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Abstract: In this work, we consider the application of the Interconnection and
Damping Assignment (IDA) control methodology, recently proposed in the literature,
to the asymptotic position regulation problem of a brushed DC motor driving a
mechanical load. To achieve this objective the electromechanical system is firstly
transformed into the general port controlled Hamiltonian form and, then, the IDA
design procedure is applied to synthesize the stabilizing control law. The Hamiltonian
structure of the closed loop system is preserved and the asymptotic stability of the
mechanical position is verified by digital simulations. Copyright c©2005 IFAC
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1. INTRODUCTION

Energy shaping control methods have attracted
a lot of interest recently. A common outstand-
ing feature of these methods, in the face of the
stabilization problem, is seeing physical systems
as the interconnection of simpler sub-systems or
components either storing or dissipating energy
(Ortega et al., 1998). This viewpoint allows us to
obtain physical system models in two alternative
structures (Lagrangian or Hamiltonian) (Meisel,
1969; Ortega et al., 1998; van der Schaft, 2000).
Energy shaping methods pursue to preserve the
physical structure (Lagrangian or Hamiltonian)
in the closed-loop. This characteristic has the
advantage that the closed-loop energy function
can be used as Lyapunov (or storage) function for
stability analysis purposes.

Whilst the controller design methods that shape
the potential energy have been known for years
(Ortega et al., 1998), the challenging problem
of shaping the total energy of electromechanical
systems has been addressed more recently (Bloch
et al., 2000; Hamberg, 2000; Ortega et al., 2002a).
To this end, it is required that the overall en-
ergy function has a minimum at the desired equi-
librium point. This is guaranteed in mechanical
systems by firstly modifying the inertia matrix
(in the kinetic energy) and then by shaping the
potential energy. The Interconnection and Damp-
ing Assignment (IDA) passivity based control ap-
proach is used to achieve this goal in Ortega et
al. (2002a), for mechanical systems in the general
Port-Controlled Hamiltonian (PCH) form (Ortega
et al., 2002b). It is important to emphasize that
in the work by Chang et al. (2002), the com-
plete equivalence of the PCH/IDA methodology
to that of the controlled Lagrangian methodology



is proven . In particular, the Lagrangian form of
the gyroscopic terms corresponding to the Poisson
structure modification is identified.

On the other hand, the total energy problem for
generalized electromechanical systems has been
addressed in Rodriguez and Ortega (2003) to solve
the asymptotic position regulation problem of
fully actuated systems with linear magnetic mate-
rial consisting of inductances, permanent magnets
and one mechanical coordinate. This objective is
achieved by modifying the interconnection struc-
ture of the system and adding gyroscopic terms
to the energy function so that the minimum of
the total closed-loop system is only determined
by the mechanical potential energy. In this paper
we address the problem of achieving asymptotic
position regulation, by following the PCH/IDA
methodology reported in Rodriguez and Ortega
(2003), of a brushed DC motor driving a mechan-
ical load.

2. IDA CONTROL OF
ELECTROMECHANICAL SYSTEMS IN PCH

FORM

For the seek of clarity, we revisit the modelling
procedure explained in Rodriguez and Ortega
(2003), which is based on the energy conversion
methodology detailed in Meisel (1969), to repre-
sent the generalized electromechanical system. It
consists of ne windings with linear magnetic ma-
terials and it is also assumed that all parameters
are constant and known. Then, by applying the
Gauss’s law and the Ampere’s law, the following
affine relationship arises

λ = L(θ)i + µ(θ) (1)

between the flux linkage λ ∈ <ne and the current
vector i ∈ <ne , with θ ∈ < the mechanical angular
position, and L(θ) = LT (θ) > 0 the ne × ne

multi-port inductance matrix. The vector µ(θ)
represents the flux linkages.

By assuming fully actuated electrical coordinates,
the voltage equilibrium equation yields

λ̇ + Ri = u (2)

where u ∈ <ne is the vector of voltages applied
to the windings, R = RT > 0 is the matrix of
electrical resistance of the windings.

