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Abstract: A framework for synthesis of stabilizing PID controllers for linear time-
invariant systems using Hermite-Biehler Theorem is presented. The approach is based on 
the analytical characterization of the roots of the characteristic polynomial. Generalized 
Hermite-Biehler Theorem from functional analysis is used to derive stability results, 
leading to necessary and sufficient conditions for the existence of stabilizing PID 
controllers. An algorithm for the selection of stabilizing feedback gains using root locus 
techniques and Linear Matrix Inequalities (LMI) is presented.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Feedback control aims to design fixed-order 
controllers that would, taking into account the system 
dynamics, stabilize the closed-loop system and meet 
certain performance criteria. Among many of the 
issues that arise during the life cycle of system 
design, one of the first, and probably the most critical 
one, is stability of the feedback loop. The problem of 
stabilizing a given process by suitable low fixed-
order compensator, and attempt to design optimal 
and robust controllers with constrained order, is a 
challenging one. Based on the methodology used to 
design the stabilizing controller and the manner in 
which the system is modeled, numerous approaches 
are available for stability analysis and system design; 
however, most lack complete analytical 
characterization. 
  
Algebraic approaches to stability analysis and 
controller synthesis draw motivation from the 
Hermite-Biehler, Kharitonov, Edge, and Lipatov 
theorems (Bhattacharyya, et al., 1995; Kharitonov, 
1978; Bartlett et al., 1988; Lipatov and Sokolov, 
1978). Such methodologies use polynomials (or 
polynomial matrices) to provide conditions for the 
stability of linear feedback processes, or a family of 
processes (interval plants). Intelligent use of these 
theorems allows the simultaneous design of the 
characteristic polynomial of the closed-loop and 
synthesis of the controller. Furthermore, they offer 
the advantage of analytical characterization and 
fixed-order controller synthesis, which most classical 
control methods fail to address. For example, 
classical control techniques in frequency domain 
such as Evans root locus and Nyquist stability 
criteria are graphical in nature and fail to provide any 
analytical characterization of the stabilizing 
compensator parameters. The Routh-Hurwitz 
criterion on the other hand, does provide an 
analytical solution to the stability problem; however, 

the set of stabilizing compensators can only be 
determined by solving a set of nonlinear inequalities, 
a task that may become cumbersome for high-order 
processes. Similarly, other methods such as YJBK 
parameterization (Youla at al., 1976) can be used to 
parameterize all proper feedback controllers that 
stabilize a given process, and minimize a specific ∞ -
norm, but the disadvantage of such an approach is 
that the controller order must be constrained. 
Nevertheless, the Hermite-Biehler framework can be 
used to design optimal constant gain controllers that 
minimize the ∞ -norm to a value that is a reasonably 
good approximation to the unattainable infimum. 
Furthermore, when used in conjunction with the 
Kharitonov and Edge theorems, the set of all 
stabilizing controllers for a family of processes can 
be found, an issue that is central to the robust control 
theoretic framework. 
 
In this paper, we present an analysis-synthesis 
framework for linear time-invariant systems based on 
the generalized Hermite-Biehler Theorem (Ho et al., 
1999; Ho et al., 2000). The generalized Hermite-
Biehler Theorem is used in functional analysis to 
study the stability properties of real polynomials 
defined over complex fields, and provides conditions 
for the Hurwitz stability of real polynomials. Since 
characteristic polynomials in linear systems with 
feedback are real polynomials, the Hermite-Biehler 
Theorem, in addition to providing information about 
stability also provides an elegant, easy, and analytical 
way of characterizing the set of all stabilizing 
controllers for a given process. The analytical 
framework developed in the paper is generic, and has 
been modified to apply to low order plants with 
feedback delays (Roy and Iqbal, 2003a). We may, 
however, point out that the analysis presented in this 
paper only concerns the stability and not the 
performance aspects of the system. 
 
