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Abstract: Necessary conditions for the controllability on linear systems with positive control
are presented. The real case is analyzed and the Jordan form representation is employed. The
minimum number of necessary controls to obtain controllability is remarked.
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1. INTRODUCTION

In the last years we can observe a great interest in the
study of controllability of linear systems with positive
control (PCS). The restriction in sign for the input
is natural in many applications. In (Saperstone and
Yorke, 1971), appears the following mechanical prob-
lem: can the pendulum be take to the stable equilib-
rium point by means of the applications of a finite
continuous force in a single direction? One demon-
strates that the system is controllable with a control to
climb positive. In (Leyva and Carrillo, 2004) appears
an annotated and positive feedback that stabilizes this
problem. (Brammer, 1972) gives a characterization
of the controllability on linear systems with positive
control in terms of the pair(A,B). (Frias,et al., 2004)
give a characterization of the controllability on a class
of linear systems with positive control, only in terms
of the matrixB.

The stabilization problem is similar to the one of
controllability. In (Smirnov, 1999) the nonlinear sys-
tems are characterized that are locally stabilizable by
means of positive controls while in (Korobov, 1979)
necessary and sufficient conditions are establish to de-
termine the local controllability with positive control
in linear systems where the control input is modeled
in general form. (Leyva and Carrillo, 2004) consider
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the case of linear PCS with complex eigenvalues, to
design positive a global stabilizer.

In this work, the results obtained in (Frias,et al., 2004)
are applied to more general linear systems.

2. PROBLEM STATEMENT

Consider the linear system

ẋ = Ax + Bu (1)

with x ∈ Rn, A ∈ Rn×n, B ∈ Rn×m, and the
control parameteru restricted to take values in the
coneU = Rm

+ . Due to this restriction of no-negativity,
we will say that the control is positive.

In this paper we are interested in finding necessary
conditions to ensure the controllability of the system
(1) with positive control, for the case when the matrix
A has only real eigenvalues. Firstly, we will find
necessary and sufficient conditions to controllability
with positive control, for the next three cases:

(i) a repeated real eigenvalue in a diagonal form

A =


λ

λ
...

λ

 (2)

(ii) a repeated real eigenvalue



A =


λ 1

λ
... 1

λ

 (3)

(iii) different real eigenvalues

A =


λ1

λ2

...
λn

 (4)

For each case, the minimum number of control nec-
essary to ensure the controllability is remarked. Next,
we suppose the matrixA in Jordan form,

A =

 J1

...
Jk

 ,

where each blockJi is giving by (2),(3) or (4), and
then we establish our main result putting together the
three cases analyzed.

3. PRELIMINARY RESULTS

We present the results obtained in (Friaset al., 2004)
which give necessary and sufficient conditions on the
matrix B, to assure the controllability with positive
control, for the cases in that the matrixA is of the
form (2), (3) y (4). Besides, a special emphasis is
remarked in those cases where the controllability is
possible with a minimum of controls.

Definition 1. The system (1) is called controllable if,
for eachx1, x2 ∈ Rn there exists a bounded admis-
sible controlu(t) ∈ U , definded in some interval
0 ≤ t ≤ t1, which steersx1 to x2.

In each one of the demonstrations was used the next
result due to (Brammer, 1972).

Theorem 1.The system (1) is PCS if and only if

(a) The controllability matrix

C = (B AB · · · An−1B)

has rankn,
(b) There exists not real eigenvectorv of AT satisfy-

ing the inequality

v ·Bu ≤ 0

for all u ∈ Rm
+ .

An equivalent way to express (b) is: (b’) For each real
eigenvaluev of AT , there existu1, u2 ∈ U such that
(v ·Bu1) (v ·Bu2) < 0.

The next three propositions were proved in (Frias,et
al,, 2004).

Proposition 1. (i) The control systeṁx = Ax + Bu,
with A of the form (2), is positively controllable with
n + 1 controls if and only ifB has rankn and exists a
columnbk of B such that

bk =
n+1∑

j=1j 6=k

cjbj , with cj < 0

(ii) The control systeṁx = Ax + Bu, with A of the
form (2), is not positively controllable withn or less
controls.

