ON CONTROLLABILITY OF LINEAR SYSTEMS WITH POSITIVE CONTROL

M. E. Frías, F. Verduzco, H. Leyva, F. A. Carrillo ${ }^{1}$
Universidad de Sonora, Mexico

Abstract

Necessary conditions for the controllability on linear systems with positive control are presented. The real case is analyzed and the Jordan form representation is employed. The minimum number of necessary controls to obtain controllability is remarked. Copyright ${ }^{〔} 2005$ IFAC

Keywords: Controllability, positive control, blocks of Jordan.

1. INTRODUCTION

In the last years we can observe a great interest in the study of controllability of linear systems with positive control (PCS). The restriction in sign for the input is natural in many applications. In (Saperstone and Yorke, 1971), appears the following mechanical problem: can the pendulum be take to the stable equilibrium point by means of the applications of a finite continuous force in a single direction? One demonstrates that the system is controllable with a control to climb positive. In (Leyva and Carrillo, 2004) appears an annotated and positive feedback that stabilizes this problem. (Brammer, 1972) gives a characterization of the controllability on linear systems with positive control in terms of the pair (A, B). (Frias, et al., 2004) give a characterization of the controllability on a class of linear systems with positive control, only in terms of the matrix B.

The stabilization problem is similar to the one of controllability. In (Smirnov, 1999) the nonlinear systems are characterized that are locally stabilizable by means of positive controls while in (Korobov, 1979) necessary and sufficient conditions are establish to determine the local controllability with positive control in linear systems where the control input is modeled in general form. (Leyva and Carrillo, 2004) consider

[^0]the case of linear PCS with complex eigenvalues, to design positive a global stabilizer.

In this work, the results obtained in (Frias, et al., 2004) are applied to more general linear systems.

2. PROBLEM STATEMENT

Consider the linear system

$$
\begin{equation*}
\dot{x}=A x+B u \tag{1}
\end{equation*}
$$

with $x \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$, and the control parameter u restricted to take values in the cone $U=\mathbb{R}_{+}^{m}$. Due to this restriction of no-negativity, we will say that the control is positive.

In this paper we are interested in finding necessary conditions to ensure the controllability of the system (1) with positive control, for the case when the matrix A has only real eigenvalues. Firstly, we will find necessary and sufficient conditions to controllability with positive control, for the next three cases:
(i) a repeated real eigenvalue in a diagonal form

$$
A=\left(\begin{array}{llll}
\lambda & & & \tag{2}\\
& \lambda & & \\
& & \ddots & \\
& & & \lambda
\end{array}\right)
$$

(ii) a repeated real eigenvalue

$$
A=\left(\begin{array}{llll}
\lambda & 1 & & \tag{3}\\
& \lambda & & \\
& & \ddots & \\
& & & \lambda
\end{array}\right)
$$

(iii) different real eigenvalues

$$
A=\left(\begin{array}{llll}
\lambda_{1} & & & \tag{4}\\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right)
$$

For each case, the minimum number of control necessary to ensure the controllability is remarked. Next, we suppose the matrix A in Jordan form,

$$
A=\left(\begin{array}{lll}
J_{1} & & \\
& \ddots & \\
& & \\
& & J_{k}
\end{array}\right)
$$

where each block J_{i} is giving by (2),(3) or (4), and then we establish our main result putting together the three cases analyzed.

3. PRELIMINARY RESULTS

We present the results obtained in (Frias et al., 2004) which give necessary and sufficient conditions on the matrix B, to assure the controllability with positive control, for the cases in that the matrix A is of the form (2), (3) y (4). Besides, a special emphasis is remarked in those cases where the controllability is possible with a minimum of controls.

Definition 1. The system (1) is called controllable if, for each $x_{1}, x_{2} \in \mathbb{R}^{n}$ there exists a bounded admissible control $u(t) \in U$, definded in some interval $0 \leq t \leq t_{1}$, which steers x_{1} to x_{2}.