The stability of the closed-loop system is analyzed 



     

using generalized Hermite-Biehler Theorem in a 
manner that enables characterization of the 
stabilizing set of controller gains. It is shown how the 
generalized Hermite-Biehler Theorem can be used 
not only to derive conditions for the existence of the 
set of stabilizing compensators but also as a 
convenient and elegant analytical method to design 
compensators for linear control systems (Datta et al., 
1999). The stability problem is solved in (Datta et 
al., 1999) for PID controllers for processes without 
time-delay, while in (Roy and Iqbal, 2003b) a 
modified and extended solution is presented for 
unstable processes with transport lags in the feedback 
path. The PID stabilization problem for first-order-
plus-dead-time (FOPDT) and a fourth-order process 
are solved in (Roy and Iqbal, 2003a) and (Iqbal and 
Roy, 2002), respectively. The solution to the PI 
stabilizing problem can be found in (Datta et al., 
1999). 
 
The organization of this paper is as follows: In 
Section 2, we present the stability analysis of the 
model in the Hermite-Biehler framework and 
develop an algorithm to synthesize stabilizing PID 
controllers. Applicability of the results is illustrated 
in Section 3 with a design example. Finally, 
conclusions are given in Section 4. 
 
 

2. PROBLEM FORMULATION 
 
In this section we develop a framework for stability 
analysis of a linear time-invariant system in unity 
gain feedback configuration based on the application 
of the generalized Hermite-Biehler Theorem. The 
system is shown in Fig. 1. Let )()()( sQsWsGp = , 

where ( )W s  and ( )Q s  are relatively prime, and 
( ) ( ) ( )c c cG s n s d s= , where for simplicity we 

assume a PID controller given by 

ipdc KsKsKsn ++= 2)( , ssdc =)( ; then, the 

closed-loop characteristic polynomial )(sψ  is given 
as 

.)()()()()( 2 sWsKsWKsKssQs pdi +++=ψ      (1) 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Block diagram of a typical single-channel, 

unity feedback control system with a PID 
controller. 

 
In the following, we first state the generalized 
Hermite-Biehler Theorem and then develop a 
framework for controller synthesis. For proof of the 
Theorem the reader is referred to (Ho et al., 1999; 
Ho et al., 2000). 
 

2.1 The Generalized Hermite-Biehler Theorem  
 
Generalized Hermite-Biehler Theorem (Ho et al., 

1999; Ho et al., 2000): Let 
0

( ) ,
n

i
i i

i

s s iδ δ δ
=

= ∈ ∀∑ R  

with a root at the origin of multiplicity k . Writing 
)()()( 22 ssss oe δδδ += , where )( 2

, soeδ  are the 
components )(sδ  made up of even and odd powers 
of s , respectively. For every ω ∈R , denote 

)()()( ωωωδ jqp +=  where )()( 2ωδω −= ep , 

)()( 2ωωδω −= oq , and let ejω  denote the real, 

nonnegative, and distinct zeros of )( 2ωδ −e  and let 

okω  denote the real, nonnegative, and distinct zeros 

of kjo ,)( 2 ∀−ωδ , both arranged on ascending order 
of magnitude. Let 1210 −<<<< omoo ωωω  be the 
zeros of )(ωq  that are real, distinct, and 
nonnegative. Also, define 00 =ω , ∞=omω , 

0

)()( 0
)(

ωω

ω
ω

ω
=











= p

d
dp

k

k
k . Then m +∀ ∈Z  

 
1 ( )

0
1

1

[ ( )] ( 1) {sgn[ ( )]

2 ( 1) sgn[ ( )]

( 1) sgn[ ( )]} sgn[ ( )], 2 ,

m k

m
i

oi
i

m
om

s p

p

p q n m

σ δ ω

ω

ω

−

−

=

= −

+ −

+ − ⋅ ∞ =

∑  

 
1 ( )

0
1

1

[ ( )] ( 1) {sgn[ ( )]

2 ( 1) sgn[ ( )]} sgn[ ( )], 2 1,

m k

m
i

oi
i

s p

p q n m

σ δ ω

ω

−

−

=

= −

+ − ⋅ ∞ = +∑
 

 
where [ ( )]sσ δ  denotes the signature of the 
polynomial defined as: ( ) ( )[ ( )] L Rs n nδ δσ δ − , where 

( )Lnδ  and ( )Rnδ  are the number of open left-half plane 
(LHP) and right-half plane (RHP) roots. 
 