Proposition 2.The control systeṁx = Ax+Bu, with
A of the form (3), is controllable with positive control
if and only if in the last row ofB are two entries of
opposite signs.

In this case two controls are only necessary to obtain
the controllability of the system (1)

Proposition 3.The control systeṁx = Ax+Bu, with
A of the form (4), is controllable with positive control
if and only if in each row ofB there are two entries of
opposite signs.

There exist in this case systems that can be controlled
from two controls, until2n controls.

The next proposition characterize a PCS for the case
in that the matrixA is in the form (2), but with any
restriction on the number of controls.

Proposition 4.The control systeṁx = Ax+Bu, with
A of the form (2), is positively controllable if and only
if each vectorv ∈ Rn can be written as a positive
linear combination of column vectors ofB

Proof:
If A = λI, whereI ∈ Rn×n is the identity matrix,
observe that

AkB = λkB,

then,

C = (B AB · · · An−1B) = (B λB · · · λn−1B)

thereforerank(C) = rank(B). Besides, in this case,
each vectorv ∈ Rn is an eigenvalue ofAT .
We suppose that the system is positive controllable.
Then,rank(B) = n, and each vectorv ∈ Rn can
be written as a linear combination of column vectors
of B. We must to show that the mentioned linear
combination is positive. Consider

W = {w ∈ Rn |w =
m∑

i=1

cibi, ci ≥ 0, and||w|| = 1 }



and, forv ∈ Rn, with v 6= 0, we definefv : W → R,
giving byfv(w) = v·w

||v|| . It is not difficult to show that
there existsw0 ∈ W such thatfv(w0) is maximum.
If fv(w0) = 1 we have finished, because in this case,
v = αw0 whereα > 0, and then v

||v|| ∈ W . Suppose
thatfv(w0) < 1. Let us define

v1 = v − Proyw0v,

whereProyw0v is the vector that is the projection ofv
on the vectorw0. Observe thatv1 · w0 = 0. It follows
from the theorem 1, that there existsu ∈ U such that
v1 · (Bu) > 0, then, there exists a column ofB, b0,
such thatv1 · b0 > 0; if suchb0 there not exists, then
v1 · (Bu) could not be positive. Now, we define

v2 = c1b0 + c2w0, (5)

such that

(v − v2) · b0 = 0 (6)

(v − v2) · w0 = 0 (7)

That is, the vectorv2 is the projection ofv on the plane
generated byb0 andw0. Such plane exists, becauseb0

andw0 are not parallel (remember thatv1 · w0 = 0
andv1 · b0 > 0). Now then, substituting (5) in (6) and
(7), we obtain the next system with unknown variables
c1, c2:

||b0||2c1 + (b0 · w0)c2 = v · b0

(b0 · w0)c1 + c2 = v · w0

which solution is giving by

c1 =
v · b0 − (v · w0)(b0 · w0)
||b0||2 − (b0 · w0)2

c2 =
||b0||2(v · w0)− (v · b0)(b0 · w0)

||b0||2 − (b0 · w0)2

Observe that

||b0||2 − (b0 · w0)2 = ||b0||2 − ||b0||2 cos2 θb0w0

= ||b0||2
(
1− cos2 θb0w0

)
= ||b0||2 sin2 θb0w0 ,

whereθb0w0 is the angle betweenb0 andw0, which
is different of zero, then||b0||2 − (b0 · w0)2 > 0.
Now then, observe thatv · w0 = ||Proyw0v|| and
that (Proyw0v) · b0 = ||Proyw0v||(b0 · w0), then
substitutingv = v1 + Proyw0v in the numerator of
c1, we obtain

v · b0 − (v · w0)(b0 · w0) = v1 · b0 + (Proyw0v) · b0 −
||Proyw0v||(b0 · w0)

= v1 · b0 > 0,

therefore,c1 = v1·b0
||b0||2 sin2 θb0w0

> 0. The sign ofc2

depends of the vectorb0. If c2 > 0, we define

w̃ =
v2

||v2||
∈ W,

and, by construction,fv(w̃) > fv(w0), which is a
contradiction, because we have suppose thatfv(w0)
is maximum. Ifc2 ≤ 0, we define

w̃ =
b0

||b0||
∈ W.

