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1. INTRODUCTION

This paper addresses the task of computing su-
pervisory control strategies for hybrid systems
with nonlinear continuous dynamics. Supervisory
control is here understood as the closed-loop set-
ting, in which the hybrid plant generates an event
when its continuous state reaches an event set,
and the controller immediately returns a dis-
crete control action which determines the further
evolution of the hybrid plant. A number of ap-
proaches considering this task have been pub-
lished recently, see e.g. (Asarin et al., 2000; Gon-
zalez et al., 2001; Koutsoukos et al., 2000; Koo et
al., 2001). Most of these approaches establish ex-
tensions of the supervisory control theory for dis-
crete systems (Ramadge and Wonham, 1989) to
hybrid models, and involve the step of determin-
ing which hybrid states are reachable under the
influence of a discrete control action. Techniques
to accomplish this step include level set methods
(Trontis and Spathopoulos, 2003), viability meth-
ods (Bayen et al., 2002), and computing ellipsoidal

or polyhedral inclusions of reach sets (Stursberg
and Krogh, 2003). However, these techniques are
known to be computationally expensive, and to
scale badly with the dimension of the continuous
state space – an objective for improving the ef-
ficiency of controller synthesis is thus to reduce
reach set computation as much as possible.

For this reason, a synthesis approach employing
the concept of guided abstraction refinement is
proposed here. As described in the context of
verification (Clarke et al., 2003), the principle is
to use a discrete abstraction to search for evo-
lutions (counterexamples) which violate a given
property. Only for these evolutions the hybrid
dynamics is investigated, in order to validate that
the property is not satisfied for the hybrid model.
As described in (Stursberg et al., 2003), applying
a set of different validation methods with different
computational costs can lead to the advantage
that reach set computation is required only for
a small portion of the state space. If the steps
of computing counterexamples, validation, and re-



fining the abstract model based on the validation
result are applied iteratively, the analysis task can
often be solved with a relatively low overall effort.

The concept is modified here for the purpose
of controller synthesis: a discrete abstraction of
the hybrid model is searched for candidate paths
which encode control strategies that potentially
fulfill safety and goal attainment specifications
for the controlled system. The validation methods
check if it is guaranteed that the hybrid evolu-
tions, which correspond to the candidate path,
meet the specifications. Also here, the outcome of
the validation step is used to refine the abstract
model (and thus affects the search for further
candidate paths).

The method presented here is similar to the con-
cept of l-complete abstractions, as described in
(Moor et al., 2002). However, the type of abstrac-
tion as well as the methods for validation and
refinement follow different principles.

2. PROBLEM STATEMENT AND MODEL
TRANSFORMATION

The investigation considers the following type of
hybrid automaton with discrete inputs:

Def. 1: A hybrid automaton with discrete inputs
is given by HA = (X,Z, V, γ, inv,Θ, g, r, f) with:

• the continuous state space X ⊆ R
nx and x ∈ X;

• the finite set of locations Z = {z1, . . . , znz
};

• the finite set V = {v1, . . . , vnd
} of discrete

inputs vj ∈ R
nv ; an input availability mapping

γ : Z → 2V \ ∅ assigns a set Vz ⊆ V to z ∈ Z;
• the mapping inv : Z → 2X which assigns a

polyhedral invariant inv(zj) = {x | ∃ npj
∈

N, Cj ∈ R
npj

×nx , dj ∈ R
npj , x ∈ X : Cj ·

x ≤ dj} to each zj ∈ Z;
• the finite transition set Θ ⊆ Z×Z; a transition

from z1 ∈ Z to z2 ∈ Z is denoted by (z1, z2);
• a mapping g : Θ → 2X that associates a

guard g((z1, z2)) ⊆ X with each (z1, z2) ∈ Θ
such that: g((z1, z2)j) = {x | ∃ ngj

∈ N, Cj ∈

R
ngj

×nx , dj ∈ R
ngj : Cj · x ≤ dj}. For all pairs

of transitions (z1, •) ∈ Θ, it is required that the
corresponding guards are disjoint;

• a linear reset function r : Θ×X → X, assigning
x′ ∈ X to each (z1, z2) ∈ Θ and x ∈ g((z1, z2));

• a flow function f : Z×X×V → R
n that defines

a continuous vector field ẋ = f(z, x, v) for each
z ∈ Z.

