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Abstract: This work is devoted to computation of large n-D polynomial determinants with a
special structure. Applications involve n-D systems theory (e.g. coprimeness test for two n-D
polynomials or the theory of algebraic equations. More specifically, these determinants were
exploited in (Chiasson et al., 2003b; Chiasson et al., 2003a) to solve the practical problem of
multilevel converter by a special computational procedure. To tackle the concerned problem
it is essential to solve a system of polynomial equations with many unknowns. An algorithm
was chosen based on elimination theory using resultants leading to the fundamental problem of
computing determinants of large Sylvester type matrices with n-D polynomial entries. The aim
of this work is to propose and test new numerical algorithms that would make it possible to solve
the concerned problems more effectively. Copyright c©2005 IFAC
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1. INTRODUCTION

The problem considered in this paper is as follows:
Input: square (large) n-D polynomial matrix with
special structure (the matrix of Sylvester type) (1)
where ai and bi are multivariable scalar polyno-
mials in variables x = x1, x2, . . . , xn.

Output: n-D scalar polynomial s(x) = det S(x).
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Possible applications are briefly introduced below.

• Common factor test (Barnett, 1983). In the
n-D systems theory problems it is often es-
sential to decide whether two n-D polyno-
mials are coprime, or whether they have a
common factor. An efficient test can be based
on the observation that two polynomials

a(x, y) = a0(x) + a1(x) y + · · ·+ ada(x) yda

b(x, y) = b0(x) + b1(x) y + · · ·+ bdb
(x) ydb

have a common factor in the variable y if and
only if det S(x) = 0. Such a way, the original
problem is reduced to the computation of
determinant with the concerned structure.

• Solving systems of polynomial equations with
more unknowns. To solve the set of n alge-



braic equations in n unknowns, pi(x1, . . . , xn) =
0, i = 1, 2, . . . , n, where pi are polynomi-
als in n variables, the elimination approach
can be called leading to successive evalua-
tion of resultants - determinants of related
Sylvester-type polynomial matrices, see (Cox
et al., 1996).

The latter case is closely related to the papers
(Chiasson et al., 2003b; Chiasson et al., 2003a)
where the problem of a multilever DC/AC con-
verter design is studied. This problem is briefly
introduced in the next section and serves as a mo-
tivation for computational procedures suggested
in the subsequent parts of this report.

S(x) =
[

A11 B12

A21 B22

]
= (1)




a0 b0 0

a1 a0 0 b1
. . .

...
...

. . .
...

. . . b0

ada ada−1 a0 b1

ada a1 a0 bdb−1

...
. . .

...
... bdb

. . .

0 ada ada−1
. . . bdb−1

ada 0 bdb




︸ ︷︷ ︸
deg b = db

︸ ︷︷ ︸
deg a = da

2. MULTILEVEL CONVERTER

The multilevel converter is a power electronics
device built to synthesize a desired AC voltage
from several levels of DC voltage, see (Chiasson et
al., 2003b). Most of the material presented in this
section is adopted from (Chiasson et al., 2003a),
including the symbolic elimination procedure for
the three- and five-sources cases. We basically
just confront the symbolic implementation of the
elimination procedure as presented in (Chiasson
et al., 2003a) with our numerical implementation.

A key issue in the fundamental switching scheme
is to determine the switching angles such that just
the fundamental voltage is generated and undesir-
able higher order harmonics are suppressed. The
Fourier series expansion of the (staircase) output
voltage waveform of the multilevel converter is

V (ωt) =
∞∑

n=1,3,5,...

4Vdc

nπ
·
(

cos(nθ1ω) + · · ·+

+cos(nθsω)
)
· sin(nωt) (2)

where s is the number of DC sources. Ideally,
given a desired fundamental voltage V1, one wants

to determine the switching angles θ1, θ2, . . . , θs so
that (2) becomes V (ωt) = V1 sin(ωt). The goal
here is to choose the switching angles 0 ≤ θ1 ≤
θ2 ≤ · · · ≤ θs ≤ π/2 so as to make the first
harmonic equal to the desired fundamental volt-
age V1 and specific lower dominant harmonics of
V (ωt) equal to zero. As the application of interest
here is a three-phase system, the triplen harmon-
ics in each phase need not be cancelled as they
automatically cancel in the line-to-line voltages.
Specifically, in case of s = 5 DC sources, the
desire is to cancel the 5th, 7th, 11th, 13th order
harmonics as they dominate the total harmonic
distortion. The higher residual frequencies remove
the output filter. The mathematical statement of
these conditions leads to a set of transcendental
equations and, after some trigonometric substi-
tutions cos(nθω) = Tn(cos θω) 4 , to a set of
algebraic equations:

