaging operator. Let T= 869> be a singular
value decomposition of T. Then thej th POD basis
function is given byϕ j (xi ) := 8i j , wherexi is an
arbitrary element inX and j = 1, . . . , K .

For arbitrary Hilbert spacesX a POD basis is ob-
tained by constructing the data-correlation mapC :

X→ X defined by the self-adjoint operatorC(ϕ) :=
av(〈T(·, t), ϕ〉T(·, t)). Then the POD basis are the
(normalized) eigenfunctions ofC, provided that the
operator av commutes with the inner product.

3.2 Construction of modal coefficients

Once the basis functions have been extracted from
the dataT , then the coefficient functionsai (t) :=
〈ϕi , T(·, t)〉 can be obtained in quite a number of
manners. We consider three approaches here.

Galerkin projections. Suppose that the evolution ofT
is governed by a partial differential equation

L(T) = R(T) (5)

whereL(T) =∑p
i=0 L i

∂ i T
∂t i is a pth order polynomial

differential operator andR(·) is a (nonlinear) partial
differential operator in the spatial variable. Then the
modal coefficients are obtained by requiring that the
Galerkin projectionof the residualL(Tn)−R(Tn)with
Tn the partial sum (4) onto the space spanned byϕi with
i = 1, . . . , n vanishes. That is,

〈L(Tn)− R(Tn), ϕi 〉 = 0 i = 1, . . . , n. (6)

Given the basis functionsϕi , andn ≥ p, the condition
(6) leads to ann-th orderordinary differential equation
in the coefficientsai (t) given by

L(ai ) =
〈

R




n∑

j=1

a j (t)ϕ j (x)


 , ϕi (x)

〉

wherei = 1, . . . , n. This defines the dynamics of the
model.

Missing point estimation.The coefficientsai (t) may
be inferred from partial information on the spatial
domain. LetX0 be a strictly proper subset ofX which
we will refer to as amask. Let X0 ⊂ X be the Hilbert
space of the restricted mappingsT̃ := T |X0 with
T ∈ X and letϕ̃i = ϕ |X0 be the restrictions of the
basis functions. Note that̃ϕi , i ≥ 1, will be a basis
for X0, but in general this will be neither a minimal
nor an orthonormal one. Given an orthonormal basis
{ϕi }Ki=1 of X and ameasurement̃T on the maskX0,
the objective is to estimate

T̃n(x, t) =
n∑

i=1

ãi (t)ϕ̃i (x), x ∈ X0 (7)

by minimizing the least squares error

E(t) = ‖T̃(x, t)− T̃n(x, t)‖2X0
(8)

over ãi (t) for t ∈ T. By deriving E(t) in (8) to ãi (t)
and set the derivation to zero, we obtain the optimal
estimation ofãi (t) asãi

∗(t):

ã∗i (t)〈ϕ̃i (x), ϕ̃ j 〉X0 = 〈T̃(x, t), ϕ̃ j (x)〉X0 (9)



By solving (9), we obtain the estimate ofT by setting

T̂n(x, t) =
n∑

i=1

ãi (t)ϕi (x), x ∈ X.

We will refer to T̂n as themissing point estimationof
T , based onn modes. The problem ofpoint selection
amounts to characterizing masksX0 of fixed dimen-
sion, ` say, so that the missing point estimationT̂n

based on the measurementT̃ = T |X0×T provides a
good estimate ofT .

In (Astrid et al., 2004) a criterion is proposed for the
selection of such points. The criterion is based on
the correlation of the output energy over the spatial
domain. Precisely, define for each pointxk ∈ X, the
L × L matrix E(xk) whose(i, j )-th entry is

Ei j (xk) :=
n∑

r=1

T(xr , ti )T(xr , t j )−T(xk, ti )T(xk, t j ).

(10)
Then, fork = 1, . . . , K , defineek by setting:

ek :=‖ E(xk) ‖ (11)

where the norm‖E‖ is defined as

‖E‖ =
L∑

i=1

L∑

j=1

E2
i j .

Thenek in (11) represents the total output correlation
obtained by ignoring the pointxk ∈ X. The point with
smallestek is the one that maximizes the output energy,
i.e., the one which is most relevant in comparison
with other points. Let us re-index the points inX as
xk1, . . . , xkK such that

ek1 ≤ ek2 ≤ · · · ≤ ekK .

After this ordering, we will choose the maskX0 =
{xk1, · · · , xk`}. In addition, the re-ordering may take
the conditioning of the incomplete basis into account
(See (Astrid, 2004)).

The reduced order model by the MPE technique is
constructed by projecting the restricted POD basis8̃

onto the equations governing the points inX0. Hence,
the termT̃(x, t) in (9) is replaced by the equation ofT
located atx.

4. RESULTS

4.1 Collection of data

The color change will significantly change the physical
properties of the glass melt. If green container glass
melt is replaced by flint (transparent) container glass
melt, the heat conductivity will change by a factor
8. The reduced order model will need to take these
significant changes into account. If the reduced order
model is derived from simulation data where the color
change from green to flint is not simulated, then the

reduced order model cannot be expected to accurately
capture the color change dynamics.

In this application we focus on the reduced order
modeling of the temperature during the color change.
The green container glass melt in the feeder is assumed
to be initially under the steady state condition with
constant pull rate of 80 tons/day and the nominal crown
temperature distribution (the inputs) as depicted in
Figure 3. The crown temperature of each zone is varied
as shown in Figure 3.