The states xk := x(tk), locations zk := z(tk),
and inputs vk = v(tk) are defined on an ordered
time set T = {t0, t1, t2, . . .}, tk ∈ R

≥0, which
contains the initial time t0 and all times at which
transitions occur. For a given series of inputs
vk, a feasible run of HA is a sequence φσ =

(σ(t0), σ(t1), σ(t2), . . .) of hybrid states σk :=
σ(tk) = (zk, xk) according to:

• σ(t0) = (z0, x0) with z0 = z(t0) ∈ Z and
x0 ∈ inv(z0), x0 /∈ g((z0, •)) for any (z0, •) ∈ Θ.

• σ(tk+1) follows from σ(tk) by:
(i) continuous evolution: χ : [0, τ ] → X,

τ ∈ R
>0, where χ(t0) = xk, χ̇(t) =

f(zk, χ(t), vk) with an existing unique so-
lution for t ∈ [0, τ ], and χ(t) ∈ inv(zk),
but for all g((zk, •)) ∈ Θ and t ∈ [0, τ [:
if χ(t) ∈ g((zk, •)), no t′ with t < t′ ≤ τ
exists such that χ(t′) /∈ g((zk, •));

(ii) discrete transition: (zk, zk+1) ∈ Θ, χ(τ) ∈
g(zk, zk+1), and xk+1 = r((zk, zk+1), χ(τ)) ∈
inv(zk+1);

(iii) input selection: vk+1 ∈ Vzk+1
. M

Two characteristics of this semantics are impor-
tant: (a) A transition can occur for an arbitrary
continuous state χ(τ) in g((zk, •)), but it must be
taken before the guard set is left. (This construc-
tion is suitable, e.g., to model by g((zk, •)) that
the state which triggers the transition (a thresh-
old) can only be measured with a limited preci-
sion.) (b) The discrete input vk can be changed
with a transition, but is constant otherwise.

The control task for this setting is defined as
follows:

Def. 2: Given are:

• an initial state set Σ0 with (z0, x0) ∈ Σ0,
z0 ∈ Z, x0 ∈ X0 with a bounded polyhedral set
X0 ⊂ inv(z0) that is disjoint with all g((z0, •)),

• a set ΣF = {ΣF,1, . . . ,ΣF,nF
} of forbidden

state sets ΣF,j with (z, x) ∈ ΣF,j , such that
z ∈ Z, x ∈ XF,j with a bounded polyhedron
XF,j ⊂ inv(zF,j), and ΣF,j ∩ Σ0 = ∅,

• and a goal set ΣG, (zG, x) ∈ ΣG with zG ∈ Z,
x ∈ inv(zG), and ΣG ∪ ΣF = ∅.

The synthesis task is to find a control strategy
(v0, v1, v2, . . .) for HA such that the corresponding
feasible run starting from every (z0, x0) ∈ Σ0

leads into ΣG (goal attainment), while no state
(z, x) ∈ ΣF,j , ΣF,j ∈ ΣF is encountered (safety
property). M

To simplify the further description, the open sys-
tem HA is rewritten as a closed system that
includes all possible control strategies: Since any
vk ∈ Vz can possibly be applied in z ∈ Z, the
closed system is defined with an extended location
set containing pairs (z, v) with v ∈ Vz:

Def. 3: For HA as in Def. 1, the corresponding
closed hybrid automaton is defined by: HAc =
(Xc, Zc, invc,Θc, gc, rc, fc) with:

• Xc = X;
• Zc = {zc

1; . . . , z
c
nc

z
} where for each z ∈ Z:

∀ v ∈ Vz : ∃ zc = (z, v) ∈ Zc;



• invc : Zc → 2X with invc(zc) = inv(z) for
zc = (z, •);

• Θc ⊆ Zc × Zc such that (zc
1, z

c
2) ∈ Θc, zc

1 =
(z1, •), zc

2 = (z2, •) if ∃ (z1, z2) ∈ Θ;
• gc : Θc → 2X with gc((zc

1, z
c
2)) = g((z1, z2)) for

zc
1 = (z1, •), zc

2 = (z2, •);
• rc : Θc × X → X with rc((zc

1, z
c
2), x) =

r((z1, z2), x) for zc
1 = (z1, •), zc

2 = (z2, •);
• fc : Zc × X → R

n with fc(zc, x) = f(z, x, v)
for zc = (z, v), v ∈ Vz. M

The semantics for HAc with extended hybrid
states (zc, x) is obvious from Def. 1. The control
task according to Def. 3, is reformulated for HAc

as follows: The initial set is changed to Σc
0 with

zc
0 = (z0, v) ∈ Σc

0, v ∈ Vz0
, x0 ∈ X0 ⊂

inv(z0). The goal set is modified to Σc
G with

zc
G = (zG, v) ∈ Σc

G, v ∈ VzG
, x ∈ inv(zg), and

the forbidden set Σc
F is altered correspondingly.