p1(x) , x1 + x2 + x3 + x4 + x5 −m = 0 (3)

p5(x) ,
5∑

i=1

(5 xi − 20 x3
i + 16 x5

i ) = 0

p7(x) ,
5∑

i=1

(−7 xi + 56 x3
i − 112 x5

i + 64 x7
i ) = 0

p11(x) ,
5∑

i=1

(−11 xi + 220 x3
i + · · ·+ 1024 x11

i ) = 0

p13(x) ,
5∑

i=1

(13 xi − 364 x3
i + · · ·+ 4096 x13

i ) = 0

where pi(x) is polynomials in variables x =
(x1, x2, x3, x4, x5) and m , V1/(4Vdc/π). The
modulation index is ma = m/s = V1/(4sVdc/π).
This is a set of five equations in the five unknowns
x1, x2, x3, x4, x5. Further, the solution must sat-
isfy 0 ≤ x1 < x2 < x3 < x4 < x5 ≤ 1.

This set of equations is possible to solve via nu-
merical Newton iterative procedure, or symbolic
Gröbner basis, or elimination method using resul-
tants (Cox et al., 1996). We concentrate on the
elimination theory in the following.

2.1 Elimination method using resultants

The elimination approach leads to successive elim-
ination of variables (Cox et al., 1996). In each step
the number of equations and variables is decreased
by one. From the computational point of view, the
k-th step consists of the evaluation a polynomial
determinant in n−k variables where n is the num-
ber of equations (and, at the same time, of vari-
ables). After n steps we arrive at a single variable
polynomial the roots of which can be evaluated

4 Tn(cos θ) is Chebyshev polynomial of the first kind.



using any standard procedure (Higham, 1996). A
backward substitution procedure than follows and
the n-tuples solving the initial set are separated.

To illustrate the problem, the three source multi-
level inverter will bee used to illustrate the ap-
proach. The conditions are only the first four
equations p1(x), p5(x), p7(x) from (3). Eliminat-
ing x1 by substituting x1 = m − (x2 + x3) into
p5(x), p7(x) gives

p5(x2, x3) = 5(m− x2 − x3)− . . .

. . . +16x5
2 + 5x3 − 20x3

3 + 16x5
3 (4)

p7(x2, x3) = −7(m− x2 − x3) + . . .

. . . +56x3
3 − 112x5

3 + 64x7
3

where

degx2
{p5(x2, x3)} = 5 , degx3

{p5(x2, x3)} = 5

degx2
{p7(x2, x3)} = 7 , degx3

{p7(x2, x3)} = 7

Now it is our goal to find zeros of polynomial
system (4). The first step is elimination of un-
known x2 by constructing appropriate Sylvester
matrix. Let us consider p5(x2, x3) and p7(x2, x3)
as polynomials
p5(x2, x3) = p50(x3)+p51(x3)·x2+· · ·+p55(x3)·x5

2,
p7(x2, x3) = p70(x3)+p71(x3)·x2+· · ·+p77(x3)·x7

2

in x2 whose coefficients are polynomials in x3.
Then the n × n Sylvester matrix, where n =
degx2{p5} + degx2

{p7} = 5 + 7 = 12, is defined
by

Sp5,p7(x3) =




p50 0 p70 0
...

. . . p71

. . .

p55

...
. . .

0
. . . p77

... 0
. . .




. (5)

︸ ︷︷ ︸
7−times

︸ ︷︷ ︸
5−times

In the second step the determinat of the Sylvestr
matrix (5) is evaluated. Then the resultant poly-
nomial is defined by

r11(x3) = Res (p5(x2, x3), p7(x2, x3), x2)

, det(Sp5,p7(x3)), (6)

Further zeros r11 = Roots (r11(x3)) of the scalar
polynomial r11(x3) are computed. The set of ze-
ros r11 is substituted to previous polynomials
p5(x2, x3) and p7(x2, x3) in the variable x3. Thus
we get two sets of polynomials that are only in
one variable x2. Once again the zeros in both sets
are computed. Finally identical zeros for both sets
are selected.

2.2 Symmetric polynomials

In the last example (3 DC sources), computation
of the resultant polynomial (6) was required.
This involved setting up a 12 × 12 Sylvester
matrix (5) and then computing its determinant to
obtain the resultant polynomial (6) whose degree
was 30. However, as one adds more DC sources,
the size and degrees of Sylvester matrices grow
rapidly. This is very complicated because time-
consumption and memory usage get very high. To
get around this computational difficulty to some
extent, the symmetry of the involved polynomials
can be exploited.