Observe thatw0 ·
(

b0
||b0||

)
< 1, then,c2 ≤ 0 imply that

||b0||2(v · w0)≤ (v · b0) (b0 · w0) ⇔

(
v

||v||
· w0)≤

(
v

||v||
· b0

||b0||

)(
w0 ·

b0

||b0||

)
⇔

(
v

||v||
· w0) <

(
v

||v||
· b0

||b0||

)
fv(w0) < fv(w̃),

which is a contradiction.

Now, we assume that each vectorv ∈ Rn can
be written as a positive linear combination of col-
umn vectors ofB. Then,rank(B) = n, therefore,
rank(C) = n. Let v ∈ Rn be an eigenvector of
AT , we must to prove that there existu1, u2 ∈ U ,
such that(v · (Bu1)) (v · (Bu2)) < 0. Now then,
by hypothesis, there existci ≥ 0 and di ≥ 0, for
i = 1, . . . ,m, such thatv =

∑m
i=1 cibi and−v =∑m

i=1 dibi, wherebi are column vectors ofB. If we
madeu1 = (c1, . . . , cm)T andu2 = (d1, . . . , dm)T ,
then(v · (Bu1)) = ||v||2 and(v · (Bu2)) = −||v||2.

Corollary 1. The control systeṁx = Ax + Bu, with
A of the form (2), is positively controllable if and only
if B has rankn and each column vector ofB can
be written as a negative linear combination of column
vectors ofB.

Proof:
Suppose that the system is positively controllable.
Rank(C) = n imply that rank(B) = n. Let bi

be a column vector ofB, then, by the proposition 4,
−bi can be written as a positive linear combination of
column vectors ofB.
Now, let us suppose thatB has rankn, and that
each column vector ofB can be written as a negative
linear combination of column vectors ofB. It follows
that Rank(C) = n. Considerv ∈ Rn, then, by
hypothesis,v can be written as a linear combination
of column vectors ofB. Change those columns ofB,
that correspond to terms with negative coefficients, by
their respective negative linear combination. In this
way,v can be written as a positive linear combination
of column vectors ofB, then, by the proposition (4),
we conclude that the system is positively controllable.



4. MAIN RESULT

Consider the linear system

ẋ = Ax + Bu

where the matrix

A =

 J1

...
Jk

 ,

is in Jordan form, where each blockJi ∈ Rni×ni is in
the form (2),(3) or (4), and

B =

B1

...
Bk

 ,

whereBi ∈ Rni×m. In a natural way, we can write
x = (x1, . . . , xk)T , wherexi ∈ Rni , and

∑k
i=1 ni =

n. Then

ẋ = Ax + Bu ⇔


ẋ1 = J1x1 + B1u
...
ẋk = Jkxk + Bku

Lemma 1.Consider the control systeṁx = Jx +
Bu with J of the form (4) andx ∈ Rs. If the
matrix B = {b1, . . . , bm} is such thatbj hasr entries
different of zero, with0 < r ≤ s, then the collection
{bj , Abj , . . . , A

r−1bj} is linearly independent.

Proof:
Let us suppose that

c1bj + c2Abj + · · ·+ crA
r−1bj = 0.

We must to prove thatci = 0 for eachi = 1, . . . , r.
Consider the polynomial

f(x) = c1 + c2x + · · ·+ crx
r−1,

which is of degreer − 1. Without loss of generality,
suppose thatbj = (b1j , . . . , brj , 0, . . . , 0)T . Note that

Akbj = (λk
1b1j , . . . , λ

k
rbrj , 0, . . . , 0)T ,

so then
r∑

k=1

ckAk−1bj = 0

⇔
r∑

k=1

ckλk−1
i bij = 0, for i = 1, . . . , r

⇔ bij

(
n∑

k=1

ckλk−1
i

)
= 0, for i = 1, . . . , r

⇔ bijf(λi) = 0, for i = 1, . . . , r,

what implies thatf(x) hasr different solutions, but
f(x) is ar− 1 degree polynomial, therefore, in virtue

of the fundamental theorem of algebra,f(x) ≡ 0,
consequently,

c1 = c2 = · · · = cn = 0.