The sets of locations which involve initial, goal,
or forbidden states, are denoted by Zc

0, Zc
G, and

Zc
F respectively. The control task renders then to

transfer all states of Σc
0 with zc

0 = (z0, v) for one(!)
v ∈ Vz0

into Σc
G while Σc

F is never encountered.

The closed hybrid automaton is referred to as
concrete model C, and to simplify notation, the
index ‘c’ is omitted for invc,Θc, gc, rc, and fc.

3. SYNTHESIS BASED ON ABSTRACTION
REFINEMENT

The scheme of the procedure to synthesize a con-
trol strategy for C is shown in Fig. 1, and can be
summarized as follows: First, an abstract model
A(0) is obtained from C by an appropriate ab-
straction function (see Sec. 3.1). The latter es-
sentially transfers the discrete dynamics of C to
A(0), abstracts from the continuous part, and ac-
counts for the state sets which are relevant for the
specification (Σc

0,Σ
c
G,Σc

F ). The next step searches
for a candidate path CP within the evolutions of
A(0). A candidate path is a run of A(0) which
leads from an abstract initial state to an abstract
goal state, while not encountering an abstract
forbidden state (Sec. 3.2). Since each abstract
state in a candidate path corresponds to a location
zc = (z, v) of C, it implicitly represents a control
strategy (v0, v1, v2, . . .). The following step of val-
idation determines whether CP can be realized
for C in the sense that every hybrid state reached
along the corresponding abstract states in CP is
eventually transferred into the goal set. As further
explained in Sec. 3.3, the validation comprises the
application of three different methods with dif-
ferent computational costs in order to reduce the
overall effort. If CP is validated, a possible control
strategy is found, and the procedure terminates
(or can be resumed to search for another alterna-
tive strategy). If CP is found to be invalid, the

Abstraction

valid

(1) check set
intersection

(1)  check
connectivity

(2) check for
failures

(2a) remove
transition

(2b) split states(3) flowpipe
enclosure

invalid:
reject CP

control
strategy

Search
for CP

validate
state by state

CP refine

Specification:
- Safety
- Goal

C

CP A
( +1  )i

A
( )i

A
(0  )

Fig. 1. The synthesis procedure.

strategy is rejected, and the procedure continues
with a refinement step (Sec. 3.4). It first checks,
if for the particular state of CP , in which the
latter was found to be invalid, any evolution of C
which corresponds to the transition in A(i) exists
at all (connectivity check). If not, the transition is
removed from A(i) (i is the iteration index). An
additional optional means to update A(i) is to split
states according to the validation result, if the
third validation method (flowpipe enclosure) was
applied. It adds details to A(i) in the sense that
reachability information obtained from evaluating
C is transferred to A(i+1).

The updated abstract model is searched for an-
other candidate path, and the cycle of search-
ing, validation, and refinement continues, until
a suitable control strategy is found, no further
candidate path can be determined, or an upper
bound on the number of iterations is exceeded.

3.1 Abstraction

The abstraction step resembles the one used in
(Clarke et al., 2003) in the context of verification,
but with modifications to consider Σc

0,Σ
c
G, and

Σc
F . First, a transition system is introduced ac-

cording to TS = (Ŝ, Ŝ0, Ê), consisting of a finite
state set Ŝ, an initial set Ŝ0 ⊂ Ŝ, and a finite
transition set Ê ⊆ Ŝ × Ŝ. A run of TS is given by
φ̂ = (ŝ0, ŝ1, ŝ2, . . .) with ŝi ∈ Ŝ and (ŝi−1, ŝi) ∈ Ê.