 
2.2 Stability Analysis 
 
In order to develop a stability framework based on 
the Hermite-Biehler Theorem, we proceed as 
follows: define the signature of )(sψ  as 

( ) ( )[ ( )] L Rs n nψ ψσ ψ −  and the order of ( )sψ  as 
( ) ( ) [ ( )]L Rn n sψ ψ ψ+ Θ ; then, from a stability 

perspective, if )(sψ  is Hurwitz, then ( ) 0Rnψ =  (no 
RHP poles), or equivalently, 

[ ( )] [ ( )]s s mψσ ψ ψ= Θ =  (i.e., if the system is 
Hurwitz stable, then the signature equals the order of 
the characteristic polynomial). In order to apply the 
generalized Hermite-Biehler Theorem, we 
decompose )(sW  and )(sQ  into polynomials with 
even and odd powers of s . To this effect we let 

)()()( 22 ssWsWsW oe += , )()()( 22 ssQsQsQ oe += . 

Also, define 2 2( ) ( ) ( ) ( )e oW s W s W s sW s∗ − = −  and 
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let  
 

*

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )i d p

s s W s sQ s W s

K s K W s W s sK W s W s

δ ψ ∗

∗ ∗

=

+ + +
(3) 

 
then, it can be verified that 

[ ( )] [ ( ) ( )] [ ( )] [ ( )]s s W s s W sσ δ σ ψ σ ψ σ∗= = − .  
 
Further, if )(sψ  is Hurwitz stable, then 

[ ( ) ( )] [ ( )]s W s m W sψσ ψ σ∗ = − . Now, substituting 
s jω=  in )(sδ  we obtain  
 

)()()()()( ωωωωψωδ jqpW +== ∗           (4)  
 
where               
 

2
1 2( ) ( ) ( ) ( )i dp p K K pω ω ω ω+ −            (5) 

 

       1 2( ) ( ) ( )pq q K qω ω ω+                    (6)
                
and the polynomials 1 2 1( ), ( ), ( )p p qω ω ω , and 

2 ( )q ω  are given as:  
 

2
1( ) [ ]e o o ep Q W Q Wω ω − , 2 2 2

2 ( ) [ ]e op W Wω ω+ , 
  
     2

1( ) [ ]e e o oq W Q W Qω ω ω+ , 2 2( ) ( )q pω ω ω   (6) 
 
We note that Eqs. (5) and (6) provide a decoupling of 
the position gain, pK , from the velocity and integral 

gains, dK  and iK . This structure will be exploited 
to develop a synthesis procedure for PID controllers 
later in the section. For now, in order to develop 
stability characterization using the generalized 
Hermite-Biehler Theorem, let [ ( )]qm q ωΘ  and 

q qm m≤  be the number of real, nonnegative, and 

distinct zeros of )(ωq  with odd multiplicities that 
satisfy the following condition for ( , )pK ∈ −∞ ∞ :  
 

0 1 2 10
q qo o om omω ω ω ω ω−= < < < < < = ∞ . 

 

Furthermore, define [ ( )]m W sψρ σ− , 

1 [ ]
2 Wm mψα + , and 1( 1) sgn[ ( )]qm qγ −− ∞ , then 

application of the generalized Hermite-Biehler 
Theorem to Eq. (4) leads to the following: 
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where +Z  defines the set of positive integers. 

Substituting Eq. (5) in Eqs. (7) and (8) we obtain 
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We now define the following integer variables 
 

                    0I sgn 1 2[ (0) (0)],pp K p+              (11a) 
 

        iI sgn 2
1 2[ ( ) ( ) ( )]oi i d oi oip K K pω ω ω+ − ,    (11b) 

 

where 0 { 1, 0, 1}I ∈ −  and { 1, 1} [1, ]i qI i m∈ − ∀ ∈ ; then 
the necessary and sufficient conditions for the 
existence of stabilizing PID controllers are given by 
the following theorem: 
  
Theorem: The characteristic polynomial )(sψ  is 
Hurwitz stable if and only if there exist a feasible 
non-empty solution { }iI ≠ ∅  to either of the 
following equations:  
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where , 0,1, ,i qI i m= …  denote the unknown integer 
variables as defined in Eqs. (11a) and (11b).  
 