Coupling between the electrical and mechanical
subsystems is established through the torque of
electrical origin (see Meisel (1969) for further
details)

τ(i, θ) =
1
2
iT∇θL(θ)i + iT∇θµ(θ)

=
1
2
iT

∂L(θ)
∂θ

i + iT
∂µ(θ)

∂θ
(3)

In the sequel, we will use the notation∇wH(z, w) :=
∂H(z, w)/∂w.

To complete the model, the latter equation is
replaced in the mechanical dynamics

Jθ̈ = −rmθ̇ + τ(i, θ)−∇θV (θ) (4)

where J > 0 is the rotational inertia of the me-
chanical subsystem, rm ≥ 0 is the viscous friction
coefficient, and V (θ) is the potential energy func-
tion.

To apply the IDA control design approach, it is
needed to express the model (1)-(4) in PCH form

ẋ = [J (x)−R(x)]∇xH(x) + g(x)u (5)

where x ∈ <n is the state space, J (x)= −J T (x),
g(x) are the internal and external interconnection
structures, respectively, and R(x)= RT (x)≥ 0 is
the damping structure (van der Schaft, 2000).

To achieve this objective, the total energy func-
tion is introduced (see Ortega et al. (2002b))

H(x) =
1
2
[λ− µ(θ)]T L(θ)−1[λ− µ(θ)]

+V (θ) +
1
2

p2

J
(6)

where p = Jθ̇ is the mechanical momentum; and
the state vector x = [λT , θ, p]T is defined.

Thus, (1)-(4) can be rewritten in the compact
form




λ̇

θ̇
ṗ


 =



−R 0 0
0 0 1
0 −1 −rm






∇λH(x)
∇θH(x)
∇pH(x)


 +




I
0
0


 u

(7)

and comparing with the PCH model (5) we iden-
tify

J =




0 0 0
0 0 1
0 −1 0


 , g =




I
0
0


 ,R =




R 0 0
0 0 0
0 0 rm




The control problem is the asymptotic regulation
of θ to a constant position θ∗ ∈ Θ ⊂ <. The
equilibria of the electromechanical system (7) are
of the form

x∗ = [λ∗, θ∗, 0]T (8)

where λ∗ = L(θ∗)i∗ + µ(θ∗) and i∗ is the solution
of (3),(4) for θ = θ∗, that is

1
2
iT∗∇θL(θ∗)i∗ + iT∗∇θµ(θ∗)−∇θV (θ∗) = 0

(9)



The corresponding control is u∗ = Ri∗. Thus, all
equilibria correspond to nonzero current, hence to
nonzero electrical energy.

2.1 IDA control synthesis

In order to assign the equilibria of the closed-
loop system via a selection of the potential energy
only, Rodriguez and Ortega (2003) have chosen an
energy function of the form

Hd(x) =
1
2
[λ− µd(θ, p)]T L(θ)−1[λ− µd(θ, p)]

+Vd(θ) +
1
2

p2

J
(10)

where µd(θ, p) is fixed such that λ∗ = µd(θ∗, 0).
Thus, the equilibria will coincide with the extrema
of Vd(θ), and it is only needed to select a function
with a unique isolated minimum at θ∗.

Then, to assign the proposed energy function pre-
serving the PCH structure, the original intercon-
nection and damping structures are modified to
take the form




λ̇

θ̇
ṗ


 =




−R α(x) β(x)
−αT (x) 0 1
−βT (x) −1 −ra(p)






∇λHd(x)
∇θHd(x)
∇pHd(x)




(11)

where α(x), β(x) ra(p) > 0 are the free parame-
ters to be used for assigning the desired energy
function.