In order to obtain A(0) = (Ŝ, Ŝ0, Ê) as a model
of the type TS such it represents an abstraction
of C, an abstraction function α : Z × X → Ŝ is
defined as follows:

(1) A state ŝ0 ∈ Ŝ0 is introduced for any zc ∈ Zc
0,

and ŝ0 represents all hybrid states (zc, x) of
C with zc ∈ Zc

0 and x0 ∈ X0.
(2) ŜF includes a state ŝF for any zc ∈ Zc

F

such that it corresponds to all (zc, x) with
zc ∈ Zc

F,j and x ∈ XF,j



(3) Ŝ follows from Ŝ := Ŝ′ ∪ Ŝ0 ∪ ŜF with Ŝ′

such that ∃ ŝ ∈ Ŝ′ for any zc ∈ Zc; ŝ ∈ Ŝ′

represents the states (zc, x) with: x ∈ inv(zc)
if zc /∈ Zc

F , or x ∈ inv(zc) \ XF,j if zc ∈ Zc
F .

The set of abstract goal states ŜG contains the
states ŝ ∈ Ŝ which are assigned to zc

G ∈ Zc
G.

The set Ê of A contains transitions (ŝi, ŝl) for
any of the following cases with ŝi = α(zc

i , xi),
ŝl = α(zc

l , xl):

• ∃ (zc
i , z

c
l ) ∈ Θc,

• ŝi ∈ Ŝ0 and zc
i = zc

l ∈ Zc
0,

• ŝl ∈ ŜF , zc
i = zc

l ∈ Zc
F , and xi ∈ inv(zF,j) \

XF,j , xl ∈ XF,j .

These assignments map every hybrid state of C
onto at least one discrete state of A, and each
transition of C has a correspondence in A. Thus,
also every run of C corresponds to a run of A,
such that the latter is an abstraction of the hybrid
model.

3.2 Search for a Candidate Path

A candidate path can now be defined as a partic-
ular run of A:

Def. 4: Given the model A with the sets Ŝ0,
ŜF , and ŜG, a candidate path of A is a run
CP = (ŝ0, ŝ1, . . . , ŝp) with ŝ0 ∈ Ŝ0, ŝp ∈ ŜG, and

ŝj /∈ ŜF for all j ∈ {0, 1, . . . , p}. M

To determine CP , a standard reachability algo-
rithm using breadth-first search is applied. It re-
turns one of the shortest candidate paths existing
for the current abstract model in each iteration.

3.3 Validation

The validation aims to check for every pair
(ŝk, ŝk+1) of subsequent states of CP (and the
intermittent transition (ŝk, ŝk+1) ∈ Ê) if a cor-
responding behavior of C exists in the following
sense: In Fig. 2, let the set I ⊆ inv(zc

k) mark
the set of hybrid states represented by ŝk, and
inv(zc

k+1) the set represented by ŝk+1. In order
to validate the pair (ŝk, ŝk+1) of CP as being
a feasible step of a control strategy, each con-
tinuous state x ∈ I must be transformed into
inv(zc

k+1). This requires that the continuous dy-
namics f(zc

k, x) must first transfer x ∈ I into a
state x′ in the guard set g((zc

k, zc
k+1)), and ap-

plying the reset x′′ = r((zc
k, zc

k+1, x
′)) must yield

a state x′′ ∈ inv(zc
k+1). This refers to the case

marked by (b) in Fig. 2; if the case (a) occurs, i.e.
the trajectory does, e.g., not enter the guard set,
then the step (ŝk, ŝk+1) of CP does not encode a
feasible control strategy.

The validation scheme follows the objective to de-
termine with an as small as possible effort whether

skA:

C:

I

zk

c

inv z( )k

c

inv(     )

zk

c

+1

zk

c

+1

( )z ,k

c
Î Qzk

c

+1

g z ,(( ))k

c
zk

c

+1

r z , x(( ), )k

c
zk

c

+1

sk+1

( )s sk k, +1 Î E

x t( )

(a)

(b)

Fig. 2. Validating a transition of A for C.

a candidate path does not encode a feasible con-
trol strategy. Thus, a series of validation methods
with an increasing effort to reject a candidate
path is applied, but the methods are increasingly
successful in invalidating a transition of CP .

The first method, referred to as set intersection
in Fig. 1, checks the necessary condition that
r((zc

k, zc
k+1, x)) maps at least one x ∈ g((zc

k, zc
k+1))

into inv(zc
k+1). For a linear reset function and a

polyhedral guard set (see Def. 1), this check can
be carried out relatively easy by a linear trans-
formation of g((zc

k, zc
k+1)) and by intersecting the

result with the polyhedron inv(zc
k+1).