Proof: (Necessity) If Eq. (12) or (13) has a feasible 
solution, then by using Eqs. (11a) and (11b) in Eqs. 
(9) and (10), and applying the generalized Hermite-
Biehler Theorem, we can ensure that 

[ ( )] [ ( )]s m W sψσ δ σ= − , so that [ ( )] [ ( )]s sσ ψ ψ= Θ  
and ( )sψ  is Hurwitz stable. 
 
(Sufficiency) If ( )sψ  is Hurwitz stable, then 

[ ( )] [ ( )]s sσ ψ ψ= Θ  s.t. that [ ( )] [ ( )]s m W sψσ δ σ= − , 
and from the generalized Hermite-Biehler Theorem 
either Eq. (7) or (8) must be satisfied. The only way 
to satisfy it is if Eq. (12) or (13) has a feasible 
solution.  ♣ 
 
Characterization of the stabilizing PID gains for the 
system is now provided by the following results: 
 



     

Corollary 1: The range of pK  for which the root 

distribution of ( )q ω  is such that Eq. (12) or (13) is 
satisfied, can be identified from the root locus plot of 

2 1{1 ( ) ( )}pK q qω ω+ . This range is denoted as 

),(),()( ∞−∞⊆= ppp KKKS , where the under bar 
and the over bar represent the lower and upper limit, 
respectively. 
 
Corollary 2: Assume that a non-empty solution to 
Eq. (12) or (13) has been found, i.e., let 

{ }ig I ≠ ∅ , then the ranges of the stabilizing gains 

iK  and dK , i.e., ( , )iiK K  and ( , )ddK K , can be 
solved from the following linear matrix inequalities 
(LMI): 
 

                sgn 1 2{[ ] [ ][ ]} ( ) ,TP P gκ+ =                    (14) 
 

where the matrices ,1
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2[ ] ,qmP ∈R  and 
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[ ] [ ]Ti dK Kκ                                                     (17) 
 
thus, for a given ( )p pK S K∈ , the stabilizing PID 

controller set is: { , ( , ), ( , )}i dp i dS K K K K Kκ . 
  
We note that the solution of the LMI given by Eq. 
(14) is either a convex polygon or a half-plane in the 

i dK K−  space. We also note that the procedure 
leading to Eq. (14) and its solution can be easily 
coded on the computer. We further note that by 
repeating this process for different values of 

( )p pK S K∈ , one can obtain a picture of stability in 
the 3-D space. The stability characterization in the 
controller parameter space is shown in Fig. 2. 
Finally, the above analysis can be modified to restrict 

, ,p i dK K K +∈  in order to force non-negative 
solution to the problem, if so desired. 
 
Based on the above discussion, we provide the 
following algorithm for PID controller synthesis for 
the single-channel unity feedback system (Fig. 1). 
 
 
2.3 Algorithm for Controller Synthesis 
 
Step 1: Given ( )W s  and ( )Q s , use Eq. (6b) to obtain 
the polynomials 1( )q ω , 2 ( )q ω ; and plot the root 
locus for 1 1{1 ( ) ( )}pK q qω ω+ . Also, compute ρ .  
 

Step 2: Select some ( ) ( , )pS K ⊆ −∞ ∞  from the root 

locus such that ( )p pK S K∀ ∈ , qm  has the potential 

to satisfy Eq. (12) or (13), i.e., 2 1qm ρ− ≥  on the 
root locus plot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. The design methodology illustrated in the 

p i dK K K− −  space. 
 
Step 3: Choose a trial value 0 ( )p pK S K∈ ; 
accordingly, calculate the values of  γ  and α . 
 
Step 4: For the selected 0 ( )p pK S K∈ , use Eqs. (12) 
or (13) to obtain g . If g ≠ ∅ , proceed to Step 5; 
otherwise repeat Steps 2-3 with different ranges of 

( )pS K  until g ≠ ∅  is obtained. 
     
Step 5: Compute 1[ ]P  and 2[ ]P  for 0 ( )p pK S K∈ . 
Use the set of LMI given by Eq. (14) to obtain the 
non-empty stabilizing set Sκ . If the solution to Eq. 
(14) is empty, then repeat Steps 3-5 with a different 

0 ( )p pK S K∈ . 
 