The polynomials (3) are symmetric, that is,

pi(x1, x2, . . . , xn) = pi(xπ(1), xπ(2), . . . , xπ(n)),

for all i = 1, 2, . . . , n and any permutation π(·).
Take only first three equation (3) for 3 DC sources
(for more DC sources its similar) and define the
elementary symmetric functions (polynomials)

s1 , x1 + x2 + x3, s2 , x1x2 + x1x3 + x2x3

s3 , x1x2x3 (7)

The key point here is that the degrees of polyno-
mials after substituting s1, s2, s3 are lower than
the degrees of p5(x2, x3), p7(x2, x3) in x2, x3 (see
(4)). Resulting Sylvester matrices have thus lower
size and degrees and computations become faster.
In the case of three DC sources it is required
to compute the determinants of 3 × 3 Sylvester
matrix instead 12× 12.

2.3 Determinant evaluation

Solving the scheduled task by elimination of vari-
ables using resultants, the biggest problem lies in
the time consumption and memory demands of
the calculation of the Sylvester matrix determi-
nant. The matrix is of high size and degree when
a great number of sources are considered.

The symbolic way was has been chosen in the
mentioned papers (Chiasson et al., 2003b; Chi-
asson et al., 2003a). However, results have been
received for small numbers of DC sources only,
namely, for three in the basic formulations of the
computational procedure (Chiasson et al., 2003b),
or for five if the symmetry of the equations is
properly employed (Chiasson et al., 2003a).

A symbolic method of the calculation results
from standard symbolic functions of the system
MATHEMATICA (Wolfram Research, 2004 [on-
line]). The resultants are computed using a stan-
dard command Resultant. The symbolic method



of the calculation, in comparison with FFT based
numeric calculations (described below), has an
advantage in the ability of computation with (ex-
act) integers. Then during the finding of the roots
of a polynomial equation there are no problems
with roundoff errors. On the other hand, the com-
putational complexity of symbolic procedures is
very high in general and in this case prevents the
problem with more than five DC sources to be
processed.

3. ALTERNATIVE APPROACHES TO THE
COMPUTATION OF RESULTANTS

As explained in the preceding sections, there is
a demand for designing dedicated and efficient
numerical solvers for the polynomial Sylvester-
type n-D determinant problem. We now propose
our contribution to this objective.

3.1 FFT based numerical method

An efficient numerical algorithm for the polyno-
mial determinant was proposed in algorithm 1.
The method is based on FFT and is the most
efficient computational method for this task up
to the authors’ knowledge, see (Hromcik and Se-
bek, 2000). We present a modification of this rou-
tine for the multivariate case in the sequel.

Algorithm 1. Determinant of Polynomial Matrix
with n -variables (FFT method)

Input: Square polynomial matrix with n vari-
ables P (s1, s2, . . . , sn) of size m and degrees
{d1, d2, . . . , dn}.

Output: Scalar polynomial p(s1, s2, . . . , sn) with
n variables - the determinant of P (s1, s2, . . . , sn).

Step 1: Compute the upper bound D = {Dj |j =
1, 2, . . . , n} for the degrees of the determinant:

Dj = min{
m∑

i=1

degci
(P (sj)),

m∑

i=1

degri
(P (sj))}

where degci
(P (sj)) and degri

(P (sj)) are the i-
th column and row degrees of P (sj) respectively.

Step 2: Using FFT algorithm, perform direct n-
D DFT at points (D1 + 1) × (D2 + 1) × · · · ×
(Dn + 1) on the set P = {Pi1,...,in} of co-
efficient matrices of P (s1, . . . , sn) and obtain
the set Y = {Yj1,...,jn |j1 = 0, . . . , D1; j2 =
0, . . . , D2; . . . ; jn = 0, . . . , Dn}.

Step 3: Compute the set z = {zj1,...,jn |j1 =
1, . . . , D1; j2 = 1, . . . , D2; . . . ; jn = 1, . . . , Dn},
where zj1,...,jn = det(Yj1,...,jn)

Step 4: Perform inverse n-D DFT on z us-
ing the FFT algorithm to obtain the coeffi-
cient set p = {pi1,...,in |i1 = 0, . . . , D1; i2 =

0, . . . , D2; . . . ; in = 0, . . . , Dn} of the determi-
nant

p(s1, . . . , sn) =
D1∑

i1=0

· · ·
Dn∑

in=0

pi1,...,in
·si1

1 . . . sin
n ¤

One would expect that substituting the generic
symbolic determinant routines with dedicated nu-
merical polynomial determinant solvers should in-
crease the performance of the elimination pro-
cedure considerably and that the problem could
be resolved for a much larger number of DC
sources. Surprisingly, the situation gets rather
complicated. The problem is that the successive
evaluation of polynomial determinants leads to
accumulation of rounding errors. The more equa-
tions are to be resolved, the more severe these
problems get. In addition, as the algorithm is quite
general, it does not exploit the high structurality
of the matrix involved to decrease computational
time and improve accuracy.