The second validation method (listed as failure
check in Fig. 1), represents the key step in ef-
ficiently rejecting an invalid candidate path. It
poses an optimization problem that searches for
a trajectory which starts in I, but does not even-
tually lead to inv(zc

k+1) through the transition
(zc

k, zc
k+1) ∈ Θ. Let T = {x′ | x′′ ∈ inv(zc

k+1) :
r−1(x′′) = ((zc

k, zc
k+1), x

′), x′ ∈ g((zc
k, zc

k+1))} de-
note a target set, as the subset of the guard which
is mapped into inv(zc

k+1) by r. For each contin-
uous trajectory starting in x0 ∈ I, the terminal
state is defined as x(tf ) = x0 +

∫ tf

t0
f(zc

k, x(τ))dτ
such that one of the following criteria applies:

(1) x(tf ) ∈ T ,
(2) x(tf ) ∈ g((zc

k, zc
q)) with zc

q /∈ zc
k+1,

(3) x(tf ) ∈ XF,j for any Fj ,
(4) x(tf ) /∈ inv(zc

k), but limt→tf
x(τ) ∈ inv(zc

k)
(5) x(tf ) ∈ inv(zc

k) and t ≥ tmax.

Additionally it is required that for τ ∈ [0, tf [
none of the sets in (1) to (3) is hit by x(τ).
The parameter tmax ∈ R

>0 denotes an upper
time bound. Essentially, (1) refers to the desired
case that inv(zc

k+1) is reached, while the four
other case render (ŝk, ŝk+1) invalid, since either
a different guard set, a forbidden region, or the
border of the invariant is reached, or tmax is
elapsed. To determine if any of the cases (2) to (5)
applies for any x0 ∈ I, the following optimization
problem is posed:

max
x0∈I

‖x(tf ) − xcent(g((zc
k, zc

k+1)))‖2, (1)



with xcent(g((zc
k, zc

k+1))) denoting the center point
of the guard set. The optimization is solved by
nonlinear programming, in which the simulation
of the continuous dynamics of C is embedded, and
the simulation terminates according to the criteria
for x(tf ) as given above.

If the optimization according to Eq. 1 leads to the
result that CP has to be rejected, the synthesis
procedure continues with refinement (Sec. 3.4). If
the validation was successful, the method flowpipe
enclosure is applied to the validated step of CP .
This method for computing reachable sets, which
is in detail described in (Stursberg and Krogh,
2003), generates a sequence of hyper-rectangular
polyhedra which completely enclose all continuous
states in inv(zc

k) that can be reached from I by
continuous evolution. The reason for applying this
method is that the entry set for the location zc

k+1

can be obtained from intersecting the enclosing
polyhedra with g((zc

k, zc
k+1), and applying the

reset function r((zc
k, zc

k+1, x
′)) afterwards. Thus,

this step produces the starting point for validating
the next transition of CP .

3.4 Refinement

Three different situations have to be considered
for refining A(i) in order to obtain an updated
abstract model A(i+1):

(1.) If the method of checking for set intersection
revealed that, for a transition (ŝk, ŝk+1) of CP ,
the corresponding transition (zc

k, zc
k+1) ∈ Θ of C

can never be taken, (ŝk, ŝk+1) is removed from the
set Ê of A(i).

(2.) If the method failure check returned the result
that the transition (ŝk, ŝk+1) of A(i) is invalid,
the transition cannot not be removed immediately
from Ê, since a smaller entry set into inv(zc

k)
(through a different path) may lead to a positive
validation result. However, if no continuous trajec-
tory corresponding to (ŝk, ŝk+1) can be found, this
transition is eliminated from Ê. The investigation
of the non-existence of such a corresponding tra-
jectory (named connectivity check in Fig. 1) can
be numerically performed by the optimization de-
scribed in (Stursberg et al., 2003). If a connecting
trajectory is found but (ŝk, ŝk+1) of A(i) is invalid,
CP is marked as rejected to exclude it from the
further investigation.

(3.) If (ŝk, ŝk+1) has been validated, and the
method flowpipe enclosure has returned an entry
set I for the location zc

k+1, refinement of A(i)

by state splitting can be performed optionally.
This means that the state ŝk+1 is replaced in
Ê by two states ŝa and ŝb, where ŝa represents
all hybrid states with zc

k+1 and x ∈ I, and ŝb

corresponds to all hybrid states with zc
k+1 and

x ∈ inv(zc
k+1) \ I. ŝa has the same ingoing and

outgoing transitions as ŝk+1. Also for ŝb, the set of
outgoing transitions is identical to the one of ŝk+1,
but the set of ingoing transitions is reduced by
the transition from ŝk, corresponding to the result
of the flowpipe computation. (The refinement
function α is modified accordingly.)