The algorithm and the stability characterization is 
illustrated in the form of a Venn diagram in Fig. 3. 
 
 

3. DESIGN EXAMPLE 
 
As an example of the stability analysis and controller 
synthesis, we apply the synthesis algorithm to a 
single-link biomechanical system with position, 
velocity, and force feedback, and with physiological 
latencies in he feedback loops (Iqbal and Roy, 2004). 
 
Using [1/1]  Padé approximation to represent the 
delays, the closed-loop transfer function is given as  
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Fig. 3. Venn diagram illustrating the controller 

synthesis algorithm based on the Hermite-Biehler 
Theorem. 

 
where 

 
3 2( ) 0.112 13.03 305.08 596.17,Gn s s s s= + + +  

 
6 5 4 4 3

6 2 7 8
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The even and odd parts of ( )W s  and ( )Q s  are 
calculated as: 
 

6 4 6 2 8( ) 0.2 383.69 4.89 10 4.23 10 ,eW s s s s= − − + × + ×
 

4 4 2 7( ) 28.78 9.92 10 8.28 10 ,oW s s s= − + × + ×  
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1.05 10 5.47 10 ,
eQ s s s s
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−= − × + + ×

+ × − ×
 

 
6 4 6 2 6( ) 0.14 1681.63 1.36 10 6.23 10 .oQ s s s s= + + × − ×

 
Then, using Steps 1-4 of the controller synthesis 
algorithm we obtain: 5ρ = , 7.5α = , and the 
stabilizing range of pK  is given as: 

( ) (0.129, 13.3)pS K = . For illustration we choose 

0 5pK = ; then sgn[ ( )] 1q ∞ =  and the real, 
nonnegative, and distinct zeros of )(ωq  with odd 
multiplicities are: 00 =ω , 1 23.35oω = , and 

2 161.19oω =  rad/sec. Therefore, 3qm = , 1γ = , and 

from Eq. (12) we obtain 0 1 2{ 2 2 } 5I I I− + = , which is 

solved as 0 1 2{ , , } {1, 1,1}g I I I= = − . Use of Eqs. (13)-
(16) then results in the following linear inequalities: 
 
    

 

           
0
545.31 40.95 0

13502.1 4193.79 0

i

i d

i d

K
K K
K K

<
 + + <
 + − >

             (17) 

 
The shaded area in Fig. 4 shows the bounded feasible 
region in the i dK K−  space for the active constraints 
given by Eq. (17). Therefore, the set of all stabilizing 
PID controllers for 5pK =  is: 

{5, (0, 220) , ( 0.075, 0.325)}Sκ = − . For illustration, 
we select { 10, 0.16};i dK K= =  then, the closed-loop 
poles of ( )G s  are given as: 1, 2 34.83 80.27s j= − ± , 

3 85.16s = − , 4 66.67s = − , 5 28.9s = − , 6 20.64s = − , 

7,8 9.45 10,s j= − ±  and 9 2.15s = − . Since 
Re[ ] 0is < , the closed-loop system is Hurwitz stable. 
The closed-loop step response for 

5, 10, 0.16p i dK K K= = =  is shown in Fig. 5. 
 

 
 
Fig. 4. Feasible d iK K−  region obtained from active  

constraints. The feasible region is either a convex 
or a hyper plane. 

 
 

 
 
Fig. 5. Stable closed-loop response to a step input 

with 5,pK =  0.16,dK =  and 10iK = . 

( )∞−∞,

Range of  iK  

( , )ii iK K K∈

                               
                                              

Range of  dK  

( , )dd dK K K∈

S(Kp) 
     

0 ( )p pK S K∈  
•



     

4. CONCLUSIONS 
 
In this paper rigorous mathematical stability of linear 
time-invariant systems of arbitrary order is 
established using Hermite-Biehler framework from 
functional analysis. Stabilizing PID gains are chosen 
through a combination of root-locus techniques and 
linear matrix inequalities that result from application 
of the generalized Hermite-Biehler Theorem. The 
resultant controller synthesis algorithm is, in general, 
programmable1 for linear systems of arbitrary order. 
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