3.2 Numerical method based on FFT and Schur’s
complement

Performance of the efficient FFT based routine
described above (algorithm 1) can be further in-
creased for the Sylvester-type matrices considered
in this report by exploiting the structure of the
resultant matrices.

Theorem 1. (Schur’s complement). If A11 and B22

are square matrices, then

|
[

A11 B12

A21 B22

]
| =

{ |B22| · |A11 −B12B
−1
22 A21|

|A11| · |B22 −A21A
−1
11 B12|

(8)
When B−1

22 or A−1
11 exist.

(Brackets | · | denote function det(·)). ¤

The Schur’s complement shall be applied now to
the constant matrices - DFT samples of the initial
polynomial matrix - in the step 3 of the algorithm
1. Considering the structure (1) of the considered
matrices, the matrices A11, A21, B12, B22 in (8)
are triangular.

This modification of the Step 3 consists of the
following steps:

• The expression X = B−1
22 A21 is calculated

easily solving linear system A21 = B22X
which is in a special upper-triangular form.

• Consequently, numerical matrix multiplica-
tion Y = B12X and subtraction Z = A11−Y
is performed.

• Computation of the determinant det Z is
then performed with an approximately half-
scale constant matrix. Matrix B22 is upper-
triangular with equal elements in diagonal



and the determinant detB22 is therefore only
a power the diagonal element.

This way seems to be considerably faster because
determinants of scaled-down matrices are com-
puted. Unfortunately, large numerical errors arise
typically from the calculation of the difference of
two matrices A11 − B12 · X since the coefficients
of the matrix A11 are far lower compared to ma-
trix B12 · X and they are not handled properly
when standard IEEE double precision floating-
point numbers are used. Therefore it is necessary
to start to work with real numbers of an extended
precision and to keep them during the whole com-
putation which is possible and straightforward in
the used MATHEMATICA software environment.
The determination of a sufficient precision leading
to correct results is then an issue. During experi-
mental calculations, a higher precision of the floats
was set empirically, leading to correct results (see
the section Experimental testing).

Another disadvantage of this method consists in a
large memory demands when an input polynomial
matrix reaches considerable size and degrees, see
Step 2 in algorithm 1.

3.3 Schur’s complement applied to polynomial
entries

In the previous paragraphs, the Schur’s comple-
ment was applied to constant matrices received
as a result of DFT applied on the polynomial
resultant matrix. However, the theorem 1 remains
valid for general matrices, including polynomial,
and can be addressed directly. Effective functions
for n-D polynomial multiplication and addition, as
applied for instance in (PolynomialPackage, 2004
[online]), can be employed along with a selected
polynomial determinant routine. In general case,
the Sylvester structure causes problems since the
term B−1

22 A21 in Theorem 1 is rational and, in
addition to polynomial calculations, a rational
matrix determinant solver is required. Neverthe-
less, for the special case of multilevel converter,
this approach is applicable as the degree of scalar
polynomial bdb

is always equal to 0 (it is a constant
nonzero number).

3.4 Permutation method

This approach is based directly on the definition
of determinant.

Definition 1. (Determinant). For an m × m ma-
trix A = [aij ], the determinant of A is defined to
be the scalar

det(A) =
∑

p

σ(p) a1p1a2p2 . . . ampm ,

where the sum is taken over the m! permutations
p = (p1, p2, . . . , pm) of (1, 2, . . . ,m).

Here the sign σ(p) of a permutation p is defined
as

σ(p) =





+1 if p can be restored to natural order
by an even number of interchanges,

−1 if p can be restored to natural order
by an odd number of interchanges ¤

The definition is known to be usable only for
small-to-medium size problems in general since
the number of terms ”explodes” exponentially
with the size of input matrix. However, consid-
ering the special Sylvester-type structure of re-
sultant matrices, the situation does not become
so dramatic and the number of nonzero terms is
typically by several orders lower for large scale
matrices than the general matrix estimate would
suggest. Some figures are in the table 1.

Table 1. Comparison numbers of
nonzero terms.