In each one of the demonstrations was used the next result due to (Brammer, 1972).

Theorem 1. The system (1) is PCS if and only if
(a) The controllability matrix

$$
\mathcal{C}=\left(B A B \cdots A^{n-1} B\right)
$$

has rank n,
(b) There exists not real eigenvector v of A^{T} satisfying the inequality

$$
v \cdot B u \leq 0
$$

for all $u \in \mathbb{R}_{+}^{m}$.

An equivalent way to express (b) is: (b') For each real eigenvalue v of A^{T}, there exist $u_{1}, u_{2} \in U$ such that $\left(v \cdot B u_{1}\right)\left(v \cdot B u_{2}\right)<0$.

The next three propositions were proved in (Frias, et al, , 2004).

Proposition 1. (i) The control system $\dot{x}=A x+B u$, with A of the form (2), is positively controllable with $n+1$ controls if and only if B has rank n and exists a column b_{k} of B such that

$$
b_{k}=\sum_{j=1 j \neq k}^{n+1} c_{j} b_{j}, \quad \text { with } c_{j}<0
$$

(ii) The control system $\dot{x}=A x+B u$, with A of the form (2), is not positively controllable with n or less controls.

Proposition 2. The control system $\dot{x}=A x+B u$, with A of the form (3), is controllable with positive control if and only if in the last row of B are two entries of opposite signs.

In this case two controls are only necessary to obtain the controllability of the system (1)

Proposition 3. The control system $\dot{x}=A x+B u$, with A of the form (4), is controllable with positive control if and only if in each row of B there are two entries of opposite signs.

There exist in this case systems that can be controlled from two controls, until $2 n$ controls.

The next proposition characterize a PCS for the case in that the matrix A is in the form (2), but with any restriction on the number of controls.

Proposition 4. The control system $\dot{x}=A x+B u$, with A of the form (2), is positively controllable if and only if each vector $v \in \mathbb{R}^{n}$ can be written as a positive linear combination of column vectors of B

Proof:
If $A=\lambda I$, where $I \in \mathbb{R}^{n \times n}$ is the identity matrix, observe that

$$
A^{k} B=\lambda^{k} B
$$

then,

$$
\mathcal{C}=\left(B A B \cdots A^{n-1} B\right)=\left(B \lambda B \cdots \lambda^{n-1} B\right)
$$

therefore $\operatorname{rank}(\mathcal{C})=\operatorname{rank}(B)$. Besides, in this case, each vector $v \in \mathbb{R}^{n}$ is an eigenvalue of A^{T}.
We suppose that the system is positive controllable. Then, $\operatorname{rank}(B)=n$, and each vector $v \in \mathbb{R}^{n}$ can be written as a linear combination of column vectors of B. We must to show that the mentioned linear combination is positive. Consider

$$
W=\left\{w \in \mathbb{R}^{n} \mid w=\sum_{i=1}^{m} c_{i} b_{i}, c_{i} \geq 0, \text { and }\|w\|=1\right\}
$$

and, for $v \in \mathbb{R}^{n}$, with $v \neq 0$, we define $f_{v}: W \rightarrow \mathcal{R}$, giving by $f_{v}(w)=\frac{v \cdot w}{\|v\|}$. It is not difficult to show that there exists $w_{0} \in W$ such that $f_{v}\left(w_{0}\right)$ is maximum. If $f_{v}\left(w_{0}\right)=1$ we have finished, because in this case, $v=\alpha w_{0}$ where $\alpha>0$, and then $\frac{v}{\|v\|} \in W$. Suppose that $f_{v}\left(w_{0}\right)<1$. Let us define