By following the proof of the Proposition 1 in
Rodriguez and Ortega (2003), it can be shown
that matching the first ne rows of the desired
dynamics (11) with the corresponding rows of the
original dynamics (7), we can obtain the control
law

u = Rid − α
{1

2
[iT∇θL(θ)i− iTd∇θL(θ)id]

}

+α{(i− id)T [L(θ)∇θid +∇θµθ]−∇θVd(θ)}
+β

[ p

J
− (i− id)T L(θ)∇pid

]
(12)

defining

id := L(θ)−1[µd(θ, p)− µ(θ)] (13)

and proposing the α(x), β(x) functions

α = −L(θ)∇pid (14)

β = L(θ)[∇θid + ra(p)∇pid] (15)

respectively. This suitable choice of the parameter
β yields

1
2
iTd∇θid + iTd∇θµ(θ) +∇θVd(θ)

−∇θV (θ)− [rm − ra(p)]
p

j
= 0 (16)

which is a quadratic algebraic equation in id. That
is, by leaving the inductance matrix unchanged
in (10), it is possible to transform the matching
conditions into simple algebraic equations, instead
of partial differential equations, as in the case of
mechanical systems. Furthermore, it is proved in
Rodriguez and Ortega (2003) that the electrome-
chanical system (7) in closed-loop with the control
law (12), and Vd(θ) a positive definite function,
has an asymptotically stable equilibrium point at
(8). Under these conditions, the original dynamics
(7) in closed loop with (12) matches the desired
dynamics (11) in the set

D :=
{

(λ, θ, p) ∈ <ne+2 | ∇θV (θ)−∇θVd(θ)

+[rm − ra(p)]
p

j
∈ T

}
(17)

where T := [τm, τM ] ⊂ < is the interval of
admissible torques.

3. IDA CONTROL OF A BRUSHED DC
MOTOR

We consider in this section the application of the
IDA control methodology above for the asymp-
totic regulation of the angular position of a
brushed DC motor driving a mechanical load. The
system model is taken from Dawson et al. (1998)
by considering that most electromechanical sys-
tems can be separated into three different parts:

• a dynamic mechanical subsystem, including
in this case a position dependent load and
the motor rotor;

• a dynamic electrical subsystem which in-
cludes all relevant electrical effects;

• a static relationship representing the con-
version of electrical energy into mechanical
energy.

The mechanical and electrical subsystem dynam-
ics are respectively represented by the equations

Mq̈ + Bq̇ + N sin(q) = i

L
di

dt
= v −Ri−KB q̇ (18)

where

• M constant lumped inertia
• N constant lumped load term
• B friction coefficient
• q(t) angular load position
• i(t) electrical current.



• L rotor inductance
• R rotor resistance
• KB back-emf coefficient
• v(t) input control voltage.

Considering the generalized electromechanical sys-
tem (1)-(4) and specializing it to this case, we can
identify ne = 1, L(θ) = L ∈ <, V (θ) = No(1 −
cos(θ)) and µ(θ) = Kbθ = τLθ; where No := NτL,
τL is the constant torque coefficient, and we can
also obtain the relationships

λ = Li + τLθ (19)

λ̇ = L
di

dt
+ τLθ̇ (20)

L
di

dt
+ τLθ̇ + Ri = u (21)

τ(i, θ) = τLi (22)

Jθ̈ + rmθ̇ + No sin(θ) = τLi (23)

Note that the equation (23) coincides with the me-
chanical subsystem equation in (18) for J = MτL,
rm = BτL, No = NτL; whilst (21) coincides
with the electrical subsystem equation in (18) for
τL = KB .

To transform the brushed DC motor system model
into the PCH form, we propose the total energy
function

H(x) =
1

2L
(λ− τLθ)2 + No(1− cos(θ)) +

p2

2J
(24)

Then, by considering the new state vector x =
[λ, θ, p]T proposed in Rodriguez and Ortega (2003),
the brushed DC motor model can be written

λ̇ =−Ri + u

θ̇ =
p

J
(25)

ṗ = Jθ̈

which can be rewritten in the compact form




λ̇

θ̇
ṗ


 =



−R 0 0
0 0 1
0 −1 −rm






∇λH(x)
∇θH(x)
∇pH(x)


 +




1
0
0


 u

(26)

Thus, we can identify the matrices of the system
(5)

J =




0 0 0
0 0 1
0 −1 0


 , g =




1
0
0


 ,R =




R 0 0
0 0 0
0 0 rm




Note that, the equation ṗ in (25) is equivalent to
Jθ̈ + rmθ̇ + No sin(θ) = τLi.