Input matrix Number of nonzero terms
m deg a deg b general matrix resultant matrix

6 4 2 6! = 720 33
6 3 3 6! = 720 56
7 4 3 7! = 5040 155
10 5 5 10! = 3628800 9440

The problem now lies in determining the set
of valid permutations yielding nonzero terms. A
solution is suggested in the iterative algorithm 2
to follow.

Algorithm 2. Determinant of Polynomial Matrix
with n -variables (Permutations method)

Input and output: Same as in algorithm 1.

Step 1: Make the set D = {di | i = 1, 2, . . .m}
of indexes, where di = {j | j = 1, 2, . . . , m ∧
P[i,j] 6= 0}

Step 2: Initialization list of possible nonzero per-
mutations: p = {{d1,1}, {d1,2}}

Step 3: Compute in iterative loop all possible
nonzero permutations:
FOR k := 2 TO m DO

p = {pl | l = 1, 2, . . . , Length[p]∗Length[dk]},
where
pl = {Append[pi, dk,j ] | (i = 1, 2, . . . , Length[p];
j = 1, 2, . . . , Length[dk]) ∧ dk,j /∈ pi}

Step 4: Computation of determinant

p(s1, s2, . . . , sn) =
Length[p]∑

i=1

m∏

j=1

P[j,pi,j ]
¤

Step 3 in the algorithm 2 is unfortunately rather
time-consuming and unfortunately prevents this
method to be applied for large problems. The



routine however remains useful for medium-size
Sylvester type matrices.

4. EXPERIMENTAL TESTING

Numerical test have been carried out to prove per-
formance of the new algorithms. Our algorithms
have been implemented as MATHEMATICA pack-
ages and connected to the already existing pro-
gram Polynomial package (PolynomialPackage,
2004 [online]). All the computations were per-
formed in MATHEMATICA 5.0 for Linux A-64
(Wolfram Research, 2004 [online]) on SGI ALTIX
3700 with 16 CPU Itanium 2 and 20 GB RAM
(Computing and information centre of CTU, 2004
[online]).

Table 2 contains execution times in seconds for
the following algorithms proposed in this paper:

A1 - DFT based method (modified Algoritm 1
for special type of Sylvester matrices),

A2 - DFT based method for universal Sylvester
matrices (Algoritm 1),

A3 - Schur’s complement based method (Theo-
rem 1),

A4 - standard symbolic computation performed
by function Det, see (Chiasson et al., 2003a).

Test square Sylvester matrices are of size m with
3 variables and degree d = (d1, d2, d3) where
deg a = deg b, deg ada = deg bdb

= 0 (see (1)).
The coefficients are random integers with absolute
value less or equal 1000. A star (*) means that the
execution time exceeds to 1000 seconds.

Table 2. Comparative execution times
in second.

Input matrix Algorithm
m d A4 A2 A1 A3

4 (4, 4, 4) 4.17 0.64 0.59 1.17
6 (5, 5, 5) 42.1 6.32 6.25 7.56
6 (6, 6, 6) * 12.72 11.7 117.06

Comments table 2 :

• Algorithm A1 is slightly faster than A2
because DFT is not computed in zero points
and theorem 1 is used for faster computation
of constant determinants.

• Symbolic computations are accurate, but
long executions times make this approach
practically unusable.

5. CONCLUSION

The problem of large determinants of polynomial
matrices with special structure was considered
in this report. The practical motivation standing
behind is the design of a multilevel DC/AC in-
verter. Standard polynomial determinant routines

are not efficient enough to tackle this complex task
as has been evidenced by references to literature.
Based on this founding, we studied possible ways
to exploit the structure of the involved polynomial
matrices and proposed algorithms that address
this specific problem.

Namely, three algorithms were suggested, based
respectively on FFT, the Schur’s complement, and
the determinant definition. All these approaches
have been implemented in the MATHEMATICA

computational environment and exposed to exper-
imental testing. The methods perform consider-
ably better than standard symbolic routines that
have been used for the multilevel inverter problem
so far.

On the other hand, the multilevel inverter task
has proved to be computationally demanding and
some non-standard procedures have to be incorpo-
rated that complicate the routines. For instance,
the precision increased beyond the IEEE-double
standard in order to accommodate accumulat-
ing rounding errors makes the calculations much
longer and more involving.

Obviously, some further effort will be needed to
solve the multilevel inverter problem analytically
for considerably greater number of DC sources.
Although the proposed routines perform well in
comparison with the symbolic approach, they do
not perform well enough to defeat the rapidly
increasing computational demands as the number
of DC levels increases.
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