$$
v_{1}=v-\operatorname{Proy}_{w_{0}} v,
$$

where $\operatorname{Proy}_{w_{0}} v$ is the vector that is the projection of v on the vector w_{0}. Observe that $v_{1} \cdot w_{0}=0$. It follows from the theorem 1, that there exists $u \in U$ such that $v_{1} \cdot(B u)>0$, then, there exists a column of B, b_{0}, such that $v_{1} \cdot b_{0}>0$; if such b_{0} there not exists, then $v_{1} \cdot(B u)$ could not be positive. Now, we define

$$
\begin{equation*}
v_{2}=c_{1} b_{0}+c_{2} w_{0} \tag{5}
\end{equation*}
$$

such that

$$
\begin{align*}
& \left(v-v_{2}\right) \cdot b_{0}=0 \tag{6}\\
& \left(v-v_{2}\right) \cdot w_{0}=0 \tag{7}
\end{align*}
$$

That is, the vector v_{2} is the projection of v on the plane generated by b_{0} and w_{0}. Such plane exists, because b_{0} and w_{0} are not parallel (remember that $v_{1} \cdot w_{0}=0$ and $v_{1} \cdot b_{0}>0$). Now then, substituting (5) in (6) and (7), we obtain the next system with unknown variables c_{1}, c_{2} :

$$
\begin{aligned}
\left\|b_{0}\right\|^{2} c_{1}+\left(b_{0} \cdot w_{0}\right) c_{2} & =v \cdot b_{0} \\
\left(b_{0} \cdot w_{0}\right) c_{1}+c_{2} & =v \cdot w_{0}
\end{aligned}
$$

which solution is giving by

$$
\begin{aligned}
& c_{1}=\frac{v \cdot b_{0}-\left(v \cdot w_{0}\right)\left(b_{0} \cdot w_{0}\right)}{\left\|b_{0}\right\|^{2}-\left(b_{0} \cdot w_{0}\right)^{2}} \\
& c_{2}=\frac{\left\|b_{0}\right\|^{2}\left(v \cdot w_{0}\right)-\left(v \cdot b_{0}\right)\left(b_{0} \cdot w_{0}\right)}{\left\|b_{0}\right\|^{2}-\left(b_{0} \cdot w_{0}\right)^{2}}
\end{aligned}
$$

Observe that

$$
\begin{aligned}
\left\|b_{0}\right\|^{2}-\left(b_{0} \cdot w_{0}\right)^{2} & =\left\|b_{0}\right\|^{2}-\left\|b_{0}\right\|^{2} \cos ^{2} \theta_{b_{0} w_{0}} \\
& =\left\|b_{0}\right\|^{2}\left(1-\cos ^{2} \theta_{b_{0} w_{0}}\right) \\
& =\left\|b_{0}\right\|^{2} \sin ^{2} \theta_{b_{0} w_{0}},
\end{aligned}
$$

where $\theta_{b_{0} w_{0}}$ is the angle between b_{0} and w_{0}, which is different of zero, then $\left\|b_{0}\right\|^{2}-\left(b_{0} \cdot w_{0}\right)^{2}>0$. Now then, observe that $v \cdot w_{0}=\|$ Proy $_{w_{0}} v \|$ and that $\left(\right.$ Proy $\left._{w_{0}} v\right) \cdot b_{0}=\left\|\operatorname{Proy}_{w_{0}} v\right\|\left(b_{0} \cdot w_{0}\right)$, then substituting $v=v_{1}+\operatorname{Proy}_{w_{0}} v$ in the numerator of c_{1}, we obtain

$$
\begin{aligned}
v \cdot b_{0}-\left(v \cdot w_{0}\right)\left(b_{0} \cdot w_{0}\right)= & v_{1} \cdot b_{0}+\left(\operatorname{Proy}_{w_{0}} v\right) \cdot b_{0}- \\
& \left\|\operatorname{Proy}_{w_{0}} v\right\|\left(b_{0} \cdot w_{0}\right) \\
= & v_{1} \cdot b_{0}>0
\end{aligned}
$$