4. APPLICATION TO A REACTOR SYSTEM

To illustrate the approach, it is applied to the
startup procedure of a continuous chemical liquid-
phase reactor. The system comprises a stirred
tank with two inlets, one outlet, a cooling jacket,
and a heating device. An exothermic reaction
of two components D1 and D2 form a product
D3, and D2 is supplied in excess. The task is
to find a control strategy that drives the reactor
from a state of being almost empty and at low
temperature to nominal operation (filled, high
temperature, and high yield). The relevant state
variables are the liquid level (x1), the temperature
of the mixture (x2), and the concentration (x3)
of component D1. A vector v := (F2, F3,K,H)T

denotes the four discrete inputs: the valve settings
for the inlet of component D2 (F2) and for the
outlet (F3), as well as the status of the cooling
(K) and heating device (H). Each input can be
switched between two values (low/high or on/off)
such that 16 different input combinations are
available. The hybrid dynamics is modelled by:

ẋ1 = k1 + F2 − F3, (2)

ẋ2 = (k2(k3 − x2) + F2(k4 − x2))/x1

+ k5(k6 − x2)(k7/x1 + k8)K (3)

ẋ3 = (k9 − (k10 + F2)x3)/x1 (4)

but for the locations with x1 ≥ 0.8 an additional
term for ẋ2 has to be considered:

ẋ′
2 = ẋ2 + k11(k12 − x2)(k13 − k14/x1)H (5)

and for locations with (0, k15, k16) · x ≥ k17 the
following reaction terms are relevant:

ẋ′′
2 = ẋ′

2 + x3(k18 + k19x
2
2) (6)

ẋ′
3 = ẋ3 + k20 · exp (k21/x2) (7)

(with constant parameters ki). The 3-dim. contin-
uous state space is additionally partitioned by a
second threshold for x1, and two more thresholds
for x2. The invariant and guard sets of the hy-
brid automaton follow from this partitioning. The
initial hybrid model HA comprises 12 locations,
22 transitions, and seven forbidden sets (repre-
senting too high temperatures and liquid levels).
The available input sets Vz for each location z
are restricted to those inputs that are physically
reasonable. Thus, the set Zc of locations of HAc

contains 32 locations.



When applying the synthesis procedure pro-
posed in this paper, a feasible control strategy
is found by the 17th candidate path. The over-
approximated continuous reachable state set that
for this strategy is shown in Fig. 3, and obviously
all trajectories emerging from the initial set even-
tually lead to the goal set. The figure indicates six
different phases (p1 to p6) , each of which refers to
a period of time with constant discrete input. The
input for this strategy are: v1 = v2 = (1, 0, 0, 0)T

(i.e., high value for F2, F3 closed, cooling and
heating switched off), v3 = v4 = (0, 1, 0, 1)T

(low value for F2, F3 open, cooling off, heating
on), v5 = (0, 1, 0, 0)T, and v6 = (0, 1, 1, 0)T. The
first 16 candidate path were invalidated by the
failure check method. The synthesis result was
obtained in approx. 4 minutes on a PC with P-
4 processor (1.5 GHz). It has to be mentioned
that the computation time and the number of
candidate paths rejected before finding a feasible
solution does largely depend on the ordering of
the sets Vz. (If, e.g., this order is rearranged such
that above control strategy corresponds to the
first investigated candidate path, the algorithm
terminates already after 40 seconds.)

5. CONCLUSION

The proposed approach has the following advan-
tages in comparison to methods which explore
the hybrid state space in a breadth-first style
by applying each available input in each location
(starting from z0): (a) The search is restricted to
the paths for which the discrete dynamics signals
success, and the search is performed in a depth-
first style. (b) The validation method failure check
was found to be very efficient in rejecting invalid
strategies. (c) The refinement of A by eliminat-
ing transitions can exclude several further invalid
candidate paths. An open point at this stage, and
thus matter of current investigation, is whether

Fig. 3. Reachable continuous state set for the
synthesized control strategy.

the refinement by state splitting is indeed benefi-
cial. It is also investigated if efficient heuristics can
be developed for the order of choosing the discrete
inputs (during the search for CP ), depending on
the outcome of preceding validations.
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