By following the design procedure explained in the
previous section, we choose the functions Vd(θ)
and ra(p) as suggested in Rodriguez and Ortega
(2003)

Vd(θ) = Kp
(θ − θ∗)2√

(1 + (θ − θ∗)2)
; Kp > 0

ra(p) = ra1 + ra2
p2

1 + p2
; ra1, ra2 > 0 (27)

Concerning the brushed DC motor equations, we
can identify

L(θ) = L ⇒∇θL(θ) = 0

µ(θ) = τLθ ⇒∇θµ(θ) = τL

∇θVd(θ) = Kpθ̄
(2 + θ̄)√
1 + θ̄2

; (28)

V (θ) = N0(1− cos(θ)) ⇒∇θV (θ) = No sin(θ)

Then, by defining θ̄ := θ − θ∗ and replacing these
functions into (16), we can obtain, after some
further manipulations,

id =
1
τL

[
No sin(θ) + {rm − ra1 − ra2

p2

1 + p2
} p

J

]

−Kpθ̄

τL

[
2 + θ̄2

√
(1 + θ̄2)3

]
(29)

The equation (29) can be replaced into (14) and
(15) to yield

α(x) =
−L

τlJ

(
rm − ra1 − ra2

[
p2(3 + p2)
(1 + p2)2

])

β(x) =
1
τL

[
No cos(θ) + Kp

[
−2 + θ̄2

√
(1 + θ̄2)5

]]

+
L

τLJ

[
ra1 + ra2

p2

1 + p2

]
×

[
rm − ra1 − ra2

(
p2(3 + p2)
(1 + p2)2

)]

Finally, by substituting the corresponding equa-
tions for α, β and id into (12), we obtain the
stabilizing feedback control law

u = Rid − α(i− id)

[
L

τL

(
No cos(θ) + τL

+Kp

[ −2 + θ̄2

√
(1 + θ̄2)5

])

−Kpθ̄

[
2 + θ̄2

√
(1 + θ̄2)3

]]

+β

[
p

J
− (i− id)L

1
τLJ

(
rm − ra1

−ra2

(
p2(3 + p2)
(1 + p2)2

))]
(30)



This systematic design procedure allows to deal
with an important class of electromechanical sys-
tem. An adaptive partial state feedback control
design method has been proposed in Rodŕıguez
et al. (2003) for asymptotic position regulation
of electromechanical systems, when only measure-
ment of the electrical coordinates and of the me-
chanical position are available.

Digital simulations were carried out to eval-
uate the performance of the closed loop sys-
tem under control of the feedback law (30).
The system parameters used in simulations were:
M = 0.005242 Kg − m2

rad , N = 2.2839 Kg − m
seg2 ,

B = 0.018 N − seg
rad , KB = 0.90 N − m

A , R = 5 Ω,
L = 25 × 10−3 H, y Kp = 0.8 for an equilibrium
position X̄1 = 1.5707 rad, corresponding to an
equilibrium voltage value Ū = 11.4195 voltios
and a current value X̄3 = 2.2839 amp. Figure
1 shows the controlled state variables response
and the input control voltage. This figure verifies
the asymptotic behavior of the controlled state
variables of the brushed DC motor.
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Fig. 1. Controlled state response of the brushed
DC motor

4. CONCLUSIONS

We have applied the systematic PCH/IDA control
methodology to a brushed DC motor driving a me-
chanical load for achieving asymptotic stability of
the mechanical position. It was shown that modi-
fying the interconnection and damping structures,
and with a suitable choice of the free parameters,
the matching conditions become simple algebraic
equations. Digital simulations demonstrated the
asymptotic stability of the controlled response of
the brushed DC motor. The output feedback con-
trol of this system under parametric uncertainty
is an interesting problem to be addressed.
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