therefore, $c_{1}=\frac{v_{1} \cdot b_{0}}{\left\|b_{0}\right\|^{2} \sin ^{2} \theta_{b_{0} w_{0}}}>0$. The sign of c_{2} depends of the vector b_{0}. If $c_{2}>0$, we define

$$
\tilde{w}=\frac{v_{2}}{\left\|v_{2}\right\|} \in W
$$

and, by construction, $f_{v}(\tilde{w})>f_{v}\left(w_{0}\right)$, which is a contradiction, because we have suppose that $f_{v}\left(w_{0}\right)$ is maximum. If $c_{2} \leq 0$, we define

$$
\tilde{w}=\frac{b_{0}}{\left\|b_{0}\right\|} \in W
$$

Observe that $w_{0} \cdot\left(\frac{b_{0}}{\left\|b_{0}\right\|}\right)<1$, then, $c_{2} \leq 0$ imply that

$$
\begin{aligned}
\left\|b_{0}\right\|^{2}\left(v \cdot w_{0}\right) & \leq\left(v \cdot b_{0}\right)\left(b_{0} \cdot w_{0}\right) \Leftrightarrow \\
\left(\frac{v}{\|v\|} \cdot w_{0}\right) & \leq\left(\frac{v}{\|v\|} \cdot \frac{b_{0}}{\left\|b_{0}\right\|}\right)\left(w_{0} \cdot \frac{b_{0}}{\left\|b_{0}\right\|}\right) \Leftrightarrow \\
\left(\frac{v}{\|v\|} \cdot w_{0}\right) & <\left(\frac{v}{\|v\|} \cdot \frac{b_{0}}{\left\|b_{0}\right\|}\right) \\
f_{v}\left(w_{0}\right) & <f_{v}(\tilde{w})
\end{aligned}
$$

which is a contradiction.
Now, we assume that each vector $v \in \mathbb{R}^{n}$ can be written as a positive linear combination of column vectors of B. Then, $\operatorname{rank}(B)=n$, therefore, $\operatorname{rank}(\mathcal{C})=n$. Let $v \in \mathbb{R}^{n}$ be an eigenvector of A^{T}, we must to prove that there exist $u_{1}, u_{2} \in U$, such that $\left(v \cdot\left(B u_{1}\right)\right)\left(v \cdot\left(B u_{2}\right)\right)<0$. Now then, by hypothesis, there exist $c_{i} \geq 0$ and $d_{i} \geq 0$, for $i=1, \ldots, m$, such that $v=\sum_{i=1}^{m} c_{i} b_{i}$ and $-v=$ $\sum_{i=1}^{m} d_{i} b_{i}$, where b_{i} are column vectors of B. If we made $u_{1}=\left(c_{1}, \ldots, c_{m}\right)^{T}$ and $u_{2}=\left(d_{1}, \ldots, d_{m}\right)^{T}$, then $\left(v \cdot\left(B u_{1}\right)\right)=\|v\|^{2}$ and $\left(v \cdot\left(B u_{2}\right)\right)=-\|v\|^{2}$.

Corollary 1. The control system $\dot{x}=A x+B u$, with A of the form (2), is positively controllable if and only if B has rank n and each column vector of B can be written as a negative linear combination of column vectors of B.

Proof:

Suppose that the system is positively controllable. $\operatorname{Rank}(\mathcal{C})=n$ imply that $\operatorname{rank}(B)=n$. Let b_{i} be a column vector of B, then, by the proposition 4 , $-b_{i}$ can be written as a positive linear combination of column vectors of B.
Now, let us suppose that B has rank n, and that each column vector of B can be written as a negative linear combination of column vectors of B. It follows that $\operatorname{Rank}(\mathcal{C})=n$. Consider $v \in \mathbb{R}^{n}$, then, by hypothesis, v can be written as a linear combination of column vectors of B. Change those columns of B, that correspond to terms with negative coefficients, by their respective negative linear combination. In this way, v can be written as a positive linear combination of column vectors of B, then, by the proposition (4), we conclude that the system is positively controllable.