0 20 40 60 80 100 120
−10

0

10
Variations of the crown temperature per zone

Z
on

e 
1(

K
)

0 20 40 60 80 100 120
−5

0

5

Z
on

e 
2(

K
)

0 20 40 60 80 100 120
−10

0

10

Z
on

e 
3(

K
)

0 20 40 60 80 100 120
−10

0

10

time (minutes)

Z
on

e 
4(

K
)

Fig. 3. Crown temperature variations

The green container glass melt is then replaced by
the flint container glass melt at timet = 0 and data
is collected for 112 minutes with a sampling time
of 1 minute. To derive the reduced order model of
the temperature field, 112 temperature distributions
(snapshots) are collected. Hence,K = 3800 and
L = 112. The POD basis functionsϕi defines in
Section 2 are computed.

For the color change, 18 POD basis functions are taken.
The reduced order model is obtained by employing a
Galerkin projection of the first 18 POD basis functions
ϕ1, . . . ϕ18 onto the original model describing the tem-
perature distribution.

4.2 Validation of reduced order model

Figure 4 shows the comparison between the results of
the reduced order model and the original model for
the measured temperature profiles at the glass melt
surface. The pointsT1 and T2 are the measurement
points at the surface and the pointsT4 to T5 are the
measurement points at the outlet of the furnace. The
simulated conditions are the same as when the data
was collected. From Figure 4, it is clear that the reduced
order model can capture the dynamics of the original
model quite well.

The plot of the average absolute error for every grid
point is given in Figure 5. The highest value of the
absolute error is about 0.08 (in Kelvin), observed in
the glass melt. The temperature variations in the glass
melt during the simulation is about 20 K. Hence, the
deviation of the reduced model from the original model
accounts for less than 0.5% of the temperature changes.
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The operating temperature of the glass melt feeder is
around 1480 K and the effective heat conductivity of
the green container glass is varying around 7 W/m.K.
For this operating temperature, the flint container glass
melt has an effective heat conductivity of around 84
W/m.K. The drastic change of the glass melt heat
conductivity will change the temperature distribution
in the glass melt and the resulting transient changes can
be captured quite well by the reduced order model.

4.3 Acceleration by missing point estimations

Despite the reduction of complexity, the reduced or-
der model turns out to be about 2.3 times faster in
calculation time than the original model. To construct
a faster reduced order model, the method of missing
point estimation (MPE) as described in section 3.2 is
applied.

The selected pointsX0 of the spatial grid consists
of the union of two sets. The first being all points
adjacent to the points in which on which the crown
temperature, inlet temperature and pull rate are defined
(the ‘excitation points’ in the feeder, 265 in total).

The second being those points that minimize the MPE
criteria as proposed in section 3.2. Since the feeder
is symmetric along its width (z-direction), only 1635
points qualify for this.

The value of the criterionek is calculated for all 1635
candidate points and shown in Figure 6.
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Based on these values, the maskX0 is then defined by
the locations of the 265 excitation points and a number
of extra points points which are chosen such that the
condition number of̃8(X0)

>8̃(X0) is close to 1 with
8(X0) =

(
ϕ1|X0 . . . ϕn|X0

)
. Based on the condition

numbers, 400 additional points have been selected to
define a maskX0 of 665 points.

The comparisons between the original model, POD
model with 18 basis functions, POD-MPE with 665
points and 18 basis functions, and POD-MPE with 465
points and 18 basis functions are depicted in Figure 7
for T1 andT2 at the surface.
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Fig. 7. Reduced and original temperature profiles at
the measurement pointsT1 andT2 during the color
change simulation.

Table 3 shows the maximum error average (calculated
by (5)) and the resulting computational gain with
respect to the computing time of the original model



during the situations where the process settings are the
same as during the snapshot data collection. From the

Table 3. Comparison between POD and
MPE models

Model Maximum average Computational
Type Absolute error gain
POD 0.081◦C 226%
MPE-665 0.082◦C 527%
MPE-465 0.13◦C 754%

results tabulated in table 3, it is clear the MPE-reduced
based model can still follow the dynamics of the
original model very well. The resulting reduced order
model with MPE based on 465 points is 7.54 times
faster than the original model and this corresponds to
8.5 times faster than the real time. Since we only reduce
the temperature here and calculate the Navier-Stokes
equation by the original model, the enhancement of the
computational speed is limited.

To evaluate the performance of the MPE reduced
models, we impose random excitation signals at the
crown temperature zones. This condition is different to
the condition used to derive the POD basis. The random
excitation signal is shown in Figure. 8 and applied to
all zones.
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Fig. 8. Random excitation signal for validation of MPE
models

The responses of the temperatureT1 and T2 of both
the original and the MPE model with 465 points are
shown in Figure. 9. It is obvious from Figure. 9 that
the MPE model can still follow the original dynamics
quite well despite the fact that the excitation signals
are completely different. The absolute error average
at these locations account for less than 0.5◦C, which
is still acceptable for temperature variations of about
8◦C.

5. CONCLUSIONS

This paper discusses the reduced order modelling of
a glass melt feeder for estimations of the temperature
distribution in the glass melt and in the refractory walls.
The method of proper orthogonal decomposition is
applied to the original feeder model and the results
show excellent performance of a reduced order model
consisting of only 18 modes.
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Fig. 9. The validation of the MPE model using random
excitation signals

The reduced order model is considerably less complex,
but nonlinear, and still computationally expensive. It is
for this reason that we also implemented a method of
missing point estimation to enhance the computational
speed of the reduced order model. Details of the latter
method are described in (Astridet al., 2004).
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