Theorem 2.If the systemẋ = Ax + Bu is positively
controllable then the systeṁxi = Jixi + Biu is
positively controllable, fori = 1, . . . , k.

Proof:
Observe that

ArB =

 Jr
1

...
Jr

k


B1

...
Bk


=

 Jr
1B1

...
Jr

kBk

 ,

then,

C = (B AB · · · An−1B)

=



B1 J1B1 · · · Jn1−1
1 B1 · · · Jn−1

1 B1

...
Bi JiBi · · · Jni−1

i Bi · · · Jn−1
i Bi

...
Bk JkBk · · · Jnk−1

k Bk · · · Jn−1
k Bk

 .

We define

Ci = (Bi JiBi · · · Jni−1
i Bi · · · Jn−1

i Bi),

then,rank(Ci) ≤ ni, for eachi = 1, . . . , k, but,

rank(C) =
k∑

i=1

rank(Ci) = n,

therefore,rank(Ci) = ni, for eachi = 1, . . . , k. Now,
let us define

C̃i = (Bi JiBi · · · Jni−1
i Bi).

We are going to prove thatrank(C̃i) = ni by cases.
(i). Suppose thatJi = λiI, then

ni = rank(Ci) = rank(Bi) = rank(C̃i).

(ii). ConsiderJi =


λ 1

λ
... 1

λ

 = λI +N , where

N is a nilpotent matrix such thatNr = 0 if r ≥ ni.
Observe that

Jr
i Bi = (λI + N)rBi



=
r∑

j=0

Cr
jλ

r−jN jBi

=
r∑

j=0

cjN
jBi,

where cj = Cr
jλ

r−j 6= 0, that is, each column
vector in Jr

i Bi can be written as a linear combi-
nation of column vectors of(Bi NBi · · · NrBi). If
r ≥ ni, then each column vector inJr

i Bi can be
written as a linear combination of column vectors of
(Bi NBi · · · Nni−1Bi). We know thatrank(Ci) =
ni, then there existni linearly independent column
vectors in the matrix(Bi NBi · · · Nni−1Bi), that is,
rank(C̃i) = ni.
(iii) Finally, consider the case whenJi hasni differ-
ent real eigenvalues. Letv ∈ Rni be a column vector
of Bi with r entries different of zero, with0 < r ≤ ni.
By the lemma 1,{v, Jiv, . . . , Jr−1

i v} are linearly in-
dependent, then each vectorJs

i v can be written as a
linear combination of them, fors ≥ ni. But we know
thatrank(Ci) = rank(Bi JiBi · · · Jni−1

i Bi · · · Jn−1
i Bi) =

ni, then each column vector in(Jni
i Bi · · · Jn−1

i Bi)
is a linear combination of column vectors iñCi =
(Bi JiBi · · · Jni−1

i Bi), it follows then thatrank(C̃i) =
ni. This finish the proof.

The conditions are not sufficient. Consider the next
system, that is positively controllable by blocks, but
that not is PCS.

ẋ =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

x +


0 0 0
1 −1 0
1 0 −1
0 1 −1

u

We have the blocks,

ẋ1 =
(

1 1
0 1

)
x1 +

(
0 0 0
1 −1 0

)
u,

which is positively controllable by the proposition 2,
and

ẋ2 =
(

1 0
0 1

)
x2 +

(
0 0 0
1 −1 0

)
u,

which is positively controllable by the proposition 1,
but for the whole system the controllability matrix has
rank 3.

5. CONCLUSIONS

Necessary conditions for positively controllable sys-
tems have been found. Brammer has establish an im-
portant characterization in terms of the pair(A,B),
while in this document have been found necessary
conditions only in terms of the matrixB. The principal
result can be used as a very simple negative criteria for
positively controllable systems. In addition, the char-
acterization of the particular Jordan blocks, allows to
establish the number minimum of necessary controls
to obtain the controllability of the system.
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