4. MAIN RESULT

Consider the linear system

$$
\dot{x}=A x+B u
$$

where the matrix

$$
A=\left(\begin{array}{lll}
J_{1} & & \\
& \ddots & \\
& & J_{k}
\end{array}\right)
$$

is in Jordan form, where each block $J_{i} \in \mathbb{R}^{n_{i} \times n_{i}}$ is in the form (2),(3) or (4), and

$$
B=\left(\begin{array}{c}
B_{1} \\
\vdots \\
B_{k}
\end{array}\right)
$$

where $B_{i} \in \mathbb{R}^{n_{i} \times m}$. In a natural way, we can write $x=\left(x_{1}, \ldots, x_{k}\right)^{T}$, where $x_{i} \in \mathbb{R}^{n_{i}}$, and $\sum_{i=1}^{k} n_{i}=$ n. Then

$$
\dot{x}=A x+B u \Leftrightarrow\left\{\begin{array}{l}
\dot{x}_{1}=J_{1} x_{1}+B_{1} u \\
\vdots \\
\dot{x}_{k}=J_{k} x_{k}+B_{k} u
\end{array}\right.
$$

Lemma 1. Consider the control system $\dot{x}=J x+$ $B u$ with J of the form (4) and $x \in \mathbb{R}^{s}$. If the matrix $B=\left\{b_{1}, \ldots, b_{m}\right\}$ is such that b_{j} has r entries different of zero, with $0<r \leq s$, then the collection $\left\{b_{j}, A b_{j}, \ldots, A^{r-1} b_{j}\right\}$ is linearly independent.

Proof:

Let us suppose that

$$
c_{1} b_{j}+c_{2} A b_{j}+\cdots+c_{r} A^{r-1} b_{j}=0
$$

We must to prove that $c_{i}=0$ for each $i=1, \ldots, r$. Consider the polynomial

$$
f(x)=c_{1}+c_{2} x+\cdots+c_{r} x^{r-1}
$$

which is of degree $r-1$. Without loss of generality, suppose that $b_{j}=\left(b_{1 j}, \ldots, b_{r j}, 0, \ldots, 0\right)^{T}$. Note that

$$
A^{k} b_{j}=\left(\lambda_{1}^{k} b_{1 j}, \ldots, \lambda_{r}^{k} b_{r j}, 0, \ldots, 0\right)^{T}
$$

so then

$$
\begin{array}{rlrl}
& \sum_{k=1}^{r} c_{k} A^{k-1} b_{j} & =0 \\
\Leftrightarrow \quad \sum_{k=1}^{r} c_{k} \lambda_{i}^{k-1} b_{i j} & =0, \text { for } i=1, \ldots, r \\
\Leftrightarrow b_{i j}\left(\sum_{k=1}^{n} c_{k} \lambda_{i}^{k-1}\right) & =0, \text { for } i=1, \ldots, r \\
\Leftrightarrow \quad b_{i j} f\left(\lambda_{i}\right) & =0, \text { for } i=1, \ldots, r,
\end{array}
$$

what implies that $f(x)$ has r different solutions, but $f(x)$ is a $r-1$ degree polynomial, therefore, in virtue
of the fundamental theorem of algebra, $f(x) \equiv 0$, consequently,

$$
c_{1}=c_{2}=\cdots=c_{n}=0
$$

Theorem 2. If the system $\dot{x}=A x+B u$ is positively controllable then the system $\dot{x}_{i}=J_{i} x_{i}+B_{i} u$ is positively controllable, for $i=1, \ldots, k$.

Proof:
Observe that

$$
\begin{aligned}
A^{r} B & =\left(\begin{array}{ccc}
J_{1}^{r} & & \\
& \ddots & \\
& & J_{k}^{r}
\end{array}\right)\left(\begin{array}{c}
B_{1} \\
\vdots \\
B_{k}
\end{array}\right) \\
& =\left(\begin{array}{c}
J_{1}^{r} B_{1} \\
\vdots \\
J_{k}^{r} B_{k}
\end{array}\right)
\end{aligned}
$$

then,

$$
\begin{aligned}
\mathcal{C} & =\left(B A B \cdots A^{n-1} B\right) \\
& =\left(\begin{array}{ccccc}
B_{1} & J_{1} B_{1} & \cdots & J_{1}^{n_{1}-1} B_{1} & \cdots \\
\vdots & J_{1}^{n-1} B_{1} \\
B_{i} & J_{i} B_{i} & \cdots & J_{i}^{n_{i}-1} B_{i} & \cdots \\
\\
B_{k} & J_{k} B_{k} & \cdots & J_{k}^{n-1} B_{i} \\
n_{k}-1 & B_{k} & \cdots & J_{k}^{n-1} B_{k}
\end{array}\right) .
\end{aligned}
$$

We define

$$
\mathcal{C}_{i}=\left(B_{i} J_{i} B_{i} \cdots J_{i}^{n_{i}-1} B_{i} \cdots J_{i}^{n-1} B_{i}\right)
$$

then, $\operatorname{rank}\left(\mathcal{C}_{i}\right) \leq n_{i}$, for each $i=1, \ldots, k$, but,

$$
\operatorname{rank}(\mathcal{C})=\sum_{i=1}^{k} \operatorname{rank}\left(\mathcal{C}_{i}\right)=n
$$

therefore $\operatorname{rank}\left(\mathcal{C}_{i}\right)=n_{i}$, for each $i=1, \ldots, k$. Now, let us define

$$
\tilde{\mathcal{C}}_{i}=\left(B_{i} J_{i} B_{i} \cdots J_{i}^{n_{i}-1} B_{i}\right) .
$$

We are going to prove that $\operatorname{rank}\left(\tilde{\mathcal{C}}_{i}\right)=n_{i}$ by cases.
(i). Suppose that $J_{i}=\lambda_{i} I$, then

$$
n_{i}=\operatorname{rank}\left(\mathcal{C}_{i}\right)=\operatorname{rank}\left(B_{i}\right)=\operatorname{rank}\left(\tilde{\mathcal{C}}_{i}\right)
$$

(ii). Consider $J_{i}=\left(\begin{array}{cccc}\lambda & 1 & & \\ & \lambda & & \\ & & \ddots & \\ & & & 1 \\ & & & \lambda\end{array}\right)=\lambda I+N$, where
N is a nilpotent matrix such that $N^{r}=0$ if $r \geq n_{i}$. Observe that

$$
J_{i}^{r} B_{i}=(\lambda I+N)^{r} B_{i}
$$

$$
\begin{aligned}
& =\sum_{j=0}^{r} \mathrm{C}_{j}^{r} \lambda^{r-j} N^{j} B_{i} \\
& =\sum_{j=0}^{r} c_{j} N^{j} B_{i},
\end{aligned}
$$

where $c_{j}=\mathrm{C}_{j}^{r} \lambda^{r-j} \neq 0$, that is, each column vector in $J_{i}^{r} B_{i}$ can be written as a linear combination of column vectors of $\left(B_{i} N B_{i} \cdots N^{r} B_{i}\right)$. If $r \geq n_{i}$, then each column vector in $J_{i}^{r} B_{i}$ can be written as a linear combination of column vectors of $\left(B_{i} N B_{i} \cdots N^{n_{i}-1} B_{i}\right)$. We know that $\operatorname{rank}\left(\mathcal{C}_{i}\right)=$ n_{i}, then there exist n_{i} linearly independent column vectors in the matrix $\left(B_{i} N B_{i} \cdots N^{n_{i}-1} B_{i}\right)$, that is, $\operatorname{rank}\left(\tilde{\mathcal{C}}_{i}\right)=n_{i}$.
(iii) Finally, consider the case when J_{i} has n_{i} different real eigenvalues. Let $v \in \mathbb{R}^{n_{i}}$ be a column vector of B_{i} with r entries different of zero, with $0<r \leq n_{i}$. By the lemma $1,\left\{v, J_{i} v, \ldots, J_{i}^{r-1} v\right\}$ are linearly independent, then each vector $J_{i}^{s} v$ can be written as a linear combination of them, for $s \geq n_{i}$. But we know that $\operatorname{rank}\left(\mathcal{C}_{i}\right)=\operatorname{rank}\left(B_{i} J_{i} B_{i} \cdots J_{i}^{n_{i}-1} B_{i} \cdots J_{i}^{n-1} B_{i}\right)$ n_{i}, then each column vector in $\left(J_{i}^{n_{i}} B_{i} \cdots J_{i}^{n-1}{ }_{\tilde{C}} B_{i}\right)$ is a linear combination of column vectors in $\tilde{\mathcal{C}}_{i}=$ $\left(B_{i} J_{i} B_{i} \cdots J_{i}^{n_{i}-1} B_{i}\right)$, it follows then that $\operatorname{rank}\left(\tilde{\mathcal{C}}_{i}\right)=$ n_{i}. This finish the proof.

The conditions are not sufficient. Consider the next system, that is positively controllable by blocks, but that not is PCS.

$$
\dot{x}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) x+\left(\begin{array}{rrr}
0 & 0 & 0 \\
1 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & -1
\end{array}\right) u
$$

We have the blocks,

$$
\dot{x}_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) x_{1}+\left(\begin{array}{rrr}
0 & 0 & 0 \\
1 & -1 & 0
\end{array}\right) u
$$

which is positively controllable by the proposition 2 , and

$$
\dot{x}_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) x_{2}+\left(\begin{array}{rrr}
0 & 0 & 0 \\
1 & -1 & 0
\end{array}\right) u
$$

which is positively controllable by the proposition 1 , but for the whole system the controllability matrix has rank 3.

5. CONCLUSIONS

Necessary conditions for positively controllable systems have been found. Brammer has establish an important characterization in terms of the pair (A, B), while in this document have been found necessary conditions only in terms of the matrix B. The principal result can be used as a very simple negative criteria for positively controllable systems. In addition, the characterization of the particular Jordan blocks, allows to establish the number minimum of necessary controls to obtain the controllability of the system.

REFERENCES

Brammer, R.F. (1972). Controllability in linear autonomous systems with positive controllers. SIAM J. Gontrol, 10.

Frias, M.E., F. Verduzco, H. Leyva, F.A. Carrillo (2004). Positive controllability for a class of linear systems (In Spanish). Congreso Nacional de Control Automatico. Mexico, D.F.

Kailath, T. (1980). Linear Systems. Prentice-Hall.
Korobov, V.I. (1979). A geometrical criterion for local controllability of dynamical systems with restrictions on controls. Diff. Uravn., 15, 1592-1599.

Leyva, H., F.A. Carrillo (2004). Global stabilization in linear systems with positive control (In Spanish). XI Congreso Latinoamericano de Control Automático. La Habana, Cuba.

Saperstone, H., J.A. Yorke (1971). Controllability of linear oscillatory systems using positive controls. SIAM J. Control, 9, paginas.
Smirnov, G.V. (1999). Global guidance stabilization of linear control systems. Int. J. Robust Nonlinear Control, 9, 585-598.

[^0]: ${ }^{1}$ Mail address: Universidad de Sonora, Rosales and Transversal, Hermosillo, Sonora, Mexico. Phone: +52.662 .2592155 , Fax: +52.662 .2592219 . E-mail: verduzco@ gauss.mat.uson.mx

